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Abstract. Classical side-channel analysis include statistical attacks which
require the knowledge of either the plaintext or the ciphertext to predict
some internal value to be correlated to the observed leakages.
In this paper we revisit a blind (i.e. leakage-only) attack from Linge
et al. that exploits joint distributions of leakages. We show – both by
simulations and concrete experiments on a real device – that the max-
imum likelihood (ML) approach is more efficient than Linge’s distance-
based comparison of distributions, and demonstrate that this method can
be easily adapted to deal with implementations protected by first-order
Boolean masking. We give example applications of different variants of
this approach, and propose countermeasures that could prevent them.
Interestingly, we also observe that, when the inputs are known, the ML
criterion is more efficient than correlation power analysis.
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1 Introduction

Cryptographic implementations of embedded products like smartcards
are known to be vulnerable to statistical side-channel analysis such as
Differential Power Analysis [12], Correlation Power Analysis [1] or Mu-
tual Information Analysis [7]. These side-channel analyses are divide-and-
conquer attacks where the whole key is recovered by chunks of few bits
(e.g. one byte) at a time. This is possible because the device produces a
measurable leakage like power consumption or electromagnetic emanation
which depends at any instant on the internal value manipulated by the
processor. When this value only depends on a public information – like
the plaintext or the ciphertext – and a small piece of the key, a so-called
subkey, it is possible to validate or invalidate an hypothesis about the
subkey by correlating the leakage with a prediction of the internal value.

While these statistical analyses all require the knowledge of the input
or the output to be correlated with, there are some use cases or protocols



where this information is either not available or not exploitable. This
is the case for the derivation of the session key that is used to compute
application cryptograms in the EMV payment scheme [4, p. 128] (see also
left of Fig. 8). In this case the attacker does not know the output (session
key) and the input only varies on its first two bytes, so that he can expect
to recover only the two corresponding bytes of the master key.

To deal with situations where neither the plaintext nor the ciphertext
are available, Linge et al. introduced the concept of joint distribution
analysis [16]. In the case of the AES cipher, the idea is to exploit the fact
that the joint distribution of the Hamming weight of a byte m and that of
y = S(m⊕k) depends on k so that this key byte value can be retrieved (at
any round) by comparing the distance between the observed experimental
distribution of (HW(m),HW(y)) and all 28 theoretical ones. Linge et al.
also proposed a so-called slice method to convert leakages to Hamming
weights. While Le Bouder [14] presented an alternative approach – based
on the maximum likelihood (ML) criterion – to Linge’s distance-based
comparison of distributions, she did not provide any comparison between
both methods. In this paper we build upon [16,14] and provide the fol-
lowing contributions: (i) we propose a novel way to estimate Hamming
weights based on variance analysis, (ii) we compare the ML and distance-
based methods using both the slice and the variance analysis ways of
obtaining Hamming weights, (iii) we present new variants that improve
the attack by exploiting other and/or more points of interest, (iv) we
adapt the blind joint distribution analysis to implementations featuring
Boolean masking countermeasure. Our work is supported by experimental
results based both on simulations and on real traces.

Another related work by Hanley et al. [11] presents a template-based
attack by joint distribution analysis in the blind context. This work dif-
fers from our’s as it requires a profiling phase on a similar device with
known key where the unknown input assumption does not hold. Also,
and contrarily to our work, the adaptation of their attack to masked
implementations is only applicable on the first round. In the context of
blind fault analysis, Korkikian et al. [13] and Li et al. [15] also exploit the
joint distribution of (HW(m),HW(y)) with the distance-based and ML
methods respectively.

This paper is organized as follows. In Section 2 we introduce the nota-
tions used in the paper and present the original joint distribution analysis
from Linge et al. In Section 3 we describe the ML criterion and compare
it to Linge’s distance-based method. Section 4 considers how the different
variants of our attacks can be adapted to implementations protected by



first-order Boolean masking. We then depart from the unknown plaintext
scenario in Section 5 to further assess the efficiency of the ML criterion
and compare it with classical CPA. Concrete experiments on side-channel
traces captured from a real device are presented in Section 6 and their re-
sults compared to simulation figures. We then provide several application
examples of our attacks in Section 7 and discuss which kind of counter-
measures could prevent them. Section 8 finally concludes this work.

2 Background and Original Linge’s Attack

The attacks presented in this paper assume a software implementation
of a block cipher, and without loss of generality we will consider the
AES [18]. For these attacks one needs to measure the leakages corre-
sponding to some specific internal byte states. We thus assume that the
attacker is able to locate precisely the points of interest related to these
variables. This means that an attacker facing an implementation hardened
by random delays or other types of time randomization must have been
able to preprocess the traces and remove the effect of these desynchro-
nizations. When the traces are aligned, identifying the points of interest
may not be an easy task. Since the attacker does not know the plaintext,
the statistical T-test or other tests that partition the trace set based on
a plaintext dependent value [8,9,17,3] can not be used. Although, it is
still possible to identify instants where the device shows a high activity
from the peaks on the trace of standard deviations such as depicted in
Figure 2. Such traces do not provide any clue by themselves about which
kind of internal data leaks, but this information may be guessed based
on reasonable assumptions about the implementation.

2.1 Notations

We are mainly concerned with three kinds of internal AES states that we
generically call m, x and y, and respectively correspond to:

m : the input byte of the XOR operation with the key byte k during the
AddRoundKey function,

x : the result of the XOR operation with the key byte (x = m⊕k), which
is the input of the S-Box during the subsequent SubBytes function,

y : the output of the S-Box (y = S(x) = S(m⊕k)) during the SubBytes

function.

Note that, except if explicitly stated, we do not assume any particular
byte number or any particular round number for m, x and y.



2.2 The Original Attack

The joint distribution analysis proposed by Linge et al. [16] considers
the case of two state bytes m and y which are seen as random variables.
Assuming uniformly distributed plaintexts, the probability distributions
of both m and y – considered separately – are uniform and independent
on the key. Though, this is totally different for the joint distribution of
the couple (m, y). Indeed this joint distribution actually depends on k.
The core idea of Linge’s attack is that if the joint distribution of (m, y)
depends on the key then it should be also true for the joint distribution
of their Hamming weights (HW(m),HW(y)). We can thus consider 28

theoretical distributions of (HW(m),HW(y)), one per value of k, that
we call models and which we denote by Mk. As an illustrative example,
Fig. 1 shows modelsM39 andM167 which clearly appear to be different.

Fig. 1: Joint distributions of (HW(m),HW(y)) for k = 39 (left) and for
k = 167 (right)

Since we assume the Hamming weight leakage model, an attacker
able to infer the Hamming weights of m and y from two correspond-
ing series of leakages `m and `y can generate an empirical distribution
of (HW(m),HW(y)) issued from the device. We denote this distribution
by D. As this empirical distribution should converge to the model cor-
responding to the key used in the device, one can compare D with each
model Mk and select the one that achieves the best match. To sum up,
Linge’s attack comprises three steps:

Computing the models. One computes the theoretical distributionMk

for each key candidate. This is simply a matter of considering all pos-
sible inputs m, derive the value y = S(m ⊕ k), counting how many
times each couple (HW(m),HW(y)) appears, and normalizing in order



to obtain the probability distribution. These models are independent
from the device and can thus be computed beforehand.

Obtaining the empirical distribution D. Given a large set of traces
corresponding to encryptions with random inputs, one measures the
leakages `m and `y at the two previously identified points of interest.
These couples of leakages must be converted to couples of Hamming
weights in {0, . . . , 8}× {0, . . . , 8} in order to comply with the domain
of the models. Finally, counting the number of occurrences of each ob-
served Hamming weight couple, and normalizing by the total number
of observations, allows to generate the empirical distribution D.

Comparing D with the models. Linge et al. proposed to compare the
empirical distribution to the theoretical ones based on some distance.
The closest modelMk to D provides the best candidate for the secret.
They studied a large panel of 65 distances and selected four of them
for giving better results in the presence of errors in estimating the
Hamming weights.

A tricky task in this attack is the conversion from leakages to Ham-
ming weights. Linge et al. proposed a simple method that assigns Ham-
ming weights by ”slices” of the sorted list of leakages in accordance to
their relative probabilities. Given a set of leakages measured at a given
point of interest, if we consider them sorted in ascending order, it is rea-
sonable to think that the smallest ones would correspond to a Hamming
weight h = 0 and the largest ones to h = 8. How many leakages should
correspond to each Hamming weight slice may be estimated by the theo-
retical proportion of each of them: given the leakages of n random values,
one assigns h = 0 to the n

256

(
8
0

)
smallest ones, h = 1 to the n

256

(
8
1

)
imme-

diately larger ones, and so on, up to h = 8 to the n
256

(
8
8

)
largest leakages.

3 Improved Joint Distribution Analysis

The attack presented in Section 2.2 does not require the knowledge of
neither the plaintext nor the ciphertext. This remarkable property results
from the fact that the analysis is local : the information used to ”correlate”
with the S-Box output y is self-contained in the trace since it comes from
the leakage of m instead of from its value. The important benefit from
this is that the attack applies at any arbitrary round, and not solely on
the first or last one. On the other side, instead of using the exact value of
the input – as in classical attacks – this information is replaced by a noisy
estimation of its Hamming weight. This makes this attack less efficient



than classical ones (in term of number of traces) and motivates the need
to exploit the available information as efficiently as possible.

In this section we recall an improved method to exploit the joint
distribution of leakages at points m-y which is based on the maximum
likelihood criterion [14]. The idea is to compute for each key hypothesis
the probability of this key given the observed leakages. The attacker then
selects the most probable one. In this approach the noisy leakage must
be converted to a noisy Hamming weight which does not require to be an
integer value since the noise is modeled as being distributed according to
a centered Gaussian law with variance σ2. Section 3.2 discusses several
ways to convert the original leakages to real-valued Hamming weights.

3.1 Maximum Likelihood Criterion

We consider a noisy measurement (hm, hy) of a couple of Hamming weights
(h∗m, h

∗
y) corresponding to the values manipulated at points of interest

related to m and y. That means h∗m = HW(m) and h∗y = HW(y) =
HW(S(m⊕ k)). We have hm = h∗m +ωm and hy = h∗y +ωy where ωm and
ωy are two independent and centered Gaussian noises with standard devi-
ations σm and σy respectively1. The probability of the key given a single
observation of Hamming weights can be derived from Bayes formula as:

Pr(k|(hm, hy)) =
Pr((hm, hy)|k) · Pr(k)

Pr((hm, hy))

Note that in this equation the denominator Pr((hm, hy)) is a normaliza-
tion term that does not depend on the key. We can simply ignore it since
we are just interested in comparing the probabilities to each other instead
of actually computing their values2. We so have

Pr(k|(hm, hy)) ∝ Pr((hm, hy)|k) · Pr(k)

where the term Pr(k) corresponds to the uniform distribution in the
case of a first observation of (hm, hy) and more generally to the pos-
terior distribution computed based upon the already exploited Hamming
weights couples. The probability of the key given a set of observations
((hm, hy)i)i=1...n can then be derived in the following iterative way:

Pr(k|((hm, hy)i)i=1...n ← Pr((hm, hy)n|k) · Pr(k|((hm, hy)i)i=1...n−1 (1)

1 The assumption that the distribution of the noise is Gaussian is not restrictive. If it
is not, one uses the same equations given in this section, except that Eq. (3) must
be consequently adapted to the actual (or supposed) distribution of the noise.

2 For sake of simplicity, we continue to use the notation Pr(·) in the next equations
while this actually denotes a term which is proportional to the actual probability.



Considering that the observed Hamming weights can be issued from any
possible actual ones, the multiplicative term Pr((hm, hy)|k) can be com-
puted thanks to the law of total probabilities as:

Pr((hm, hy)|k) =
∑
h∗m,h

∗
y

Pr((hm, hy)|(h∗m, h∗y)) · Pr((h∗m, h
∗
y)|k) (2)

The second term of the product comes from the same precomputed models
as exploited in the original method, while the first term is simply the
probability of the noise that accounts for the observation:

Pr((hm, hy)|(h∗m, h∗y)) = Pr(ωm = hm − h∗m) · Pr(ωy = hy − h∗y)

=

(
1

σm
√

2π
e
− 1

2

(
hm−h∗m
σm

)2
)
·

 1

σy
√

2π
e
− 1

2

(
hy−h∗y
σy

)2
 (3)

Equations (1) to (3) allow to compute the probability distribution
of the key given the observed Hamming weights. This exploits the full
information that can be derived from the measurements. Based on this
distribution, the attacker simply selects the key with highest probability.

3.2 Estimating the Hamming Weights

Section 2.2 describes Linge’s ”slice” method for converting leakages to
Hamming weights. While clever and quite simple to apply, its main draw-
back is that it estimates Hamming weights as integers, so that the process
may arbitrarily assign two different Hamming weights to two quite near
(possibly even equal) leakages. While such integer values can be used in
Equations (1) to (3), we see this threshold effect as undesirable since the
maximum likelihood method can take advantage of a more smooth esti-
mation without such rounding inaccuracies. We now propose two methods
for converting real-valued leakages to real-valued Hamming weights.

Linear Regression According to the linear model ` = αHW(v)+β, it is
possible to estimate the Hamming weight from the leakage ` as soon as we
know – or have estimated – the values of the constant coefficients α and
β. Linear regression infers from two series (`i)i and (HW(vi))i of leakages
and corresponding Hamming weights the coefficients α and β of the linear
relationship that best fits the set of points. Unfortunately this requires
the knowledge of the byte values vi corresponding to each leakage li. This
means that this method preferably applies during a characterization phase
on a known-key device, the inferred coefficient values being subsequently
used for the attack on a similar target device with an unknown key.



Variance Analysis As for linear regression, our second method for
converting leakages to Hamming weights also estimates α and β. How-
ever, as far as we know this is the first proposed method that can es-
timate these coefficients without the knowledge of the key or the plain-
texts/ciphertexts. It does not need them because it is not required to
know which vi corresponds to which `i.

From a large set of execution traces with varying inputs it is possi-
ble to compute the variance (or the standard deviation) of the leakage
at each instant. Usually, this variance trace clearly shows two kinds of
time samples. Those for which the variance is low, which correspond to a
low activity of the device, or at least to a constant activity independent
from the algorithm input. At these instants we consider that the variance
level reflects the variance of the measurement noise on the leakage. On
the other hand when the activity is related to a data that depends on
the algorithm input, then the variance is quite larger as it also includes
that of the manipulated data. This is illustrated in Figure 2 where three
groups of 16 peaks correspond to the standard deviation when m, x and y
bytes are manipulated, while the initial portion up to time sample 30 000
corresponds to a low activity process.
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Fig. 2: Standard deviation trace computed on 1000 executions

From the measurement of the variance levels both on a quiet part and
at the point of interest for the attack, one can derive the coefficient α of
the leakage model. The noisy leakage expresses as: ` = αHW(v) + β +ω.
Due to the independence of the noise from the data, we have:

Var(`) = Var(αHW(v) + β) + Var(ω) = α2 Var(HW(v)) + Var(ω) (4)



As v is a random byte value the variance of its Hamming weight
is equal to 8 times the variance of a uniformly distributed bit, that is
Var(HW(v)) = 8× 1

4 = 2. We can now derive α from Eq. (4):

α = ±
√(

(Var(`)−Var(ω)
)
/2 (5)

Once α is known, the value of β can be inferred from the model as
β = E(`) − αE(HW(v)) = E(`) − 4α, where E(`) is estimated by the
average leakage at the considered point of interest. Finally, from α and β,
a leakage ` can be converted to the estimated Hamming weight h = (`−β)

α .

3.3 Experimental Results

In this section we provide experimental results that compare the orig-
inal distance-based method with that based on the ML criterion. We
performed simulations where m is generated at random uniformly and
y = S(m ⊕ k) is derived from m and from the key byte to be recovered
(k is drawn at random for each run). We generated our observations by
adding two independent Gaussian noises with same variance to HW(m)
and HW(y).

Based on the sets of real-valued Hamming weights (hm)i and (hy)i,
we computed integer versions of them suitable for applying the distance
method. To that end we applied Linge’s slice method to the real-valued
Hamming weights in a same manner as if they were original leakages.
Note that applying the slice method to the real-valued Hamming weights
is strictly equivalent to applying it to the leakages from which they are
supposed to be linearly derived.

The left part of Fig. 3 presents the results in terms of the average
rank of the correct key based on 10 000 runs with a medium noise level
of σ = 1.0. Drawings in plain line style refer to the ”slice” way to derive
integer Hamming weights from real-valued ones. Blue, green and gray
lines refer to the Inner Product, to the Pearson χ2 and to the Euclidean
distances respectively. Red lines refer to the ML criterion for which we
also show in dotted line style the results when using directly the real-
valued Hamming weights. In the case of the ML we used the same noise
level σ = 1.0 for the attack phase as we used to generate the observations.

We can clearly see that IP and Euclidean distances do not give good
results whereas the Pearson χ2 based distance gives better ones. Also, ML
strongly outperforms all distance-based methods, particularly when used
with original real values. For the maximum likelihood the average rank is
about 5 with 1000 observations, and below 2 with only 2000 observations.



These simulation results demonstrate that the maximum likelihood
approach is superior to the distance based one in two respects: (i) it is
intrinsically better when compared with the same observations (integer
Hamming weights generated by the slice process) and further, (ii) it can
take great advantage of real-valued Hamming weight estimations that can
be directly inferred from the measured leakage.
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Fig. 3: Left: comparison of original distance method and m-y maximum
likelihood (σ = 1.0). Right: comparison of m-y and m-x-y variants for
different levels of noise.

Variants with more Points of Interest While the joint Hamming
weights distribution analysis has been presented in Section 3.1 with two
observed leakages (namely m and y), it is possible to use more of them if
available. For example we can use the joint leakage from the three points
of interest of m, x = m⊕k and y = S(m⊕k). Such so-called m-x-y attack
is a straightforward generalization of the m-y attack where the theoreti-
cal models contain values of Pr((h∗m, h

∗
x, h
∗
y)|k) instead of Pr((h∗m, h

∗
y)|k),

where the summation of Eq. (2) is over all triplets (h∗m, h
∗
x, h
∗
y)

3, and
where the conditional probability of the observation in Eq. (3) includes
an extra term corresponding to Pr(ωx = hx − h∗x).

The right part of Fig. 3 compares both m-y (plain lines) and m-x-y
(dotted lines) variants of the maximum likelihood attack with three noise
levels σ=0.7 (blue), σ=1.0 (green) and σ=1.5 (red). Notice that for a same
noise level the m-x-y attack is quite more efficient than the m-y one. This

3 While this can be viewed as a multiplication by 9 of the terms in the summation, it
is worth to note that Pr((h∗m, h

∗
x, h
∗
y)|k) is non null for at most 256 triplets.



is because the observation of hx brings extra information that helps to
further discriminate candidate keys. We also observe that the effect of
the noise is important as it requires about five times more observations
to get the same reliability on the key for σ=1.5 than for σ=1.0.

It is also possible to use other points of interest. For example, the y
value is subsequently used in the MixColumns operation. Thus, depending
on the implementation, there may exist instants where 2y and 3y are also
manipulated. We have studied variants of the attack where these variables
are included in the analysis. This results in attacks of types m-y-2y, m-y-
3y, m-y-2y-3y and the same ones with x also. The simulation results show
that adding more variables to the analysis always gives better results, but
this gain is smaller for 3y than for x, and even smaller for 2y 4.

Variant m-x We now present a particular variant of the joint distribu-
tion analysis which involves only the leakages of m and x. This variant
is special in the sense that if one computes the theoretical models for all
possible k then one observes that they form classes of indistinguishable
models, with each class being specific to the Hamming weight of k. That
means that the distribution of (HW(m),HW(m ⊕ k)) only depends on
HW(k). This property is not so surprising, and comes from the fact that
the XOR operation acts on bits independently from each other and that
the Hamming weight function is invariant by any permutation of the bits.

There are two practical consequences of this property. First, the amount
of information that can be retrieved from a m-x joint distribution anal-
ysis is less than for the m-y variant (about 2.5 bits instead of 8 bits
on average). The second consequence is that the m-x attack retrieves
hk = HW(k) more efficiently than the m-y attack retrieves k. This is due
not only to the fact that there are only 9 models to distinguish from, but
also to the fact the those models are more different from each other.

As an illustrative example, the top of Fig. 4 shows the models Mhk

for values 0, 1 and 2 of hk. One can observe that these distributions show
a characteristic pattern made of respectively 1, 2 and 3 parallel and linear
structures like ”walls”.

Simulation results for the m-x variant are presented on the bottom
of Fig. 4. The correct Hamming weight of the key is ”first ranked” (ar-
bitrarily, say a mean rank less than 0.2) with less than 100, 200 and 500
traces for noise levels σ equal to 0.7, 1.0 and 1.5 respectively.

4 This last observation can be explained by the fact that information brought by y
and 2y are somewhat redundant. Indeed their Hamming weights are quite correlated
since they are equal for all y < 128 values for which 2y is equal to y � 1.
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Fig. 4: Top: joint distributions of (HW(m),HW(x)) for HW(k) equal to
0, 1 and 2. Bottom: simulation results of the m-x variant for different
noise levels.

4 Implementations Protected by Boolean Masking

Both Linge’s and the maximum likelihood methods presented in Section 3
require a non protected implementation. Notably, they can not recover
the key in the presence of the Boolean masking countermeasure [10,19].
This defense technique prevents from classical statistical attacks by XOR-
masking all intermediate state bytes of the ciphering path with a random
mask byte which is refreshed at every execution. To do so, it is necessary
to generate a modified S-Box S′ designed to produce a masked version
y′ = y ⊕ rout of the normal output y = S(x) when it receives a masked
input x′ = x ⊕ rin. The modified S-Box is thus defined as y′ = S′(x′) =
S(x′ ⊕ rin) ⊕ rout. From the measured leakages `m′ and `y′ the attacker
infers a masked couple (HW(m′),HW(y′)) which is differently distributed
than the couple (HW(m),HW(y)) based on which the models are defined.

4.1 Variants m-y and m-x-y

Figure 5 presents different options for implementing the Boolean masking
countermeasure. We focus here on the area involving the XOR with the



key and the S-Box. These schemes differ according to whether the key
itself is masked or not, and whether the input and output masks of the
S-Box are the same or not.

m⊕ u
k⊕

S’

y ⊕ u

x⊕ u

(a)

m⊕ u
k ⊕ w⊕

S’

y ⊕ u

x⊕ u⊕ w

(b)

m⊕ u
k ⊕ w⊕

S’

y ⊕ u

x⊕ u⊕ w
⊕ w

x⊕ u

(c)

m⊕ u
k ⊕ w⊕

S’

y ⊕ v

x⊕ u⊕ w

(d)

Fig. 5: Examples of Boolean masking schemes

When an attacker performs the first-order joint distribution analysis
on an implementation protected by first-order Boolean masking, he gener-
ates an empirical distribution of masked couples (HW(m′),HW(y′)) and
”compares”5 it to a distribution of non masked couples (HW(m),HW(y)).
The consequence is that the empirical distribution will not match the
models even for the correct key.

In the case where m and y are masked by the same value (schemes
a, b and c of Fig. 5), it is possible to recover the consistency between
both empirical and theoretical distributions if we define the models as
being distributed according to the distribution of masked couples with an
uniformly distributed m and an uniformly distributed mask u.

Thus, it is possible to adapt the joint distribution attack to such
masked implementations and the only modification consists in creating
the models in a way that fits with the distribution of the couples of
masked Hamming weights. Precisely, there still exists 256 models Mk,
one per key byte, and each model contains the conditional probabilities
Pr((HW(m′),HW(y′))|k). But in this case, these probabilities are com-
puted by counting the number of occurrences of each couple of Hamming
weights when both m and the mask u range over all byte values. These
models still mutually differ but they are much more similar to each other

5 This comparison is either explicit (Linge’s distances) or implicit (ML).



than for the non-masked case. This is illustrated on the top of Fig. 6 which
presents the models for the same example keys than those presented in
Fig. 1. We verified that all 256 models are different from each other.
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Fig. 6: Top: joint distributions of (HW(m′),HW(y′)) for k = 39 (left)
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The greater similarity between theoretical distributions in the masked
case induces a much larger number of observations that are needed to
distinguish between them. This is due to the fact that one must wait
longer before the empirical distribution converges toward its model.

Notice that a m-x-y variant of such second-order joint distribution
analysis is also possible provided that all three intermediate state bytes
are masked by the same value. This is notably the case for schemes a and c
of Fig. 5. We present experimental results for bothm-y andm-x-y variants
of the second-order joint distribution analysis (with ML criterion) on the
bottom of Fig. 6. These simulation results were obtained by averaging the
rank of the correct key over 1000 runs with a noise level equal to σ=1.0.

Here also the m-x-y variant is more efficient than the m-y one. We also
observe that the number of traces needed to recover the key is much more



than for the first-order attack. Nevertheless, this demonstrates that joint
distribution analysis also works on masked implementations provided that
relevant variables are masked by the same value.

4.2 Variant m-x

We have seen in Section 3.3 that the m-x variant is particular in the
sense that it allows to recover the Hamming weight of k instead of k
itself. Another remarkable and important property of this variant is that
it is exactly as efficient when applied to masked values m′ = m ⊕ u and
x′ = x ⊕ u as it is when applied directly to m and x. This means that
masking is totally useless with respect to this attack. The reason is that
both joint distributions of (HW(m),HW(x)) and (HW(m′),HW(x′)) are
the same. This is because both series of (m,x) and (m′, x′) are the same
in a permuted order, so are equal the series of their Hamming weights.

We stress on the importance of this special behavior: even an imple-
mentation protected by Boolean masking is vulnerable to the m-x variant
which can recover the Hamming weight of the key byte with about only
few hundreds traces. Again, this is only true if m and x are masked by
the same value, which is the case of schemes a and c of Fig. 5.

5 Joint Distribution Analysis with Knowledge of the
Plaintext

As stated by Eq. (2), the joint distribution analysis with ML criterion
uses the conditional distributions Pr((h∗m, h

∗
y)|k) of the Hamming weights

given the key. These models are built in a precomputation phase by count-
ing, for the given key, the number of occurrences of each Hamming weight
couple (or triplet for a m-x-y attack) for all possible values of m, and pos-
sibly all values of the mask u in the case of a masked implementation.

In this section we study how to adapt this attack to the classical case
where the plaintext is known from the attacker. Of course, contrarily to
the blind context, the attack is now feasible only on the first round.

5.1 First-order Attack

When m is known it is no more useful to include hm in the observation,
and we work with the probability distribution of h∗y (or of (h∗x, h

∗
y) for

a m-x-y attack) for given values of k and m. Note that in this case the
distribution is degenerated as a unique h∗y value (or a unique (h∗x, h

∗
y) cou-

ple) resulting from k and m. Though, the computation of the probability



distribution of k given the observations remains feasible in a similar way
by summing over only h∗y (or (h∗x, h

∗
y)) in Eq. (2).

We have simulated the m-y attack on 1000 runs and compared it with
the classical CPA. Results are presented on the left part of Fig. 7 for σ
noise levels of 1.0, 3.0 and 5.0 respectively. We note that retrieving the key
by the ML method is slightly more efficient than by CPA. On the other
hand, CPA does not require the determination of the point of interest.

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200

C
o
rr

e
ct

 k
e
y
 r

a
n
k

Number of observations

m-y m known σ=1.0
m-y m known σ=3.0
m-y m known σ=5.0

CPA σ=1.0
CPA σ=3.0
CPA σ=5.0

 0

 20

 40

 60

 80

 100

 120

 0  1000  2000  3000  4000  5000

C
o
rr

e
ct

 k
e
y
 r

a
n
k

Number of observations

m-y m known HW(m', y') σ=1.0
m-y m known HW(m', y') σ=3.0
m-y m known HW(m', y') σ=5.0

SO-CPA (prod.) σ=1.0
SO-CPA (prod.) σ=3.0
SO-CPA (prod.) σ=5.0
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Variant with points of interest m′ = m⊕ u and y′ = y ⊕ u.

5.2 Second-order Attack

In the case of a masked implementation, a first option is also to straight-
forwardly adapt the attack to the knowledge of m. The attack takes m′

and y′ as points of interest. For each couple (k,m) we precompute a cor-
responding model that gives the distribution of (h∗m′ , h

∗
y′) when only the

mask u varies.

As an alternative method, one can substitute the observation of m′

by that of the random value that masks y. The two points of interest are
then u and y′ = y ⊕ u, and the models correspond to the distribution of
(h∗u, h

∗
y′). A great advantage of this variant is that it applies even when two

independent masks are added to m and y. On the other hand, it requires
to identify the point of interest of the mask, which may be difficult.

We have simulated both variants on 1000 runs. In each case we com-
pare the ML method with the 2nd-order CPA where the combination of



the leakages (centered product6) is correlated with HW(m⊕y) in the first
case, and with HW(y) in the second case. Both variants give almost the
same results, which is not surprising as when m is known, the information
brought by m′ = m⊕u and by u are essentially the same. The right part
of Fig. 7 presents the results for the variant which exploits m′ and y′.
Note that the ML method finds the key somewhat earlier than 2nd-order
CPA.

6 Concrete Experiments

In this section we present concrete experiments on side-channel traces
captured from a real device. We have implemented two versions of a soft-
ware AES on an Arduino Uno 8-bit microcontroller. The first version does
not feature any countermeasure while the other one implements Boolean
masking with the same mask on m, x and y.

We present two attacks: a m-y attack with unknown plaintext on the
naive implementation, and a m-y attack with known plaintext on the
masked implementation (variant with points of interest on m′ and y′).

Traces were acquired on a Lecroy WaveRunner oscilloscope with a
sampling rate of 5 GS/s. The 1000 traces for the first attack and the 200
traces for the second one were perfectly aligned and the points of interest
were blindly determined based on the highest peaks of the standard devi-
ation trace. Figure 2 shows the computed trace that was used for the first
attack. It clearly shows three groups of 16 peaks. The points of interest
corresponding to m and y bytes were easily identified by assuming that
the three groups correspond to manipulations of m, x and y respectively.
For the second attack the points of interest for m′ and y′ where identified
similarly based on a standard deviation trace that exhibits four groups of
peaks corresponding to successive manipulations of m, m′, x′ and y′.

We used the variance analysis method of Section 3.2 to derive α and β
coefficients at each point of interest. Based on the first part of the standard
deviation trace of Figure 2, we have estimated the standard deviation (in
leakage unit7) of the noise by visual inspection, and we choose the value
2.0 which approximately lies in the middle of the vertical range. This
procedure resulted in the same estimated value for the second attack.

6 Given two leakages `1 and `2 the centered product combining function computes
f(`1, `2) = (`1 − E(`1)) × (`2 − E(`2)). The absolute value of centered difference
combining function defined by g(`1, `2) = |(`1 −E(`1))− (`2 −E(`2))| has also been
considered but shows to be less efficient than the centered product.

7 σ of the noise on the leakage and that on the Hamming weight are equal up to the
factor |α|. It is thus expressed in leakage unit or in bit unit according to the context.



Notice that when α is derived from Eq. (5), the attacker must decide
its sign. If he does not know which sign is correct for αm nor for αy, he
must perform the attack four times, and the four sorted lists of key candi-
dates must be interleaved when trying to find to correct whole key by key
enumeration. In our case, a prior characterization of the device revealed
that α is negative for all points of interest as explained in Appendix A.

Table 1 gives the ranks of correct key bytes for the m-y attack with
unknown plaintexts on the unprotected implementation. For compari-
son purpose the attack has also been performed with the distance-based
method using Inner Product and Euclidean distances 8. Except for six
bytes, the maximum likelihood always finds the correct key in the first
10 positions, whereas the distance based attacks are quite less efficient.
Note that the standard deviation of the noise (in bit unit) was more or
less equal to σ = 0.7 for each byte. Simulations show that for this noise
level the average rank is about 58 for the Inner Product, about 29 for the
Euclidean distance, and close to 0.25 for the maximum likelihood.

Table 1: Rank of the correct key byte for a m-y attack with unknown
plaintexts on an unprotected implementation (1000 traces)

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In. Prod. 0 0 167 29 45 187 192 45 77 108 36 124 5 104 64 147
Eucl. Dist. 1 80 210 106 3 62 186 17 38 68 194 48 27 120 21 116

ML (slice) 1 1 29 0 1 46 1 0 1 32 36 19 26 67 66 28
ML (var.) 0 2 6 1 1 17 1 0 1 19 5 15 4 40 19 13

Similarly, Table 2 gives the ranks of correct key bytes for the m-y
attack with known plaintexts on the masked implementation. ML and
centered product 2nd-order CPA give similar almost perfect results. For
comparison, we also provide results for the absolute value of centered
difference combining function which show to be globally less efficient.

7 Applications and Possible Countermeasures

7.1 Applications

We now present three applications of the attacks presented in this paper.

8 The Pearson χ2 distances were impossible to compute due to an insufficient number
of traces.



Table 2: Rank of the correct key byte for a m-y attack with known plain-
texts on a masked implementation (200 traces)

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SO-CPA (abs. diff.) 0 5 1 213 0 109 0 75 0 0 0 58 0 1 3 0
SO-CPA (product) 0 0 6 64 0 16 0 0 1 0 0 2 0 0 0 0

ML (variance) 1 0 0 12 0 5 0 0 0 0 0 9 0 0 0 0

1. Our first application relates to the AES-based9 EMV session key
derivation function depicted on the left of Fig. 8. As Linge et al. al-
ready noted this scheme resists to classical side-channel analyses like
DPA or CPA. An attacker who wants to recover the master key would
target the first AES. Unfortunately, its output is not known since this
is the session key. It is thus impossible to perform an attack at the last
round. It is also impossible to attack the first round except on the first
two key bytes since the 14 remaining input bytes are constant. Linge
et al. also observed that, contrarily to DPA and CPA, joint distribu-
tion analysis can be used to recover the master key. Indeed after two
rounds all state bytes can be considered to vary uniformly. It is thus
possible to apply their attack e.g. at the third round to retrieve the
value of K3. While Linge’s attack is restricted to naive implementa-
tions, our m-y and m-x-y variants presented in Section 4.1 can do the
same on implementations protected by first-order Boolean masking.
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Fig. 8: Left: EMV session key derivation scheme. Right: ISO/IEC 9797-1
MAC scheme using 3-DES algorithm.

9 EMV scheme also allows to use the Triple DES function.



2. EMV session key derivation can also be attacked by the m-x variant.
Since this variant only recovers the Hamming weights of the key bytes,
applying it on the 16 bytes of a round key is not sufficient as this
brings an average of only about 20 bits of information. Instead we
can perform the attack at all rounds, which recovers the Hamming
weights of all 176 bytes of the expanded key. While this is much more
information about the key, one would wonder whether this information
can be efficiently exploited to retrieve the ciphering key K. It has
been shown [2] that a branch-and-bound like algorithm can recover K
quite efficiently from part of these Hamming weights. This algorithm
can also deal with some errors in the estimation of the Hamming
weights. It is thus possible to recover an AES key on a Boolean masked
implementation with no extra cost compared to a naive one.

3. In [6] Feix et al. show that a fixed key used to compute a cryptogram
with the standard scheme ISO/IEC 9797-1 MAC algorithm using 3-
DES algorithm can be compromised even if the DES itself is imple-
mented in a secure way. The right part of Fig. 8 shows how the MAC
value is computed from a k-bloc plaintext P = (P1, . . . , Pk) and a
112-bit secret key K = (K1,K2). Their attack obtains side-channel
information outside the DES function, at the protocol level. Precisely,
if an attacker fixes the first n plaintext blocks and lets Pn+1 vary,
then the fixed value of the intermediate ciphertext block Cn can be
recovered by correlating, byte per byte, the known value Pn+1 with
the leakage of Cn ⊕ Pn+1. Once Cn is known, K1 can be retrieved by
a 56-bit exhaustive search against a known plaintext/ciphertext pair.
Once K1 is known, K2 is also recovered by a 56-bit exhaustive search.

A proposed fix to this attack, which consists in applying a Boolean
masking on all plaintext blocks, has later been proven vulnerable to
2nd-order analysis [5] if the masks do not have maximal entropy.
The authors show that one can jeopardize a masked implementa-
tion in the two following cases: (i) a same 8-byte mask block M =
(R0, R1, . . . , R7) is used to mask all Pi blocks, or (ii) all Pi are masked
with different mask blocks Mi = (Ri, Ri, . . . , Ri) made of a same re-
peated random byte. They notice that the attack does not work when
all mask blocks Mi = (Ri,0, . . . , Ri,7) are different and made of differ-
ent bytes, and consequently recommend this full entropy masking.

In the case of careful Boolean masking with full entropy, we observe
that both Pn+1 and Pn+1 ⊕ Cn are still masked by the same value
Mn+1. It is then possible to mount an m-x type joint distribution



analysis10 which reveals the Hamming weights of each Cn byte. One
can obtain similar information for several plaintexts (P1, . . . , Pn) and
use them all in the exhaustive search phase. More precisely, any key
candidate that complies with the Hamming weights of the first pair
will be checked against those of the second one, and so on.

7.2 Possible Countermeasures

As stated in Sections 4.1 and 4.2, it is possible to apply the joint distribu-
tion analysis to implementations protected by first-order masking. Yet, a
requirement for all m-y, m-x-y and m-x variants is that the targeted vari-
ables are all masked with a same value. As a result, the masking scheme d
of Fig. 5 is not vulnerable to our attacks since m, x and y are all masked
by independent random values. We thus recommend this masking scheme
or any other one which would share the same property.

We also recommend any countermeasure that introduces time ran-
domization – like random delays or shuffling of independent operations –
and spoils the notion of point of interest or make them difficult to identify.

8 Conclusion

We demonstrated that the maximum likelihood method better exploits
couples of Hamming weights in Linge’s joint distribution analysis. Given
a set of observed couples of Hamming weights it computes the posterior
probability of each key candidate and selects the most probable of them.
We have studied the non trivial problem of inferring Hamming weights
from leakages and described a new method based on variance analysis that
does not require the knowledge of the key and the plaintexts/ciphertexts
(contrarily to linear regression).

We compared the ML approach to Linge’s technique based on dis-
tances between distributions and showed, by simulations and concrete
experiments, that it recovers the key value more efficiently. We derived
several variants – m-x-y, m-x and others – of the original m-y attack and
adapted the generation of theoretical models to make this attack work in
the presence of Boolean masking. We noticed a remarkable property of
the m-x attack that applies equally well on naive and masked implemen-
tations.

10 A classical second-order CPA on the pair of leakages of (Pn+1⊕Mn+1, Pn+1⊕Mn+1⊕
Cn) is not possible in this case as it would imply to correlate the combination of
these leakages with the Hamming weight of Cn which does not vary.



We proposed new applications of our attacks that can threaten the
EMV session key derivation even on protected implementations, and we
proposed implementation guidelines in order to thwart our attacks or at
least make them quite difficult.

As future works, it could be interesting to study how the ML criterion
can deal with non Gaussian noises and with non linear leakage functions.
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tographic Hardware and Embedded Systems – CHES ’99, volume 1717 of Lecture
Notes in Computer Science, pages 158–172. Springer-Verlag, 1999.

11. Neil Hanley, Michael Tunstall, and William P. Marnane. Unknown Plaintext Tem-
plate Attacks. In Heung Youl Youm and Moti Yung, editors, Workshop on Informa-
tion Security Applications – WISA ’09, volume 5932 of Lecture Notes in Computer
Science, pages 148–162. Springer, 2009.

12. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer-Verlag, 1999.

13. Roman Korkikian, Sylvain Pelissier, and David Naccache. Blind Fault Attack
against SPN Ciphers. In Assia Tria and Dooho Choi, editors, Fault Diagnosis and
Tolerance in Cryptography – FDTC ’14, pages 94–103. IEEE Computer Society
Press, 2014.

14. Hélène le Bouder. Un formalisme unifiant les attaques physiques sur circuits cryp-
tographiques et son exploitation afin de comparer et rechercher de nouvelles at-
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A Determination of the sign of α

The sign of α indicates whether the leakage function linearly increases
(α > 0) or decreases (α < 0) with the Hamming weight of the data. Ex-
periments on our device with known plaintexts and a known key demon-
strated that positive CPA peaks always occur on the descending part of
the leakage during the clock cycle, while negative peaks always occur on
its ascending part. This is clearly visible in Fig. 9 where the power con-
sumption and the CPA traces are depicted in red and green respectively.

On the same figure one can notice that the standard deviation peaks
(in blue) may occur either on positive or negative CPA peaks. Deciding



whether a standard deviation peak corresponds to a positive or negative
α value simply consists in observing whether it matches with a falling or
a raising edge of the leakage respectively. In the experiments described in
Section 6 we observed that the selected points of interest – defined by the
highest standard deviation peaks – always correspond to the ascending
part of the clock cycle leakage, which means a negative α value.
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Fig. 9: Relation between the correlation sign and the raising/falling part
of the leakage


