
Hiding Secrecy Leakage in Leaky Helper Data

Matthias Hiller1 and Aysun Gurur Önalan2
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Abstract. PUFs provide cryptographic keys for embedded systems with-
out dedicated secure memory. Practical PUF implementations often show
a bias in the PUF responses, which leads to secrecy leakage in many key
derivation constructions. However, previously proposed mitigation tech-
niques remove the bias at the expense of discarding large numbers of PUF
response bits. Instead of removing the bias from the input sequence, this
work reduces the secrecy leakage through the helper data. We apply the
concept of wiretap coset coding to add randomness to the helper data
such that an attacker cannot isolate significant information about the
key anymore.

Examples demonstrate the effectiveness of coset coding for different bias
parameters by computing the exact leakage for short code lengths and
applying upper bounds for larger code lengths. In our case study, we
compare a secrecy leakage mitigation design with coset coding and Dif-
ferential Sequence Coding (DSC). It reduces the number of required PUF
response bits by 60% compared to state-of-the-art debiasing approaches.

Keywords: Physical Unclonable Functions (PUFs), Fuzzy Extractor, Secrecy
Leakage, Coding Theory, Wiretap Channel, Coset Coding.

1 Introduction

Silicon Physical Unclonable Functions (PUFs) measure physical manufacturing
variations inside integrated circuits to derive a unique behavior for each device.
Typical silicon PUFs can be implemented in a standard CMOS manufacturing
process such that they provide cryptographic keys for embedded devices without
dedicated secure key storage in non-volatile memory [1]. This makes them a
suitable solution to protect a wide span of devices, starting from lightweight IoT
sensors up to complex high-end circuits such as FPGAs.

PUF responses are noisy and often not fully random such that postprocessing
steps are necessary to derive stable and secure cryptographic keys from PUFs.
The syndrome encoder computes helper data that is stored off-chip, e.g. in unse-
cured external non-volatile memory. The helper data maps the PUF response to
codewords of an Error-Correcting Code (ECC) to enable error correction, but it



must not leak information about the derived key. Several error correction schemes
were proposed and implemented over the last decade, e.g. [2,3,4,5,6,7,8,9,10].

Early work such as [11] already acknowledged the fact that PUF implemen-
tations can have imperfections that result in a reduced entropy of the PUF
response. As the field matured, the security implications of the imperfections in
the PUF responses, and especially bias, were analyzed and addressed in more
detail [5,12,13,14,15,10].

Looking at a fuzzy commitment [16] in Figure 1 there are two ways to re-
duce the leakage within this setting: The approaches in [5,10] reshape the input
distribution in a debiasing step such that an unbiased sequence is processed in
the syndrome encoder. This comes at the expense that the unbiased sequence is
significantly shorter than the input PUF response. In contrast, we operate on the
ECC encoding to mask the leakage on the secret. While [7] proposed a method
to store multiple instances of helper data and thus hide the correct value, we
create the ambiguity within one single instance of helper data in this work.

ECC
Encoder

PUF

SYN
Encoder

Debiasing

secret helper data

Fig. 1: Helper data generation for a fuzzy commitment and a biased PUF

Another recent line of work relaxed the security argument from an informa-
tion theoretical setting to a complexity theoretical argument [17,18,19,20] where
no secrecy leakage is observed. However, to be able to quantify the actual sta-
tistical correlation, we stay in the stricter information theoretical setting in the
following.

1.1 Contributions

– We show that the problem of secure key storage with PUFs relates closely
to the wiretap channel [21]. To the best of our knowledge, we are therefore
the first to apply coset coding [22] to PUFs. Instead of embedding only the
secret key, we add mask bits that are encoded by the ECC together with the
secret key and thus contribute to the helper data as well. Due to the bias,
the helper data inevitably leaks information about the key and the mask.
Since the attacker is not able to isolate the leakage on the key, this leakage
cannot be exploited.

– Examples demonstrate and quantify the leakage reduction that is achieved
by assigning mask bits for coset coding. We compute the exact leakage for
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short code lengths and apply an upper bound for long code lengths for Reed–
Muller (RM) codes and a wide range of bias parameters.

– We provide design parameters for a practical design with Differential Se-
quence Coding (DSC) and compare it to state-of-the-art debiasing approaches
with Index-Based Syndrome coding (IBS) and the von Neumann corrector
(VN). The comparison shows that our approach reduces the number of PUF
response bits by 60% for a moderately biased PUF with a bias of 0.54 and
only has a negligible secrecy leakage of less than 0.06 bit for the entire key.

1.2 Organization

Section 2 introduces the state of the art related to this work. The wiretap channel
and corresponding codes which are the foundation of our new leakage reduction
method are summarized in Section 3. Section 4 describes the correspondence be-
tween the wiretap channel model and PUF key storage, and Section 5 introduces
coset coding for PUFs. The new approach is compared to the state of the art in
Section 6. Section 7 concludes this work.

1.3 Notation

Capital letters indicate random variables or values that are functions of random
variables, while small letters represent numbers and specific instantiations of
random variables. Matrices are given by bold capital letters, and calligraphic
letters represent sets. C is a codeword of a linear ECC C with code length n,
code size k, minimum distance d, generator matrix G, and parity check matrix
H [23]. The helper data W is computed from PUF response X and secret S.
Superscripts define the lengths of vectors.

Let E[·] be the expectation operator and Pr[·] the probability of an event.
Further, let hw(·) be the Hamming weight of a vector.

2 State of the Art Debiasing Approaches for PUFs

A simple approach of removing bias is to XOR multiple PUF response bits
[24], which reduces the bias for independent and identically distributed (i.i.d)
PUF responses according to the piling-up lemma [25]. However, each XOR also
reduces the number of PUF response bits so that only a fraction of the input
length remains and the output error probability is increased at the same time.
Therefore, we take a closer look at more sophisticated alternatives, namely Index-
Based Syndrome Coding (IBS) and the von Neumann Corrector (VN) in the
following.

For high input bit error probabilities in the range > 20%, the multi-bit
symbol-based approach discussed in [26] can also be used to generate keys from
biased PUFs without secrecy leakage.
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2.1 Index-Based Syndrome Coding

IBS computes pointers to reliable PUF response bits and stores the pointers
in helper data [5]. Going back to Figure 1, the IBS pointer generation acts
as debiasing and syndrome encoding at once. IBS decreases the output error
probability but it cannot correct any errors. To enable error correction, IBS is
typically concatenated with ECCs such as BCH or Reed–Muller codes [23].
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Fig. 2: Helper data generation with index-based syndrome coding

Figure 2 shows an example for helper data generation with IBS. The PUF
response sequence is divided into blocks of fixed size q (here, q = 4). The ECC
encoder maps k-bit secrets into n-bit codewords Cn. The inputs of the IBS en-
coder are a codeword bit Ci, a block of PUF response bits Xq and reliability
information, e.g. the bit error probability, for each of the PUF bits. It generates
a pointer W s, s = dlog qe to index the bit which is equal to the secret bit with
the highest probability. The other bits of the block are discarded. This process
is repeated for each Ci. The indexing operation selects the PUF response bits
according to the distribution of input C. As proven in [5], IBS does not leak
secret information for i.i.d PUF response bits as long as no additional reliability
information is published. Complementary IBS adds an intermediate error cor-
rection step to increase the efficiency of IBS [6]. However, it was shown in [9],
that larger block sizes are required for more efficient indexing of reliable PUF
response bits.

2.2 Von Neumann Corrector

In [10], another debiasing step was proposed to overcome the leakage caused by
biased PUF responses. It is based on the von Neumann (VN) corrector [27] and
evaluates pairs of consecutive PUF response bits. (1,0) and (0,1) pairs occur
with the same probability but differ in the order of the numbers such that a
uniform random process is sampled while the pairs (1,1) and (0,0) are ignored.
Figure 3 shows the helper data generation with the VN corrector as debiasing
scheme and the fuzzy commitment as syndrome encoder [16].

The encoder scans the PUF response Xm sequentially and maps it to a
sequence Tn (m > n). If two consecutive PUF bits of Xm differ, the first bit
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Fig. 3: Helper data generation with the fuzzy commitment and the von Neumann
corrector

is added to the debiased output Tn and the position of the pair is stored as
additional helper data U l, as shown in Figure 3. For i.i.d PUF response bits, the
VN approach provides perfectly random outputs. The efficiency of the approach
is enhanced in [10] by searching Xm in multiple passes for patterns of different
size. For the fuzzy commitment, helper data Wn is computed as XOR between
Tn and the codeword Cn. Neither Wn nor U l leak secret information. However,
a high number of discarded PUF response bits causes an overhead in PUF size.
In addition, an implementation of the multi-pass version would require either
multiple readouts of the PUF or buffering the entire PUF response.

IBS and the VN corrector both address only the debiasing and syndrome
coding blocks in Figure 1. In the following, we also take the ECC encoder into
account.

3 Wiretap Channel and Coset Codes

Before going into our new leakage countermeasure for PUFs, we briefly discuss
the information theoretical problem that forms the foundation of our work. In
1975, Wyner introduced the wiretap channel model which represents a commu-
nication system that is wiretapped by an adversary [21], as shown in Figure 4.

Alice encodes a k-bit secret message Sk to an n-bit codeword Cn and trans-
mits it to Bob through the main channel. Due to noise, Bob receives a distorted
version Y n of Cn and recovers message Ŝk. The attacker Eve also observes a
noisy version Zn of Cn through the wiretapper’s channel.

The challenge is to develop a coding scheme that allows a reliable communi-
cation from Alice to Bob while preventing Eve from recovering any information.
In a reliable system, Bob can decode message Ŝk from his received vector Y n

correctly with a high probability. For security reasons, we need to limit the in-
formation that Zn provides to Eve about Sk. The delicate challenge is to encode
the message such that it has just enough structure to be decoded correctly by
Bob while it still must resemble ambiguous to Eve. Note that the wiretap chan-
nel has to be noisier than the main channel to be able to achieve any secret
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Fig. 4: The wiretap channel

communication at all. The current research field of physical-layer security also
makes extensive use of the wiretap channel model [28,29].

The basic idea of wiretap coding is to introduce randomness to the encoding
process by assigning multiple codewords to each message. Alice selects a message
Sk and encodes it as a codeword of code C1. Instead of a bijective and determin-
istic encoding, C1 contains a set of multiple possible codewords for each message
and the encoder selects one of the corresponding codewords at random.

Bob recovers the message correctly, if C1 contains a sufficient amount of
redundancy such that the error probability

Pe = Pr[Ŝk 6= Sk] < ε1 (1)

for an ε1 > 0. For large block lengths, it was shown that there exist codes such
that limn→∞ Pe = 0 [28].

Eve’s channel has a higher noise level so that she has multiple possible so-
lutions instead of one unique solution for the decoding problem. If the code is
designed properly, codeword candidates for all possible 2k messages are suitable,
and ideally equiprobable, for her received message Zn. In other words, according
to [28]

lim
n→∞

1

n
I(Sk;Zn) = 0 (2)

The noise level on the main channel determines the amount of redundancy that
has to be spent to achieve a reliable decoding for Bob. The difference between the
noise levels of the main channel and the wiretap channel defines the maximum
size of the secret information Sk that can be transmitted from Alice to Bob in
n transmitted symbols while keeping Eve ignorant. However, determining the
noise levels can be challenging in practice.

The secrecy capacity CS is thus given by [28]

CS = I(C;Y )− I(C;Z) (3)

Most wiretap codes discussed in the information theory community use ran-
dom codes, where random numbers are generated and then assigned to different
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codebooks. Random coding arguments are highly suitable to prove that a prob-
lem can be solved with some asymptotic behavior or to show that a problem
cannot be solved better than some bound. However storing and searching large
random codebooks, e.g. with more than 232 entries, in an embedded system is
not feasible. After understanding the general theoretical behavior of a problem
by analyzing the behavior of random codes, work on deterministic algorithms is
the next step to bring an approach closer towards implementations in practical
systems.

In 1984, Ozarow and Wyner proposed a practical wiretap coding scheme
called coset coding [22]. A coset of a set is computed by adding a constant to
all elements of the original set [23]. In coset coding, a coset is selected according
to the secret message. Then, the encoder selects one element of the coset at
random as transmitted message. Coset coding achieves secrecy for a wiretap
channel model where the main channel is noiseless and the wiretapper observes
the message through a binary erasure channel, which is a stochastic channel
that replaces a transmitted symbol with an erasure symbol with a given fixed
probability. Later, this scheme was extended to other channel models, e.g. Binary
Symmetric Channels (BSCs) in [30].

Let G1 be a k1 × n generator matrix of linear code C1 and H1 be the parity
check matrix of the same code. Similarly, G2 and H2 are the generator and
parity check matrices of a linear code C2 ⊂ C1 with message length k2 and code
length n. The code space C1 is partitioned into 2k sets containing cosets of C2,
where k = k1 − k2.

G1 =

[
G2

G

]
(4)

A uniform random vector Rk2 is added as mask to disguise the secret message
Sk. The encoding is formalized by

Cn =
[
Rk2 Sk

]
·
[
G2

G

]
(5)

= Rk2 ·G2 + Sk ·G (6)

The coset Sk · G contains the secret message while codeword Rk2 ·G2 adds
randomness to prevent Eve from decoding code C correctly.

The effectiveness of the coset coding countermeasure is measured by the mu-
tual information I(Sk;Zn). However, computing the exact mutual information in
Equation 2 is practically infeasible for large codes. Chen and Han Vinck provide
an upper bound on the information leakage for the case that the main channel
and the wiretapper’s channel both are BSCs and linear codes are used for the
coset coding construction [30]. For a main channel with bit error probability pm
and a wiretap channel with a bit error probability of pw, the secrecy leakage is
bounded by

I(Sk;Zn) ≤ log (2n PC2(pw)) , (7)
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where

PC2(pw) =
1

|C2|
∑

cn∈C2

pw
hw(cn)(1− pw)(n−hw(cn)) (8)

for code space C2 with cardinality |C2| and elements cn with Hamming weight
hw(cn). Note that code C is important for the reliability while the secrecy leakage
in Equation 7 only depends on C2.

Equation 8 iterates over all codewords. A good code design minimizes the
product pw

hw(cn)(1−pw)(n−hw(cn)) to tighten the bound in Equation 7. Since the
error probability pw is given by the channel, one can only optimize the code. pw is
smaller than (1−pw) such that the Hamming weight hw(cn) of the codewords in
C2 is maximized. When C1 is partitioned into C and C2, it is therefore important
to assign components with high Hamming weights to C2 to maximize the impact
of the mask.

4 Wiretap Channel Model for PUFs

To apply coset coding to PUFs, we first need to show that key derivation with
PUFs also corresponds to the wiretap channel model.

In the following, we apply the fuzzy commitment scheme [16]. However the
code-offset fuzzy extractor or the syndrome construction, both [2], or systematic
low leakage coding [8] could also be used in a similar way. Figure 5 shows the
PUF key generation and reproduction with an attacker that has access to the
public helper data.

Encoder Decoder

PUF

Attacker

Noise

Sk Ŝk

Ŝk
A

Cn Wn C̃n

Xn

X̃n

En

Fig. 5: Fuzzy commitment PUF model with an attacker

The ECC encoder maps the secret Sk to a codeword Cn and the fuzzy com-
mitment XORs Cn with PUF response Xn to generate helper data Wn. Wn is
public, so both the legitimate decoder and the attacker can access it. The legiti-
mate receiver observes a noisy version of the PUF response X̃n = Xn⊕En with
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error pattern En. If the distortion is within the error correction capability of
code C1, the decoder can recover the secret successfully with a high probability.
The attacker tries to extract information regarding the secret from the helper
data Wn.

To map this PUF model to the wiretap channel model, one has to leave the
procedure-centric view which is typically applied in PUF key generation and
look at the information flows. The source outputs secret Sk, while Ŝk and Ŝk

A

are the inputs of the sinks at the receiver and the attacker side. In both cases,
the information is modified on the way from the source to the sink.

Encoder DecoderBSC (pm)

BSC (pw)

Sk Cn C̃n Ŝk

Wn

Fig. 6: Wiretap channel model for PUFs

Figure 6 shows the wiretap channel model for PUFs, where the main and
wiretapper’s channels are modeled as BSCs. Bob’s ECC decoder receives a noisy
codeword C̃n with error pattern En, i.e, C̃n = Cn ⊕ En. In Figure 5, Xn is
added twice to the codeword which is transmitted over the main channel, so
that only the noise En remains.

C̃n = Cn ⊕Xn ⊕ X̃n (9)

= Cn ⊕Xn ⊕Xn ⊕ En (10)

= Cn ⊕ En (11)

The attacker’s path in Figure 6 does not show a decoder since we assume an
unbounded attacker. Therefore, Wn must not leak any information regardless of
any subsequent processing steps.

Wn also is a distorted version of Cn, since

Wn = Cn ⊕Xn (12)

The PUF response Xn is interpreted as the wiretapper’s error pattern that is
added to codeword Cn in the wiretap channel. Assuming independent errors for
each position, the error patterns En and Xn can therefore be modeled by BSCs
with crossover probabilities pm = 1

n E[En] and pw = 1
n E[Xn], respectively.

So, we have shown that secure key storage with PUFs can also be interpreted
as a wiretap channel. In contrast to the wireless wiretap channel setting, the PUF
setting has the advantage that pw can be measured and characterized precisely
in practice, as e.g. in [31].
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5 Wiretap Coset Codes for PUFs

This section introduces coset coding to PUFs as a new practical tool to ad-
dress helper data leakage, based on an example first and then provides a generic
approach.

Let the PUF response bits Xn be i.i.d with Pr[x = 1] = b, b ∈ [0, 1]. Then, the
probability distribution of Xn is a binomial distribution with hw(xn) successes
out of n Bernoulli trials with success probability b.

Pr[Xn = xn] = bhw(xn) · (1− b)(n−hw(xn)) (13)

If b 6= 0.5, the response bits are said to be biased and information leakage through
the helper data is observed, e.g. [15]. In the following, we discuss a toy example
to explain the leakage and its mitigation for a biased PUF.

Let us consider a fuzzy commitment scheme and 4-bit PUF responses X4

with bias b = 0.25. For error correction, exemplarily a (4, 3, 2) error detecting
code is applied whose generator matrix is given by

G1 =

1 1 1 1
0 0 1 1
0 1 0 1


Let us assume that for a specific instance helper data w4 = 0001 is stored
and observed by the attacker. Table 1 shows all key candidates and assigns the
conditional probability of occurrence for the given helper data to each candidate.

s3 c4 x4 Pr[X4 = x4] Pr[S3 = s3|W 4 = w4]

0 0 0 0 0 0 0 0 0 0 1 0.753 · 0.25 0.225

0 0 1 0 1 0 1 0 1 0 0 0.753 · 0.25 0.225

0 1 0 0 0 1 1 0 0 1 0 0.753 · 0.25 0.225

0 1 1 0 1 1 0 0 1 1 1 0.75 · 0.253 0.025

1 0 0 1 1 1 1 1 1 1 0 0.75 · 0.253 0.025

1 0 1 1 0 1 0 1 0 1 1 0.75 · 0.253 0.025

1 1 0 1 1 0 0 1 1 0 1 0.75 · 0.253 0.025

1 1 1 1 0 0 1 1 0 0 0 0.753 · 0.25 0.225

Table 1: Probability of different key candidates for the given helper data
w4 = 0001 and bias b = 0.25.

Recalling the notation from Section 3, we start with secret length k = 3 and
no masking, so k2 = 0. The first three columns show the mapping between the
key candidates s3, codewords c4 and PUF responses x4. Key candidates s3 are
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encoded to codewords c4 by G1, i.e c4 = s3 ·G1. For a given w4, there is an
exact one-to-one mapping between a PUF response x4 and a secret s3, since

x4 = w4 ⊕ c4 = w4 ⊕ s3 ·G1. (14)

The probabilities of all x4 are listed in the fourth column of the table.
The fifth column shows that one half of the possible PUF responses contains

three zeros and a single one, while the other half contains one zero and three ones.
Due to the bias towards zero, the PUF responses with more ones, highlighted
in gray in the table, have a lower probability of occurrence than the other half.
This gives the attacker an advantage to guess the secret correctly.

Previous work focused on debiasing the PUF response to avoid leakage. In
contrast, we now assign multiple PUF responses to each key candidate.

By interpreting the first bit of each key candidate as mask, so k2 = 1, we
reduce k to k = 2. Now, we obtain four different key candidates whereas each
candidate can be derived from two different PUF responses. For example, key
candidates s3 = 000 and s3 = 100 now both lead to s2 = 00 whose corresponding
PUF responses are x4 = 0001 and x4 = 1110. So,

Pr[s2 = 00|W 4 = 0001] = Pr[s3 = 000|W 4 = 0001] (15)

+ Pr[s3 = 100|W 4 = 0001]

= 0.25. (16)

After shortening s3 to s2 and interpreting the first bit as mask, all four key can-
didates s2 ∈ {00, 01, 10, 11} occur with probability 0.25. As a result, the prob-
ability Pr[S2 = s2|W 4 = 0001] is uniformly distributed and the attacker has no
advantage from observing the helper data.

Generalizing the example, let G1 be the generator matrix of an (n, k1, d)
linear block code C1. We mask k secret key bits with k2 mask bits according to
Equation 4. Again, G1 is constructed as

G1 =

[
G2

G

]
(17)

where G2 is a k2 × n generator matrix encoding the mask bits and G is k × n
generator matrix encoding the secret key bits. As in the wiretap coset codes,
C1 has a generator matrix G1 and is partitioned by cosets of C2 with generator
matrix G2.

Applying k2 mask bits maps 2k2 PUF responses to each key. As the number
of assigned PUF responses increases, Pr[Sk|Wn] gets closer to a uniform distri-
bution which prevents the attacker from deriving secret information. Therefore,
increasing the number of mask bits reduces the information leakage.

The mutual information I(Sk;Wn) between the secret and the helper data
quantifies the leakage. So, the leakage is upper bounded by
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I(Sk;Wn) = H(Sk)−H(Sk|Wn) (18)

≤ k − H̃∞(Sk|Wn) (19)

The conditional min entropy3 H̃∞(Sk|Wn) is given by [2]

H̃∞(Sk|Wn) = − log2

(
E
wn

[
max
sk

Pr
Sk|W

[sk|wn]

])
. (20)

The distribution of probability PSk|W (sk|wn) was already discussed in detail
in the previous example and Table 1. Now, we iterate over all wn and in each
iteration all values xn with xn = cn ⊕ wn for cn ∈ C1, are listed. According to
Pr[Xn = xn] for the listed xn, maxsk Pr[Sk|Wn = wn] is computed. For larger
code length, computing H̃∞(Sk|Wn) becomes infeasible, but it can be bounded,
e.g. according to [15].

6 Evaluation

After introducing the new leakage countermeasure for biased PUFs, this section
evaluates its effectiveness. In Section 6.1, we compute and discuss the exact
leakage for small codes with n = 8. Bounded results for a larger code with
length n = 64 are provided in Section 6.2. Section 6.3 compares our approach to
the state of the art in a practical setting.

In the following, we analyze coset code designs based on Reed–Muller (RM)
codes [23]. RM codes are a popular code class that was already used several
times in the PUF context, e.g. [3,4,6,32]. They have a highly regular structure
and are well-suited for compact hardware implementations. RM(r,m) codes with
parameters r and m have code length n = 2m, message length k =

∑r
i=0

(
m
i

)
,

and code distance d = 2(m−r). Area-optimized FPGA implementations of RM
codes for PUF error correction can be found e.g. in [4,32].

The generator matrix G of an RM(r,m) code, is built from m base vectors
vn(i) of length n = 2m and the all ones vector vn(0) of form

vn(0) = 11111111 · · · 11111111

vn(m) = 00000000 · · · 11111111

...

vn(3) = 00001111 · · · 00001111

vn(2) = 00110011 · · · 00110011

vn(1) = 01010101 · · · 01010101

3 Please be aware that referenced publications from different communities vary in their
definitions of the conditional min-entropy. We use the definition in [2] and not the
one that is used in [28].
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For r′ = {1, ..., r} all linear combinations of r′ base vectors vn(1) to vn(m) are

added to G. Note that combining r′ base vectors always results in a vector with
Hamming weight d = 2(m−r

′). The generator matrix consists of vn(0) and all linear

combinations of 1 to r vectors in the set {vn(1), v
n
(2) · · · v(m)}.

6.1 Exact Computations for Short Codes

Figure 7 presents the results for different bias values b in terms of total leakage
according to Equations 19 and 20. To show the impact of coset coding, we used
RM codes and a fuzzy commitment. Increasing the number of mask bits reduces
the total leakage, as expected. b = 0.5 refers to a uniform distribution of PUF
response bits so the leakage is always 0. High b values refer to a high bias, which
cause an increased secrecy leakage.
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Fig. 7: Computed total information leakage of wiretap coset coding for PUFs
with bias b and RM(1, 3) and RM(2, 3) codes.

The RM(1,3) code in Figure 7a has parameters (8,4,4) such that it carries
4 information bits if no bits are assigned to the mask. Depending on the bias,
between 1.3 and 3.8 of the 4 secret bits are leaked. As expected, the total leakage
is reduced as more secret bits are interpreted as mask bits.

The first row of its generator matrix G has Hamming weight 8 while the other
three rows have a Hamming weight of 4. The steepness of the curves changes
after one bit is assigned to the mask which is consistent with the behavior given
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in Equation 7, where the Hamming weight also plays a critical role in reducing
the leakage..

The second example, presented in Figure 7b, is an RM(2, 3) code with pa-
rameters (8,7,2). It shows significantly more secrecy leakage for high b since it
also contains more information that could be leaked. In contrast to the first ex-
ample, the RM(2, 3) code is able to generate nearly leakage-free secret bits. For
example for b = 0.6, after interpreting 3 bits as mask only less than 0.2 bit leak
in total about the remaining 4 secret bits.

The curves have three areas of different steepness because the generator ma-
trix has three more rows with Hamming weight 2 in addition to the four rows
of the RM(1,3) code. Therefore, each additional bit after 4 mask bits has less
impact than the bits 1 to 4.

6.2 Upper Bounds for Long Codes

After discussing fundamental properties of coset coding with short code lengths
in the previous section, this section shows the secrecy leakage reduction through
coset coding for a code length of 64, which is also used in practical implementa-
tions.

The exhaustive computation discussed in the previous subsection becomes
infeasible for longer code lengths. We therefore upper bound the leakage with
the bound presented in [30]. From a security point of view, it is important to
prove that the leakage is lower than a given threshold. In the following, we set
this threshold to less than 1 bit total leakage. The previous figures demonstrated
that this strongly depends on the bias at the input.

Figure 8 realigns the plots such that all start at a secrecy leakage around
one. The offset in x direction is given by m. The RM(2,6) code has parameters
(64,22,16) and the bias is narrowed down to parameters between b = 0.52 and
b = 0.60. When interpreting the results, it is important to take into account
that the results are conservative upper bounds and the actual values are always
lower.

For a small bias of b = 0.52, roughly 4 mask bits are sufficient. Going to
b = 0.56 already requires more than 11 mask bits. However, even for b = 0.60
the bias can be brought down close to zero.

6.3 Comparison with the State of the Art

Several previous publications demonstrated that code concatenation or a combi-
nation of error reduction and ECC facilitate to achieve key error probabilities of
10−6 for low implementation complexities [3,4,5,6,9]. In addition, we have shown
in Section 6.1 that codes with a high ratio of key bits per codeword bit show more
promising masking properties. We therefore follow general experience of previous
work and coset coding specific behavior to refrain from providing a stand-alone
wiretap coset coding solution and directly combine it with Differential Sequence
Coding (DSC) [9].
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Fig. 8: Bounded total information leakage of wiretap coset coding for PUFs with
bias b and RM(2, 6). m refers to the initial offset of mask bits.

DSC stores differential pointers Ui that indicate reliable PUF bits X, as
shown in Figure 9. Each reliable PUF bit is mapped to a codeword bit Ci while
unreliable PUF response bits are ignored. If the indexed PUF response bit is
likely to be equal to its corresponding codeword bit, the inversion bit Vi is set
to zero. Otherwise it is set to one. The pointers and the inversion bits are stored
as helper data.

1 0 3 4

x16

c4

u4

v4

reliable 0

reliable 1

unreliable

Fig. 9: Helper data generation with differential sequence coding

It was shown in [9] that DSC performs very efficient error reduction for
unbiased PUFs. For biased PUFs, two new aspects have to be considered: First,
the inversion bits V start to leak secret information, and second the bias even
increases if the PUF response is reduced to its more reliable bits. This relation
between bias and reliability was discussed in detail in [12].
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To mitigate this leakage and derive a reliable key, we combine DSC and coset
coding in this work. First, Sk is encoded to Cn by coset encoding, and then Cn

is embedded into reliable PUF responses Xm by DSC.

Table 2 presents the result of DSC + wiretap RM coset coding (CC) and
compares it with previous leakage mitigation approaches. We computed all re-
sults in Table 2 for an SRAM PUF with average bit error Pin = 10%, i.i.d PUF
response bits with bias 0.54 and reliability distribution according to [4,12]. A
key error probability Pe ≤ 10−6 is targeted for 128 bit key length. The error
correction relies on two ECC stages. We used repetition codes with parameters
(n3, k3, n3) as inner codes for the code-offset fuzzy extractor, VN and IBS. For
DSC, the inner repetition code is replaced by DSC with the rate (n3, 1), denoted
by a star. The code-offset fuzzy extractor, and IBS and VN debiasing schemes
use BCH codes as outer code with (n1, k1, d1) whereas wiretap coset coding uses
RM codes. z refers to the number of BCH or RM codewords that are used to
generate the entire key.

First of all, the Fuzzy Extractor and DSC results without debiasing clearly
demonstrate that there exists significant leakage, even for the relatively low
bias of 0.54. Removing this leakage with the state-of-the-art approaches IBS or
VN increases the number of PUF bits from 640 with DSC to 1,778 and 2,471,
respectively, which is an increase of over 1,100 PUF response bits or 178%.

Our new approach with DSC and wiretap coset coding only requires 704 PUF
response bits bits for a negligible upper bounded total leakage of 0.06. Therefore,
the debiasing overhead is reduced by almost 170% from 178% to 10%, or roughly
1, 000 PUF bits such that the overall number of PUF response bits is reduced
by 60% compared to IBS and VN.

We also provide a more conservative value for a secrecy leakage ≤ 0.01. As
already discussed in Sections 6.1 and 6.2, the efficiency of coset coding decreases
as the number of mask bits increases. Removing the last 0.05 bit in the con-
servative estimate of the secrecy leakage doubles the number of PUF response
bits.

7 Conclusion

Biased PUF responses lead to secrecy leakage. We introduce wiretap coset coding
to PUFs to mitigate the leakage through the helper data. In contrast to previous
work that eliminates the bias at the input, we modify the ECC.

This work applies the wiretap channel model to PUFs to reduce the secrecy
leakage with coset coding. The typical one-to-one mapping between information
and codeword is changed to a one-to-many mapping so that all secrets show a
similar probability again for a given helper data candidate.

The exact secrecy leakage can be computed for short codes while bounds
also provide leakage results for longer codes. Our design for a practical scenario
reduces the overall number of required PUF response bits by roughly 1, 000 or
60% compared to the reference approaches VN and IBS.
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