
FourQ on embedded devices with strong
countermeasures against side-channel attacks

Zhe Liu1,2, Patrick Longa3, Geovandro C. C. F. Pereira2,
Oscar Reparaz4, and Hwajeong Seo5

1 SnT, University of Luxembourg, Luxembourg
2 IQC, University of Waterloo, Canada

{zhelu.liu,geovandro.pereira}@uwaterloo.ca
3 Microsoft Research, USA
plonga@microsoft.com

4 imec-COSIC KU Leuven, Belgium
oscar.reparaz@esat.kuleuven.be

5 Hansung University, Korea
hwajeong84@gmail.com

Abstract. This work deals with the energy-efficient, high-speed and
high-security implementation of elliptic curve scalar multiplication and
elliptic curve Diffie-Hellman (ECDH) key exchange on embedded de-
vices using FourQ and incorporating strong countermeasures to thwart a
wide variety of side-channel attacks. First, we set new speed records for
constant-time curve-based scalar multiplication and DH key exchange
at the 128-bit security level with implementations targeting 8, 16 and
32-bit microcontrollers. For example, our software computes a static
ECDH shared secret in ∼6.9 million cycles (or 0.86 seconds @8MHz) on
a low-power 8-bit AVR microcontroller which, compared to the fastest
Curve25519 and genus-2 Kummer implementations on the same plat-
form, offers 2x and 1.4x speedups, respectively. Similarly, it computes
the same operation in ∼496 thousand cycles on a 32-bit ARM Cortex-
M4 microcontroller, achieving a factor-2.9 speedup when compared to the
fastest Curve25519 implementation targeting the same platform. Second,
we engineer a set of side-channel countermeasures taking advantage of
FourQ’s rich arithmetic and propose a secure implementation that offers
protection against a wide range of sophisticated side-channel attacks. Fi-
nally, we perform a differential power analysis evaluation of our software
running on an ARM Cortex-M4, and report that no leakage was detected
with up to 10 million traces. These results demonstrate the potential of
deploying FourQ on low-power applications such as protocols for IoT.

Keywords. Elliptic curves, FourQ, ECDH, embedded devices, IoT, en-
ergy efficiency, side-channel attacks, strong countermeasures.

1 Introduction

Elliptic curve cryptography (ECC) is a popular public-key system that has be-
come an attractive candidate to enable strong cryptography on constrained de-
vices. Its reduced key sizes and great performance are nicely matched by its

solid security foundation based on the elliptic curve discrete logarithm problem
(ECDLP). Hence, it is foremost relevant to research ECC-based mechanisms
that could ameliorate efficiency and power limitations with the goal of making
ECC suitable for constrained applications.

FourQ [16] is a high-performance elliptic curve that provides about 128 bits
of security and enables efficient and secure scalar multiplications. Implementa-
tions based on this curve have been shown to achieve the fastest computations of
variable-base, fixed-base and double scalar multiplications to date on a large vari-
ety of x64 and ARMv7–A processors [16, 36]. This performance trait is especially
attractive for IoT, when devices need to keep clock frequencies to a minimum (in
order to fulfill limited power budgets) and yet need to minimize the impact on
the device’s response time. Moreover, FourQ’s high speed is expected to have a
direct positive impact in energy savings, since reduced computing time typically
translates to lower energy consumption.

Side-channel attacks. Protection against side-channel attacks [33, 32] rep-
resents another important aspect of the security in embedded devices. These
attacks, which have been the focus of intense research since Kocher’ seminal pa-
per [33], can be classified as: passive attacks (a.k.a. side-channel analysis (SCA)),
such as differential side-channel analysis (DSCA) [32], timing [33], correlation [6],
collision [23] and template [8] attacks, among many other variants; and active
attacks (a.k.a. fault attacks). Refer to [3, 20] for detailed taxonomies of attacks
and countermeasures. Certainly, most of these attacks can be rendered ineffective
(or greatly limited in impact) by restricting the lifespan of secrets, for instance,
by using fully ephemeral ECDH key exchange1. However, some protocols such
as those based on static ECDH or ephemeral ECDH with cached public keys
can be subjected to these attacks and, thus, might require additional defenses.
In this work, we focus on passive attacks.

Our contributions. We present the first implementations of FourQ-based
scalar multiplication and ECDH key exchange on 8, 16, and 32-bit microcon-
trollers (MCUs), and demonstrate that this curve can deliver the fastest curve-
based computations on embedded IoT devices, potentially helping to achieve
stringent design goals in terms of response time and energy (see §3 and §4). For
example, a static ECDH shared key is computed 2x, 1.8x, and 2.9x faster than
the fastest Curve25519 implementations on 8-bit AVR, 16-bit MSP430X, and
32-bit ARM Cortex-M4 MCUs, respectively.

In addition, we present, to the best of our knowledge, the first publicly-
available design and implementation of an elliptic curve-based system that in-
cludes defenses against a wide variety of passive attacks (see §5). Our protected
scalar multiplication and ECDH algorithms, which include a set of efficient coun-
termeasures that have been especially tailored for FourQ, are designed to min-

1 In some contexts, the term “ephemeral ECDH” is used even when public keys are
cached and reused for a certain period of time. We stress that using fresh private and
public keys per each key exchange (which we refer to as “fully ephemeral ECDH”)
greatly increases resilience against side-channel attacks and limits the attack surface.

2

imize the risk of timing attacks, simple and differential side-channel analysis
(SSCA/DSCA), correlation and collision attacks, and specialized attacks such
as the doubling attack [23], the refined power attack (RPA) [25], zero-value
point attacks (ZVP) [1], same value attacks (SVA) [38], exceptional procedure
attacks [29], invalid point attacks [5], and small subgroup attacks. To assess the
soundness of our algorithms, we carry out a differential power analysis evaluation
on an STM32F4Discovery board containing a popular ARM Cortex-M4 MCU.
We perform leakage detection tests and correlation power analysis attacks to
verify that indeed the implemented countermeasures substantially increase the
required attacker effort for unprofiled vertical attacks (see §6).

Previous works in the literature presenting protected ECC implementations
only include basic countermeasures against a subset of the attacks we deal with in
this paper [55, 40]. Moreover, reported implementations (other than implemen-
tations exclusively protected against timing attacks [19]) have not been publicly
released. Our software for ARM Cortex-M4 has been made publicly available as
part of the FourQlib library [17]:

https://github.com/Microsoft/FourQlib.

Likewise, the implementations for AVR and MSP are available at:

https://github.com/geovandro/microFourQ-AVR, and
https://github.com/geovandro/microFourQ-MSP.

Disclaimer. No software implementation can guarantee 100% side-channel se-
curity. In some cases, certain powerful attacks such as template attacks [8] can
be carried out using a single target trace, making any randomization or masking
technique useless [42]. Moreover, the issue gets more complicated for embedded
devices that lack access to a good source of randomness. Since many SCA at-
tacks closely depend on the underlying hardware, it is recommended to include
additional countermeasures at the software and hardware levels depending on
the targeted platform. Also, note that hardware countermeasures are usually
required to properly deal with most sophisticated invasive attacks.

2 Preliminaries: FourQ

FourQ, introduced by Costello and Longa in 2015 [16], is defined by the com-
plete twisted Edwards [4] equation E/Fp2 : −x2 + y2 = 1 + dx2y2, where the
quadratic extension field Fp2 = Fp(i) for i2 = −1 and p = 2127 − 1, and
d = 125317048443780598345676279555970305165 · i+ 4205857648805777768770.
The prime order subgroup E(Fp2)[N], where N is the 246-bit prime correspond-
ing to #E(Fp2) = 392 ·N , is used to carry out cryptographic computations. In
this subgroup, the neutral element is given by OE = (0, 1).

FourQ is equipped with two efficiently computable endomorphisms, ψ and
φ, which give rise to four-dimensional decompositions. The computation of a
constant-time, exception-free variable-base scalar multiplication with the form
[m]P , where m is an integer in [1, 2256) and P is a point from E(Fp2)[N], proceeds

3

Algorithm 1 FourQ’s scalar multiplication on E(Fp2)[N] (from [16]).

Input: Point P ∈ E(Fp2)[N] and integer scalar m ∈ [0, 2256).
Output: [m]P.

Compute endomorphisms and precompute lookup table:
1: Compute φ(P), ψ(P) and ψ(φ(P)).
2: Compute T [u] = P + [u0]φ(P) + [u1]ψ(P) + [u2]ψ(φ(P)) for u = (u2, u1, u0)2 in
0 ≤ u ≤ 7. Write T [u] in coordinates (X + Y, Y −X, 2Z, 2dT).
Scalar decomposition and recoding:
3: Decompose m into the multiscalar (a1, a2, a3, a4) as in [16, Prop. 5].
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . ,m0) using [16, Alg. 1].

Write si = 1 if mi = −1 and si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q+ si · T [di]
8: return Q

as follows (see Algorithm 1). First, one needs to prepare an 8-point precomputed
table at Steps 1–2 and execute the decomposition and recoding algorithms at
Steps 3–4. As before, let a scalar m be any integer in [1, 2256). FourQ’s decompo-
sition [16, Prop. 5] maps m to a set of multiscalars (a1, a2, a3, a4) ∈ Z4 such that
0 ≤ ai < 264 for i = 1, ..., 4 and such that a1 is odd. These multiscalars are then
recoded using [16, Alg. 1] to a representation consisting of exactly 65 “signed
digit-columns” dj and “sign masks” mj for j = 0, ..., 64. Finally, the evaluation
stage consists of an initial point loading and a single loop of 64 iterations, where
each iteration consists of exactly one doubling and one addition.

2.1 Cofactor elliptic curve Diffie-Hellman key exchange

In this section, we describe the ECDH key exchange using FourQ in two variants:
(i) using 64-byte public keys, and (ii) using compressed 32-byte public keys. Let’s
first define the following function denoted by “DH” [34]:

function DH(m,P)
Check that P is on the curve. If not, return “FAILED”.
Compute Q = [392]P and T = [m]Q.
If T = (0, 1) return “FAILED”.

Return T in affine coordinates.

Note that the function DH validates the input point P against the curve
equation in order to thwart invalid point attacks. The multiplication by 392,
which is not required to be computed in constant-time, clears the cofactor and
guarantees that the point Q belongs to E(Fp2)[N], as required by Alg. 1 for the
computation of [m]Q. This measure protects against small subgroup attacks.

An ECDH key exchange with 64-byte public keys can then be carried out as
follows. Two users, Alice and Bob, pick random integers mA and mB (resp.) in
the range [0, 2256), and then compute the public keys A = [mA]G andB = [mB]G
(resp.), where G is the generator. After exchanging public keys, Alice computes

4

KA =DH(mA, B) and Bob computes KB =DH(mB , A). The y-coordinate of the
value K = KA = KB can then be used as the shared secret.

ECDH key exchange with 32-byte public keys. It is possible to reduce
the size of the public keys to only 32 bytes with the approach described next.

An element y = a + b · i ∈ Fp2 encoded as y = (a0, ..., a126, 0, b0, ..., b126) is
defined as “negative” if and only if a126 = 1, or if b126 = 1 and a = 0. We define
Compress(P) as the function that takes as input a point P = (x, y) ∈ E and
encodes it as the 256-bit string P = (x, y), which is the 255-bit encoding of y
followed by a sign bit; this sign bit is 1 if and only if x is negative. We define
Expand(S) as the function that takes a 256-bit string S and recovers P = (x, y)
as follows: parse the first 255 bits as y, compute u/v = (y2 − 1)/(dy2 + 1), and
compute ±x =

√
u/v, where the ± is chosen so that the sign of x matches the

256-th bit of the string S. Refer to [18, Appendix A] and [34, Appendix B] for
low-level details about the decompression procedure.

The ECDH key exchange mechanism then proceeds as follows [34]. Alice and
Bob pick random integers mA and mB (resp.) in the range [0, 2256), and then
compute the public keys A = Compress([mA]G) and B = Compress([mB]G)
(resp.). After exchanging public keys, Alice computesKA = DH(mA,Expand(B))
and Bob computes KB = DH(mB ,Expand(A)). As before, the y-coordinate of
the value K = KA = KB is the shared secret.

3 Implementation details on AVR, MSP and ARM

In this section, we briefly describe relevant implementation aspects for three
popular MCUs: 8-bit AVR ATmega, 16-bit MSP430X, and 32-bit ARM Cortex-
M4. For more details, refer to the extended version of the paper [35].

3.1 Implementation of arithmetic over F(2127−1)2

In contrast to traditional ECC curves, which are defined over a prime field Fp,
FourQ is defined over the quadratic extension field Fp2 for p = 2127 − 1. Let
a = a0 + a1 · i, b = b0 + b1 · i ∈ Fp2 . Operations in Fp2 are computed as follows

a± b = (a0 ± b0) + (a1 ± b1) · i,
a× b = (a0 · b0 − a1 · b1) + ((a0 + a1) · (b0 + b1)− a0 · b0 − a1 · b1) · i,
a2 = (a0 + a1) · (a0 − a1) + (2a0 · a1) · i,
a−1 = a0 · (a20 + a21)−1 − a1 · (a20 + a21)−1 · i,

where operations on the right are carried out in Fp. Näıvely, multiplication re-
quires three integer multiplications, three modular reductions, two field additions
and three field subtractions, whereas squaring requires only two integer multi-
plications, two modular reductions, two field additions and one field subtraction.

We improve the performance of multiplication and squaring in Fp2 by trans-
forming field additions into simple integer additions. This is possible because our

5

integer multiplication accepts inputs in the extended range [0, 2128). For the case
of Cortex-M4, we speed up multiplication in Fp2 by exploiting lazy reduction,
which allows the elimination of one modular reduction by delaying the reductions
of the products until the very end of the computation.

Field inversions a−1 (mod p) are computed via Fermat’s Little Theorem as
ap−2 (mod p), using a fixed multiplication-and-squaring chain with 126 field
squarings and 10 field multiplications in order to have a constant-time execution.

Modular reduction is particularly efficient on FourQ. Let r = a + b be the
result of adding two operands in Fp. To reduce this result, one only needs to
reset the 128-th bit of r and then perform an addition between that top bit and
the updated value of r, i.e., given 0 ≤ r < 2 ·(2127−1), compute a+b (mod p) as
r (mod 2127)+(r � 127). For example, assume that the intermediate result r of
the addition is stored in the 16 AVR registers r0:r15. Then, modular reduction
can be efficiently implemented using AVR assembly as follows

MOV r16, r15→ ANDI r15, 0x7F→ ADD r16, r16→ ADC r0, 0→ · · · → ADC r15, 0

A similar procedure applies to reductions after multiplications and squarings,
with the difference that reduction is, in these cases, applied to an intermediate
result with double precision (i.e., 32 bytes). Specifically, given an input 0 ≤
r < (2127 − 1)2, the fast reduction algorithm requires two consecutive rounds
computing r ← r (mod 2127) + (r � 127).

3.2 Implementation on 8-bit AVR ATmega

AVR microcontrollers have a modified Harvard architecture that features 32 8-bit
general-purpose registers denoted by r0:r31. From this pool of registers, the last
three pairs, called X (r27:r26), Y (r29:r28), and Z (r31:r30), are used as 16-
bit address pointers to load and store data from memory. The AVR instruction
set supports a total of 133 instructions, and each instruction has a fixed latency;
for example, ordinary arithmetic/logical instructions such as addition (ADD) and
addition with carry (ADC) are executed in a single clock cycle, while unsigned
multiplication (MUL) as well as load/store instructions take two clock cycles.

For our benchmarks, we used the IAR Embedded Workbench – AVR 6.80.7,
which features an assembler and a cycle-accurate graphical simulator, and tar-
geted the ATxmega256A3 model. This specific microcontroller has 256KB of
programmable flash memory, 16KB of SRAM and 4KB of EEPROM, and oper-
ates at a maximum frequency of 32MHz.

Finite field operations. For the 128-bit integer multiplication, we use 2-level
Karatsuba in a recursive way, with the low level 32-bit multiplications imple-
mented in product-scanning form. For the 128-bit squaring, we employ the Slid-
ing Block Doubling (SBD) method [49]. In order to minimize the use of load/store
instructions, integer multiplication and squaring were integrated with the modu-
lar reduction at the assembly level. Modular reduction over the prime p = 2127−1
as well as the arithmetic over Fp2 were implemented as described in §3.1.

6

3.3 Implementation on 16-bit MSP430X

The ultra-low power MSP430X is a representative 16-bit microcontroller that
includes support for 27 core instructions and 16 registers (r0:r15). It also in-
cludes an external 16-bit or 32-bit hardware multiplier that operates in parallel
to the CPU. The multiplier offers three different modes: MPY (unsigned mul-
tiplication), MPYS (signed multiplication) and MAC (unsigned multiply-and-
accumulate). In general, other instructions take one cycle when working with
general-purpose registers.

In our benchmarks, we targeted the MSP430FR5969 model, which is suitable
for use in wireless sensor nodes. This MCU features 2KB of SRAM and 64KB
of FRAM (code) memory, and operates at up to 16MHz. We followed the same
methodology for cycle count acquisition that was employed for AVR using the
IAR Embedded Workbench (MSP430 6.50.1).

Finite field operations. We make extensive use of the 16-bit MAC operation
available in the targeted MSP430X microcontroller. This operation, which com-
putes 16 × 16 + 32→ 33-bit, was used as basic block to realize a 128-bit integer
multiplication in a column-wise way [26]. Squaring was implemented using the
SBD method, as in the case of AVR. Modular reduction and the arithmetic over
Fp2 were implemented as described in §3.1.

3.4 Implementation on 32-bit ARM Cortex–M4

Cortex-M4 [2] is part of the increasingly popular ARM Cortex-M family, which
includes a wide range of 32-bit RISC ARM microcontrollers. It supports the
ARMv7E-M instruction set, which comprises Thumb-2 instructions and addi-
tional saturating/SIMD instructions called the “DSP extension”. The Cortex-M4
architecture has a 3-stage pipeline with branch speculation, includes 16 32-bit
registers (r0:r15), and supports a mix of 16 and 32-bit operations correspond-
ing to Thumb-2. Field arithmetic can take advantage of the powerful single-
cycle multiply and multiply-and-accumulate instructions from the DSP exten-
sion: UMUL, UMLAL, and UMAAL. These instructions compute the product 32 ×
32-bit → 64-bit (UMUL), plus a 64-bit accumulation with a single 64-bit value
(UMLAL) or plus a 64-bit accumulation with two 32-bit values (UMAAL).

To evaluate the performance of our implementation, we use an STM32F4Dis-
covery board [52] that contains a 32-bit ARM Cortex-M4F STM32F407VGT6
microcontroller. This MCU has 1MB of flash memory, 192KB of SRAM and
64KB of CCM (core coupled memory) data RAM, and can be clocked at a
frequency of up to 168MHz. Compilation was performed with the GNU ARM
Embedded toolchain and GNU GCC v4.9.2.

Finite Field Operations. Integer multiplication was implemented using the
schoolbook method and the efficient MAC instructions. The computation of a
field multiplication is then completed with the execution of the modular re-
duction described in §3.1. However, in the case of multiplication in Fp2 we do
much better by applying lazy reduction on a basic schoolbook multiplication

7

that computes a × b as (a0 · b0 − a1 · b1) + (a0 · b1 + a1 · b0) · i for elements
a = a0 + a1 · i, b = b0 + b1 · i ∈ Fp2 .

4 Results and analysis of constant-time implementations

In this section, we summarize implementation results for 8-bit AVR, 16-bit
MSP430X, and 32-bit ARM Cortex-M4 microcontrollers. Our FourQ implemen-
tations are based on Algorithm 1 for the case of variable-base scalar multiplica-
tion. For the case of fixed-base scalar multiplication, we use the modified LSB-set
comb method from [21, Alg. 5], which requires a table with v · 2w−1 points (v
and w denote the number of internal tables and their window size, respectively).

The implemented algorithms guarantee regular, exception-free execution (see
§2) and run in constant-time. Hence, they are protected against timing and
exceptional procedure attacks. Note that cache attacks do not apply to the
targeted AVR ATmega MCU, since its architecture does not support the use
of cache memory. Although the MSP430FR MCU family presents some form of
integrated caching, it is activated when the MCU operates at a higher frequency
than the access frequency of the FRAM [54] (i.e., the FRAM can be operated
at up to 8 MHz without use of this cache). Since we fix the frequency at 8MHz,
our software runs in constant-time with no risk of timing leakage. Finally, the
targeted Cortex-M4 STM32F4 MCU includes a cache memory to accelerate flash
memory accesses [53]. However, our software does not use flash memory to store
the precomputed tables and, therefore, cache attacks do not apply.

At the high-level, we implemented the ECDH schemes described in §2.1,
which are protected against invalid point and small subgroup attacks.

Results. Table 1 summarizes the results for variable-base and fixed-base scalar
multiplication, static ECDH and fully ephemeral ECDH key exchange for the
three targeted microcontrollers. In the case of ECDH with FourQ, we evaluate
the use of both 32 and 64-byte public keys. For comparison, we include two
efficient alternatives that have been deployed on various microcontrollers: the
“µKummer” implementation by Renes et al. [46] using the genus-2 Kummer
surface by Gaudry and Schost [24], and the “Curve25519” implementations by
Düll et al. [19] and De Santis et al. [48]. The Kummer surface enables fast static
DH key exchange with a small footprint. However, it does not support efficient,
exception-free fixed-base algorithms which inject a significant speedup in set-
tings such as ephemeral DH key exchange, signature key generation and signing.
µKummer’s DH public keys are also 50% larger (compared to options that use
32-byte public keys). In the case of Curve25519, although this curve supports
efficient fixed-base computations via its isomorphic Edwards form, Curve25519
implementations typically target static ECDH and, thus, do not offer this opti-
mization option (as is the case of [19] and [48]).

As can be seen in Table 1, our FourQ-based implementations set new speed
records for scalar multiplication and ECDH by a large margin on all of the tar-
geted platforms. In particular, for variable-base computations, FourQ is 2.1x,

8

Table 1. Performance (in cycles) of scalar multiplication and ECDH operations on
8-bit AVR ATmega, 16-bit MSP430X, and 32-bit ARM Cortex-M4 microcontrollers
for different state-of-the-art implementations. Cycle counts are rounded to the nearest
102 cycles.

Source
scalar multiplication ECDH

fixed-base random static ephemeral

8-bit AVR ATmega

Curve25519 [19] 13,900,4001 13,900,400 13,900,4003 27,800,8002,3

µKummer [46] 9,513,5001 9,513,500 9,739,1004 19,027,1002,4

FourQ (this work) 2,980,700 6,505,300
6,886,4005 9,870,5005

7,221,3003 10,206,5003

16-bit MSP430X (16-bit multiplier) @8MHz

Curve25519 [19] 7,933,3001 7,933,300 7,933,3003 15,866,6002,3

FourQ (this work) 1,851,300 4,280,400
4,527,9005 6,379,2005

4,826,1003 6,677,4003

32-bit ARM Cortex-M4

Curve25519 [48] 1,423,7001 1,423,700 1,423,7003 2,847,4002,3

FourQ (this work) 232,900 469,500
496,4005 729,9005

542,9003 776,6003

1 Montgomery ladder is used for fixed-base and variable-base scalar multiplication.
2 Estimated, since authors only provided counts for static ECDH.
3,4,5 Public key sizes are 32, 48 and 64 bytes, respectively.

1.9x, and 3x faster than Curve25519 on AVR, MSP430X, and Cortex-M4, re-
spectively. These results are roughly the same when considering static ECDH.
Similarly, for the case of ephemeral ECDH our implementations are between 2.4x
and 3.9x faster than Curve25519 implementations without fixed-base support.
When compared against µKummer on AVR, FourQ achieves roughly factor-
1.4 speedup for computing variable-base scalar multiplication and static ECDH.
This gap has a significant increase to factor-2 speedup when considering the case
of ephemeral ECDH. Note that the Kummer surface has not been implemented
on MSP430X and Cortex-M4 MCUs.

As consequence of the reduction in computing time, our implementations
allow a significant reduction in energy costs. For example, following [44] we esti-
mate that our software demands 41.65mJ of energy to compute a fully ephemeral
ECDH key exchange with 32-byte public keys (or, equivalently, ∼ 162, 064 key
exchanges for the life of a double AA battery) on a MICAz sensor node contain-
ing an 8-bit AVR MCU. When comparing against similar calculations for other
curves, we observe that our FourQ implementation on AVR is able to run 2.7x
and 1.9x more key exchanges than Curve25519 and µKummer (resp.) for the
same battery budget.

9

5 Side-channel countermeasures

This section begins with a description of countermeasures especially tailored for
FourQ. Then, we present our protected scalar multiplication algorithm and cover
implementation aspects of table lookups and a protected ECDH key exchange
scheme. Finally, we discuss the rationale behind our protected algorithms.

5.1 Specialized side-channel countermeasures for FourQ
The use of randomization, if done properly, greatly increases the effort needed
to perform DSCA and other similar attacks, both in terms of data complexity
(number of measurements needed [7]) and computational effort (time to per-
form the attack [47]). In an ECC scalar multiplication operation there is ample
room for randomization of internal computations, especially on curves such as
FourQ because of its rich underlying mathematical structure. Coron proposed
three randomization techniques to protect ECC against DPA attacks: scalar ran-
domization, point blinding and projective coordinate randomization [15]. Other
popular methods include key splitting [10], and random curve and field isomor-
phisms [30].

Next, we describe especially-tailored scalar randomization and point blinding
techniques optimized for use with FourQ.

Scalar randomization. The typical approach is to randomize the scalar m by
adding a multiple of the curve order #E using a random value r, i.e., computing
m′ = m + r · #E. It is well known that this randomization can be ineffective
if the prime p has a special structure [41, 9, 10, 50]. Indeed, when p is a pseudo-
Mersenne prime with the form 2k − c for small c, by Hasse’s theorem the binary
representation of the top half of the curve order #E consists of either only 1’s or
a 1 followed by 0’s and, thus, the most significant bits of m+r#E are those of m.
As consequence, the random value r must be greater than ≈ k/2 as a minimum
requirement, which means that the cost of protected implementations of curves
such as Curve25519 increase by at least 50% when using this countermeasure.

We avoid this significant performance degradation by specializing the GLV-
based scalar randomization by Ciet et al. [11] to FourQ. Our explicit counter-
measure is described below.

Proposition 1 (Scalar Randomization). Let the multiscalars (a′1, a
′
2, a
′
3, a
′
4) =

(a1, a2, a3, a4) + c be the decomposition result of a given integer m, as defined in
[16, Prop. 5], where c = 5b2−3b3+2b4 is a vector in the lattice of zero decompo-
sitions L and B = (b1,b2,b3,b4) is the Babai optimal basis in [16, Prop. 3]. Let
V = (v1,v2,v3,v4) = (b2−b3+b4, 2b2−b3+b4,b1+b2+b4,b1+2b2−b3+b4)
be a matrix of four independent vectors in L such that ||vi||∞ < 262 for i =
1, . . . , 4, and let r = (r1, r2, r3, r4) be a vector with random integer elements in
[0, 216). Then, the multiscalar set (a′1, a

′
2, a
′
3, a
′
4) + r · (v1,v2,v3,v4) is a valid

decomposition of m with all four randomly-generated coordinates less than 280.

Refer to the extended version of the paper [35] for the proof of Proposition 1.
Proposition 1 specifies the countermeasure procedure with 4 × 16 = 64 bits

of randomization. This brings enough entropy to provide security against several

10

attacks, especially when combined with additional countermeasures (see §5.2),
while requiring a relatively low overhead in comparison with other curves (the
cost of FourQ’s scalar multiplication is only increased by 25% in this case).

Point blinding. The typical approach is to compute [m]P as [m](P + R)− S
for a randomly-generated secret point R and a precomputed point S = [m]R.
To avoid the cost of an extra scalar multiplication, Coron suggests that R and
S are updated at each new execution using R = [(−1)b2]R and S = [(−1)b2]S
for a random bit b. Nevertheless, the method still requires storage for two points
and the computation of a full scalar multiplication if the value of m is changed.

It is possible to do better using the extended-binary-based-method with RIP
(called “EBRIP”) due to Mamiya et al. [37]. In this case, [m]P is computed as
([m]P +R)−R using a random point R. The value in parenthesis is computed
by splitting m in t portions of equal length and running a t-way simultaneous
scalar multiplication in which R is represented as [(11̄1̄ . . . 1̄)2]R.

Adapting EBRIP to FourQ is straightforward: it suffices to assume t = 4 and
adjust the precomputed values which, in the case of FourQ, use the endomor-
phisms. The details are shown in Algorithm 2. The overhead of the method is
small: the number of precomputations increases from 8 to 16 points (adding 8
extra point additions to the cost), and a final correction subtracting R is required
at the end of scalar multiplication.

We note that typical update functions for blinding points offer poor random-
ization, making them an easy target of collision-like attacks [41, 23]. We improve
resilience against these attacks with an inexpensive change to the new update
function R = [(−1)b3]R for a random bit b.

5.2 Protected scalar multiplication

Algorithm 2 details our scalar multiplication routine with SCA countermea-
sures, including the scalar randomization and point blinding techniques de-
scribed above. Note that we also make extensive use of projective coordinate ran-
domization [15]. This technique is a form of multiplicative masking: in our case,
a non-zero element r ∈ F2127−1 is applied to points (X,Y, Z) in homogeneous
projective coordinates to obtain the equivalent randomized tuple (r·X, r·Y, r·Z).

Protected ECDH key exchange. In order to use Algorithm 2, the function
DH described in §2.1 only needs minor changes and the inclusion of a blinding
point B. We assume that a fresh blinding point is generated during key genera-
tion. The modified function is shown below.

function DH SCA(m,P,B)
Check that P and B are on the curve. If not, return “FAILED”.
Compute Q = [392]P .
Compute T = [m]Q and update B using Algorithm 2.
If T = (0, 1) return “FAILED”, else return T and B in affine.

The function DH SCA can be directly used in place of the function DH in
the ECDH key exchange schemes using 32 and 64-byte public keys that were

11

Algorithm 2 SCA-protected FourQ’s scalar multiplication on E(Fp2)[N].

Input: Point P = (xP , yP), blinding point R = (xR, yR) ∈ E(Fp2)[N], integer scalar m
and random value s ∈ [0, 2256), a random bit b, and random values [r81, r80, . . . , r0] ∈
F82
p .

Output: [m]P and updated point R.
Randomize input points and update blinding point R:
1: Set R = (r81 · xR, r81 · yR, r81).
2: Compute R = [(−1)b3]R.
3: Set P = (r80 · xP , r80 · yP , r80).
Compute endomorphisms and precompute lookup table:
4: Compute φ(P), ψ(P) and ψ(φ(P)).
5: Compute T [u] = −R + [u0]P + [u1]φ(P) + [u2]ψ(P) + [u3]ψ(φ(P)) for u =
(u3, u2, u1, u0)2 in 0 ≤ u ≤ 15. Write T [u] in coordinates (X,Y, Z).
Scalar decomposition, randomization and recoding:
6: Decompose m into the multiscalar (a1, a2, a3, a4) as in [16, Prop. 5].
7: Randomize (a1, a2, a3, a4) as in Proposition 1 and recode to digit-columns
(d79, . . . , d0) s.t. di = a1[i] + 2a2[i] + 4a3[i] + 8a4[i] for i = 0, ..., 79.
Main loop:
8: Q = R
9: for i = 79 to 0 do
10: S = (ri ·XT [di], ri · YT [di], ri · ZT [di]).
11: Q = [2]Q+ S
12: return (Q−R) and R in affine coordinates.

described in §2.1. As explained before, these functions are protected against
invalid point and small subgroup attacks.

Reducing table lookup leakage. Table lookups are common to many ECC
algorithms (including the proposed routine) and, hence, their secure implemen-
tation is crucial. Most works in the literature use constant-time table lookups,
which simply perform a linear pass over the whole table, masking out the correct
result using logical instructions. This masking typically employs masks that are
all 0’s or 1’s, which may be relatively easy to distinguish through SPA. One
way to reduce the potential leakage is by using masks with the same Hamming
weight. For example, one could use the masking strategy shown below (to extract
T [d] from a 16-point table T , as required at Step 10 of Alg. 2).

v = 0xAA...A, S← T[0] // Table index (d) is between 0 and 15

for i = 1 to 15

d-- // While d >= 0 mask = 0x55...5, else mask = 0xAA...A
mask = ((top bit(d) - 1) & ∼ v)|(∼ (top bit(d) - 1) & v)

S← ((mask & (S^T[i]))^S)^(v & (S^T[i]))

return S = T[d]

In this case, the bulk of the extraction procedure is carried out with the
new mask values 0x55...5 (used to update S with the current table entry) and
0xAA...A (used to keep the current value of S). Operations over these masks
are expected to produce traces that are more difficult to distinguish from each

12

other. Note, however, that this does not eliminate all the potential leakage. For
example, a sophisticated attacker might try to reveal the secret digit by observing
the operation (top bit(d) - 1) inside the derivation of mask, which produces
intermediate all-0 or all-1 values. Nevertheless, this operation happens only once
per iteration (in contrast to the multiple, word-wise use of the other masks), so
the strategy above does reduce the attack surface significantly.

Another potential attack is to apply a horizontal attack on the table outputs.
By default, our routine applies projective coordinate randomization after each
point extraction (at Step 10). When horizontal collision-correlation attacks ap-
ply, one could reduce the potential leakage by doing a full table randomization at
each iteration and before point extraction. This technique should also increase
the effectiveness of the countermeasures described above.

Analysis of the protected algorithms. First, it is easy to see that the SCA-
protected scalar multiplication in Algorithm 2 inherits the properties of regular-
ity and completeness from Algorithm 1 when using complete twisted Edwards
formulas [28]. This means that computations work for any possible input point
in E(Fp2) and any 32-byte scalar string, which thwarts exceptional procedure at-
tacks [29]. Likewise, [16, Prop. 5] and Proposition 1 lend themselves to constant-
time implementations of the scalar decomposition and randomization. This, to-
gether with field, extension field and table lookup operations implemented with
no secret-dependent branches and no secret-memory addresses, guarantees pro-
tection against timing [33] and cache attacks [43]. E.g., refer to §3 for details
about our constant-time implementations of the Fp and Fp2 arithmetic for sev-
eral MCUs. Additionally, note that the use of regular, constant-time algorithms
also protects against SSCA attacks such as SPA [32]. In some platforms, how-
ever, some computations might have distinctive operand-dependent power/EM
signatures even when the execution flow is constant. Our frequent coordinate
randomization and the techniques for minimizing table lookup leakage discussed
before should make SSCA attacks exploiting such leakage impractical.

The use of point blinding effectively protects against RPA [25], ZVP [1]
and SVA [38] attacks, since the attacker is not able to freely use the input
point P to generate special values or collisions during intermediate computations.
Poorly-randomized update functions for the blinding point has been the target
of collision attacks [23]. We first note that intermediate values in the EBRIP
algorithm [37] have the form R +Q or [2]R +Q for some point Q and blinding
point R. Therefore, a näıve update function such as R = [(−1)b2]R for a random
bit b allows an attacker to find collisions since an updated blinding value [2]R
generates values that match those of the preceding scalar multiplication. The
easy change to the function R = [(−1)b3]R at Step 2 of Alg. 2 eliminates the
possibility of such collisions, since values calculated with [3]R and [6]R do not
appear in a preceding computation.

Our combined use of different randomization techniques, namely randomiza-
tion of projective coordinates at different stages (Steps 1, 3 and 10), randomiza-
tion of the scalar and blinding of the base point, injects a high level of random-
ization to intermediate computations. This is expected to reduce leakage that

13

could be useful to carry out correlation, collision-correlation and template at-
tacks. Moreover, in some cases our especially-tailored countermeasures for FourQ
offer better protection in comparison with other elliptic curves. For example, Feix
et al. [22] presents vertical and horizontal collision-correlation attacks on ECC
implementations with scalar randomization and point blinding countermeasures.
They essentially exploit that randomizing with multiples of the order is ineffec-
tive on curves such as the NIST curves and Curve25519, as we explain in §5.1.
Our 64-bit scalar randomization does not have this disadvantage and is more
cost effective.

As previously discussed, some attacks could target collisions between the
precomputed values in Step 5 of Alg. 2 and their secret use at Step 11 after
point extraction (for example, using techniques from [27]). One way to increase
resilience against this class of attacks is by randomizing the full table before
each point extraction using coordinate randomization, and minimizing the attack
surface through some clever masking via a linear pass over the full table (this in
order to thwart attacks targeting memory accesses [40]). However, other more
sophisticated countermeasures might be required to protect against recent one-
trace template attacks that inspect memory accesses [39]. We remark that some
variants of these attacks are only adequately mitigated at lower abstraction
levels, i.e., the underlying hardware architecture should be noisy enough such
that these attacks become impractical.

Performance. To assess the performance impact of our countermeasures, we
refactored our implementation for ARM Cortex-M4 (§3.4) using the algorithms
proposed in this section. In summary, our software computes a static ECDH
shared secret in about 1.18 and 1.14 million cycles using 32 and 64-byte pub-
lic keys, respectively. Therefore, the strong countermeasures induce a roughly
2x slowdown in comparison with the constant-time-only implementation. No-
tably, these results are still up to 1.25x faster than the fastest constant-time-
only Curve25519 results (see Table 1). We comment that, if greater protection
is required, adding full table randomization before point extraction at Step 10
of Alg. 2 increases the cost of static ECDH to 2.60 and 2.55 million cycles, resp.

6 Side-channel evaluation: case study with Cortex–M4

The main goal of the evaluation is to assess the DPA security of the implementa-
tion. Our randomization techniques are meant to protect mainly against vertical
DPA attacks (cf. [12] for this notation). In a vertical DPA attack, the adversary
collects many traces corresponding to the multiplication of a known varying in-
put point with a secret scalar. This situation matches, for example, ECDH key
exchange protocols. Vertical DPA attacks are probably the easiest to carry out.

Assumptions. We assume that the adversary cannot distinguish values from a
single side-channel measurement. In particular, the (small) table indices cannot
be retrieved from a single measurement. This assumption is common in practice
(cf. [31, §4.1] or [45, §3.1]) and is usually provided by the underlying hardware.

14

Fig. 1. Left: exemplary EM trace. Right: cross correlation of a single trace.

Note that masking does not make sense if this assumption is violated, since then
it would be trivial to unmask all the required shares to reconstruct the secrets.
Masking needs a minimum level of noise to be meaningful [7, 51].

Platform. Our platform is a 32-bit ARM Cortex-M4 STM32F100RB processor
with no dedicated security features. We acquire EM traces from a decoupling
capacitor in the power line with a Langer RF-5U EM probe and 20 dB amplifica-
tion. This platform is very low noise: DPA on an unprotected byte-oriented AES
implementation succeeds with 15 traces. We give a comfortable setting to the
evaluator: he has access to the source code and the code contains extra routines
for triggering that allow precise alignment of traces.

The EM traces comprise two inner iterations of the main loop (Step 9 in
Algorithm 2) as we show in Figure 1.

Methodology. We use two complementary techniques: leakage detection and key-
recovery attacks. Failing a leakage detection test [14, 13] is a necessary, yet not
sufficient, condition for key-extracting attacks to work. When an implementation
passes a leakage detection test, no data dependency is detected, and hence key-
recovery attacks will not work. For key-recovery attacks, we resort to standard
CPA attacks [6]; the device behavior is modeled as Hamming weight of regis-
ter values. As an intermediate targeted sensitive variable we choose the point
Q after execution of Step 11 in Algorithm 2. We first test each randomizing
countermeasure described in §5.1 in isolation (all others switched off); later the
full Algorithm 2 is evaluated. To test the effectiveness of each countermeasure,
we first perform the analysis when the countermeasure is switched off. In this
situation, a key-recovery attack is expected to work and a leakage detection test
is expected to fail. This serves to confirm that the setup is indeed sound. Then,
we repeat the same evaluation when the countermeasure is switched on. The
analysis is expected not to show leakage and the CPA attacks are expected to
fail. This means that the countermeasure (and only it) is effective.

No countermeasure. In the first scenario we switch off all countermeasures by
fixing the PRNG output to a constant value known to the evaluator. In Figure 2

15

Fig. 2. Top row: fixed-vs-random leakage detection test on the input point. Bottom:
CPA attacks. Left column: no countermeasure enabled. Right column: point blinding
on/coord. randomization off/scalar randomization off.

top left, we plot the result of a non-specific leakage detection test (fix-vs-random
on input point) for 5, 000 traces. We can see that the t-statistic clearly exceeds
the threshold C = ±4.5, indicating severe leakage. In Figure 2, bottom left, we
plot the result of a key-recovery CPA attack (red for correct subkey hypothesis,
green for others). The attack works (sample correlation ρ for the correct subkey
hypothesis stands out at ρ ≈ 0.22).

Point blinding. Here we test the point blinding countermeasure in isolation. We
take 5, 000 traces when the point blinding countermeasure is switched on. The
evaluator does not know the initial PRNG seed that feeds the masks. In Figure 2,
top right, we plot the t-statistic value of the non-specific fix-vs-random leakage
detection test on the input point. The t-statistic does not surpass the threshold
C. Thus, no first-order leakage is detected.

The results of the CPA attack are in Figure 2, bottom right. The attack does
not recover the key, as expected. (In this CPA attack and subsequent ones, the
evaluator computes predictions averaging over 210 independent random PRNG
seeds, for each subkey hypothesis. This is possible since the evaluator has access
to the source code.)

Projective coordinate randomization. We use the same test fixture (fix-vs-random
on input point) to test the projective coordinate randomization. In Figure 3, top
left, we plot the result of the leakage detection test. No first-order leakage is
detected. The DPA attack is unsatisfactory as Figure 3, bottom left, shows.

Scalar randomization. Here we perform a fix-vs-random test on the key when
the input point is kept fix. In this way, we hope to detect leakages coming from

16

Fig. 3. Left: point blinding off/coord. randomization on/scalar randomization off.
Right: point blinding off/coord. randomization off/scalar randomization on.

an incomplete randomization of the key. In Figure 3, top right, we plot the result
of this leakage detection test. No first-order leakage is detected. For the CPA
attack, we keep the key fixed (secret) and vary the input basepoint. The CPA
attack does not work, as Figure 3, bottom right, shows.

Fig. 4. Evolution of ρ as function of number of traces. Left to right (point blinding/co-
ord. randomization/scalar randomization): off/off/off, on/off/off, off/on/off, off/off/on.

All countermeasures switched on. The implementation is meant to be executed
with all the countermeasures switched on. We took 10 million traces and per-
formed a fix-vs-random leakage detection test. No first-order leakage was de-
tected.

17

7 Acknowledgments

We would like to thank Craig Costello for helping in the design of the scalar
randomization countermeasure, and Diego F. Aranha, Pedro R. N. Pedruzzi,
Joost Renes and the reviewers for their valuable comments. Geovandro Pereira
was partially supported by NSERC, CryptoWorks21, and Public Works and
Government Services Canada. Oscar Reparaz was partially supported by the
Research Council KU Leuven C16/15/058. Hwajeong Seo was supported by the
ICT R&D program of MSIP/IITP (B0717-16-0097, Development of V2X Service
Integrated Security Technology for Autonomous Driving Vehicle).

References

1. T. Akishita and T. Takagi. Zero-value point attacks on elliptic curve cryptosystem.
In C. Boyd and W. Mao, editors, Information Security, ISC 2003, volume 2851 of
LNCS, pages 218–233. Springer, 2003.

2. ARM Limited. Cortex-M4 technical reference manual, 2009–2010.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_

cortex_m4_r0p0_trm.pdf.

3. R. M. Avanzi. Side channel attacks on implementations of curve-based cryp-
tographic primitives. IACR Cryptology ePrint Archive, Report 2005/017, 2005.
http://eprint.iacr.org/2005/017.

4. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In S. Vaudenay, editor, Progress in Cryptology - AFRICACRYPT 2008,
volume 5023 of LNCS, pages 389–405. Springer, 2008.

5. I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on elliptic curve
cryptosystems. In M. Bellare, editor, Advances in Cryptology - CRYPTO 2000,
volume 1880 of LNCS, pages 131–146. Springer, 2000.

6. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, 2004.

7. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, Advances in Cryptology
- CRYPTO ’99, volume 1666 of LNCS, pages 398–412. Springer, 1999.

8. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. K. Jr., Ç. K. Koç,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, volume 2523 of LNCS, pages 13–28. Springer, 2002.

9. M. Ciet. Aspects of fast and secure arithmetics for elliptic curve cryptography.
PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve, 2003.

10. M. Ciet and M. Joye. (Virtually) free randomization techniques for elliptic curve
cryptography. In S. Qing, D. Gollmann, and J. Zhou, editors, Information and
Communications Security, ICICS 2003, volume 2836 of LNCS, pages 348–359.
Springer, 2003.

11. M. Ciet, J. Quisquater, and F. Sica. Preventing differential analysis in GLV elliptic
curve scalar multiplication. In B. S. K. Jr., Ç. K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, volume 2523 of
LNCS, pages 540–550. Springer, 2002.

18

12. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Horizontal
correlation analysis on exponentiation. In M. Soriano, S. Qing, and J. López,
editors, Information and Communications Security - ICICS 2010, volume 6476 of
LNCS, pages 46–61. Springer, 2010.

13. J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi.
Test Vector Leakage Assessment (TVLA) methodology in practice. International
Cryptographic Module Conference, 2013.

14. J. Coron, P. C. Kocher, and D. Naccache. Statistics and secret leakage. In
Y. Frankel, editor, Financial Cryptography, FC 2000, volume 1962 of LNCS, pages
157–173. Springer, 2000.

15. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 1999, volume 1717 of LNCS, pages 292–302. Springer,
1999.

16. C. Costello and P. Longa. FourQ: Four-dimensional decompositions on a Q-curve
over the Mersenne prime. In T. Iwata and J. H. Cheon, editors, Advances in
Cryptology - ASIACRYPT 2015, volume 9452 of LNCS, pages 214–235. Springer,
2015. Full version: https://eprint.iacr.org/2015/565.

17. C. Costello and P. Longa. FourQlib. https://github.com/Microsoft/FourQlib,
2015-2017.

18. C. Costello and P. Longa. SchnorrQ: Schnorr signatures on FourQ. MSR Tech
Report, 2016. Available at: https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/07/SchnorrQ.pdf.
19. M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez, and

P. Schwabe. High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
Designs, Codes and Cryptography, 77(2-3):493–514, 2015.

20. J. Fan and I. Verbauwhede. An updated survey on secure ECC implementa-
tions: Attacks, countermeasures and cost. In D. Naccache, editor, Cryptography
and Security: From Theory to Applications - Essays Dedicated to Jean-Jacques
Quisquater on the Occasion of His 65th Birthday, volume 6805 of LNCS, pages
265–282. Springer, 2012.

21. A. Faz-Hernández, P. Longa, and A. H. Sánchez. Efficient and secure algorithms
for GLV-based scalar multiplication and their implementation on GLV-GLS curves
(extended version). J. Cryptographic Engineering, 5(1):31–52, 2015.

22. B. Feix, M. Roussellet, and A. Venelli. Side-channel analysis on blinded regular
scalar multiplications. In W. Meier and D. Mukhopadhyay, editors, Progress in
Cryptology - INDOCRYPT 2014, volume 8885 of LNCS, pages 3–20. Springer,
2014.

23. P. Fouque and F. Valette. The doubling attack - why upwards is better than
downwards. In C. D. Walter, Ç. K. Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2003, volume 2779 of LNCS, pages 269–
280. Springer, 2003.

24. P. Gaudry and E. Schost. Genus 2 point counting over prime fields. J. Symbolic
Computation, 47(4):368–400, 2012.

25. L. Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In
Y. Desmedt, editor, Public Key Cryptography - PKC 2003, volume 2567 of LNCS,
pages 199–210. Springer, 2003.

26. C. P. L. Gouvêa and J. López. Software implementation of pairing-based cryptog-
raphy on sensor networks using the MSP430 microcontroller. In B. K. Roy and
N. Sendrier, editors, Progress in Cryptology - INDOCRYPT 2009, pages 248–262.
Springer, 2009.

19

27. N. Hanley, H. Kim, and M. Tunstall. Exploiting collisions in addition chain-based
exponentiation algorithms using a single trace. In K. Nyberg, editor, Topics in
Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA Conference
2015, volume 9048 of LNCS, pages 431–448. Springer, 2015.

28. H. Hisil, K. K. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited.
In J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, volume 5350
of LNCS, pages 326–343. Springer, 2008.

29. T. Izu and T. Takagi. Exceptional procedure attack on elliptic curve cryptosystems.
In Y. Desmedt, editor, Public Key Cryptography - PKC 2003, volume 2567 of
LNCS, pages 224–239. Springer, 2003.

30. M. Joye and C. Tymen. Protections against differential analysis for elliptic curve
cryptography. In Cryptographic Hardware and Embedded Systems - CHES 2001,
volume 2162 of LNCS, pages 377–390. Springer, 2001.

31. M. Joye and S. Yen. The Montgomery powering ladder. In B. S. K. Jr., Ç. K.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, volume 2523 of LNCS, pages 291–302. Springer, 2002.

32. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, Advances in Cryptology - CRYPTO’99, volume 1666 of LNCS, pages 388–
397. Springer, 1999.

33. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO’96,
volume 1109 of LNCS, pages 104–113. Springer, 1996.

34. W. Ladd, P. Longa, and R. Barnes. Curve4Q. Internet-Draft, draft-ladd-cfrg-4q-
01, 2016-2017. Available at: https://www.ietf.org/id/draft-ladd-cfrg-4q-

01.txt.
35. Z. Liu, P. Longa, G. Pereira, O. Reparaz, and H. Seo. FourQ on embedded devices

with strong countermeasures against side-channel attacks. IACR Cryptology ePrint
Archive, Report 2017/434, 2017. http://eprint.iacr.org/2017/434.

36. P. Longa. FourQNEON: faster elliptic curve scalar multiplications on ARM pro-
cessors. In R. Avanzi and H. Heys, editors, Selected Areas in Cryptography - SAC
2016 (to appear), LNCS. Springer, 2016. Available at: http://eprint.iacr.org/
2016/645.

37. H. Mamiya, A. Miyaji, and H. Morimoto. Efficient countermeasures against RPA,
DPA, and SPA. In Cryptographic Hardware and Embedded Systems - CHES 2004,
volume 3156 of LNCS, pages 343–356. Springer, 2004.

38. C. Murdica, S. Guilley, J. Danger, P. Hoogvorst, and D. Naccache. Same values
power analysis using special points on elliptic curves. In W. Schindler and S. A.
Huss, editors, Constructive Side-Channel Analysis and Secure Design - COSADE
2012, volume 7275 of LNCS, pages 183–198. Springer, 2012.

39. E. Nascimento, L. Chmielewski, D. Oswald, and P. Schwabe. Attacking embedded
ECC implementations through cmov side channels. Selected Areas in Cryptology
– SAC 2016, Springer-Verlag (to appear), 2016.

40. E. Nascimento, J. López, and R. Dahab. Efficient and secure elliptic curve cryp-
tography for 8-bit AVR microcontrollers. In R. S. Chakraborty, P. Schwabe, and
J. A. Solworth, editors, Security, Privacy, and Applied Cryptography Engineering
- SPACE 2015, volume 9354 of LNCS, pages 289–309. Springer, 2015.

41. K. Okeya and K. Sakurai. Power analysis breaks elliptic curve cryptosystems even
secure against the timing attack. In B. K. Roy and E. Okamoto, editors, Progress in
Cryptology - INDOCRYPT 2000, volume 1977 of LNCS, pages 178–190. Springer,
2000.

20

42. E. Oswald and S. Mangard. Template attacks on masking - resistance is futile. In
M. Abe, editor, Topics in Cryptology - CT-RSA 2007, The Cryptographers’ Track
at the RSA Conference 2007, volume 4377 of LNCS, pages 243–256. Springer, 2007.

43. D. Page. Theoretical use of cache memory as a cryptanalytic side-channel. Techni-
cal report CSTR-02-003, Department of Computer Science, University of Bristol,
2002. http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf.

44. K. Piotrowski, P. Langendoerfer, and S. Peter. How public key cryptography
influences wireless sensor node lifetime. In Proceedings of the fourth ACM workshop
on Security of ad hoc and sensor networks, pages 169–176. ACM, 2006.

45. E. Prouff and M. Rivain. A generic method for secure sbox implementation. In
S. Kim, M. Yung, and H. Lee, editors, Information Security Applications, WISA
2007, volume 4867 of LNCS, pages 227–244. Springer, 2007.

46. J. Renes, P. Schwabe, B. Smith, and L. Batina. µKummer: Efficient hyperel-
liptic signatures and key exchange on microcontrollers. In B. Gierlichs and A. Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES 2016,
volume 9813 of LNCS, pages 301–320. Springer, 2016.

47. O. Reparaz, B. Gierlichs, and I. Verbauwhede. Selecting time samples for mul-
tivariate DPA attacks. In E. Prouff and P. Schaumont, editors, Cryptographic
Hardware and Embedded Systems - CHES 2012, volume 7428 of LNCS, pages 155–
174. Springer, 2012.

48. F. D. Santis and G. Sigl. Towards side-channel protected X25519 on ARM Cortex-
M4 processors. Software performance enhancement for encryption and decryption,
and benchmarking (SPEED-B), 2016.

49. H. Seo, Z. Liu, J. Choi, and H. Kim. Multi-precision squaring for public-key cryp-
tography on embedded microprocessors. In International Conference on Cryptology
in India, pages 227–243. Springer, 2013.

50. N. P. Smart, E. Oswald, and D. Page. Randomised representations. IET Informa-
tion Security, 2(2):19–27, 2008.

51. F. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The world is not enough: Another look on second-
order DPA. In M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010,
volume 6477 of LNCS, pages 112–129. Springer, 2010.

52. STMicroelectronics. STM32F4DISCOVERY: Discovery kit with STM32F407VG
MCU, data brief, 2016. http://www.st.com/content/ccc/resource/technical/

document/data_brief/09/71/8c/4e/e4/da/4b/fa/DM00037955.pdf/files/

DM00037955.pdf/jcr:content/translations/en.DM00037955.pdf.
53. STMicroelectronics. Reference manual: STM32F405/415, STM32F407/417,

STM32F427/437 and STM32F429/439 advanced ARM-based 32-bit MCUs, 2017.
http://www.st.com/content/ccc/resource/technical/document/reference_

manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/

jcr:content/translations/en.DM00031020.pdf.
54. Texas Instruments. User’s guide: MSP430FR58xx, MSP430FR59xx,

MSP430FR68xx, and MSP430FR69xx family, 2012–2017. http://www.ti.

com.cn/cn/lit/ug/slau367m/slau367m.pdf.
55. E. Wenger, T. Unterluggauer, and M. Werner. 8/16/32 shades of elliptic curve cryp-

tography on embedded processors. In G. Paul and S. Vaudenay, editors, Progress in
Cryptology - INDOCRYPT 2013, volume 8250 of LNCS, pages 244–261. Springer,
2013.

21

