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Abstract. The wide number and variety of side-channel attacks against
scalar multiplication algorithms makes their security evaluations com-
plex, in particular in case of time constraints making exhaustive analyses
impossible. In this paper, we present a systematic way to evaluate the se-
curity of such implementations against horizontal attacks. As horizontal
attacks allow extracting most of the information in the leakage traces of
scalar multiplications, they are suitable to avoid risks of overestimated
security levels. For this purpose, we additionally propose to use linear
regression in order to accurately characterize the leakage function and
therefore approach worst-case security evaluations. We then show how to
apply our tools in the contexts of ECDSA and ECDH implementations,
and validate them against two targets: a Cortex-M4 and a Cortex-A8
micro-controllers.

1 Introduction

State of the art. The secure implementation of Elliptic Curve Cryptography
(ECC) is an important ingredient in modern information systems. In this pa-
per, we are concerned with side-channel attacks against scalar multiplication
implementations which have been the focus of continuous interest over the last
20 years. This literature informally divides these attacks in two main categories:
attacks using a Divide and Conquer (DC) approach and attacks using an Extend
and Prune (EP) approach – which we next survey.

Attacks that belong to the first category aim at recovering the scalar bits
independently and are therefore simple to analyze. They associate a probability
or a score to each scalar bit. The scalar is trivially recovered if all the correct
bits have the highest probability. If it is not the case, computational power can
be used to mitigate the lack of side-channel information thanks to key enumer-
ation [38, 30, 35]. If the key is beyond computational reach (e.g. beyond 260),
rank estimation (which requires the knowledge of the key and is therefore only
accessible to evaluators, not to concrete adversaries) allows estimating the com-
putational security level of a leaking implementation [39, 6, 20, 30].

Attacks using an EP approach recover the scalar bits in a recursive manner.
Recovering the i-th bit requires to first recover all the previous ones. For a n-
bit scalar, EP attacks can be seen as a probability tree with 2n leaves where
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Fig. 1: Conditional probability tree for a 3 bits scalar k = (k0, k1, k2).

each level corresponds to a different bit. Figure 1 illustrates such a probability
tree for n = 3, where each node corresponds to the conditional probability of
a bit given that the previous ones are correctly recovered. In this context, a
first attack strategy is to only look at the most probable tree path. We refer
to this method as first-order Success Rate (1-O SR). This strategy fails if not
enough side-channel information is available for at least one of the bits. In such
a case, the aforementioned enumeration algorithms cannot be applied due to the
conditional dependencies. Yet, a recent study [27] describes a method to apply
key enumeration/rank estimation on EP attacks.1

According to these two classes, we now describe the state of the art on side-
channel attacks against scalar multiplications. For each of them, we describe its
overall modus operandi, we show its associated class and we finally exhibit a
countermeasure (if existing).

The first attacks discovered on scalar multiplication, such as timing and
Simple Power Analysis [25, 26] (SPA), aimed at finding different patterns that
depend on a scalar bit value. Such differences occur if the scalar multiplication
or the elliptic curve operations are irregular, which makes the timing pattern of
the leaking implementations dependent on all the scalar bits. As a consequence,
an adversary has to recover the scalar in a recursive manner and these attacks

1 Instead of only looking at the most probable path, it assumes that the tree can be
divided into three parts. The first part corresponds to the bits which the adversary
is certain to have recovered correctly. The second part contains the (computationally
feasible) paths on which the adversary has partial information. The final part is the
exhaustive remaining part of the tree on which the adversary has no information.
Enumeration is done on this sub-tree using a Pollard-like method.



belong to the EP class. Using a regular scalar multiplication as further described
in Section 2 naturally thwarts them.

Later on, (vertical) Differential Power Analysis (DPA) [26] and Correlation
Power Analysis (CPA) [7] were applied to scalar multiplications [13, 32]. Such
methods aim at recovering the scalar bits iteratively using several side-channel
leakages traces of a scalar multiplication with a fixed scalar and several known in-
puts. Thanks to the inputs knowledge, the scalar bits are recovered by guessing
one internal value that depends on the input and the guessed bits. Indepen-
dently of the distinguisher (e.g. correlation, difference of means,...), we refer to
all attacks using this framework as DPA. Here again, guessing the internal value
associated with a scalar bit requires that all the previous bits have been cor-
rectly recovered. Hence, DPA also belongs to the EP class. Since this method
requires leakages on several executions with a fixed scalar, scalar randomization
techniques [13, 12] are efficient countermeasures. Protocols using a scalar nonce
such as ECDSA [36] are naturally protected against DPA.

Next, Template Attacks (TA) [8] were introduced as a powerful tool to ex-
tract all the information available in some leakage traces. In the context of scalar
multiplication, it has been first introduced against ECDSA [31]. From the prior
knowledge of the input, the attack computes 2d templates in order to recover the
first d bits of the scalar nonce. The actual bit of the nonce is then found with tem-
plates matching. The secret key is finally recovered using lattice techniques [34,
5] from several partially known nonces and their associated signatures. Interest-
ingly, since such TA do not recover the whole scalar, they neither belong to the
EP nor DC classes.

Alternatively, Online Template Attacks (OTA) [2, 16] were introduced to
recover the full scalar. This method interleaves the templates building and the
attack phases, thus requiring more online access to the target device. As the
iterative template building requires the knowledge of the current internal state
which depends on the previous bits, OTA belongs to the EP class. Since both TA
and OTA require the knowledge of the input, point randomization techniques [13,
23] are effective. Using the fact that (X,Y, Z) = (λ2X,λ3Y, λZ) in Jacobian
coordinates (see section 2), an option to randomize the input is to change its
coordinates at the beginning of each scalar multiplication using a random λ.

Horizontal Differential Power Attacks (HDPA) [11, 3] are another powerful
alternative to TA. From the posterior knowledge of the input, the scalar bits
are recovered by guessing several internal values that depend on both the input
and the guessed bits (instead of only one in the case of DPA). As guessing the
internal values associated with a particular bit requires the knowledge of the
previous ones, HDPA belongs to the EP class. As for TA, point randomization
is effective against HDPA.

Finally, Horizontal Collision Attacks (HCA) [40, 21, 14, 3, 4, 10] have been
proposed in order to bypass the point randomization countermeasures. These at-
tacks require the scalar multiplication to exhibit different operand input/output
collisions that depend on the scalar bit values. Being able to detect such collisions
from a trace allows recovering the scalar bits. Up to our knowledge, only one



collision attack defeats the Montgomery scalar multiplication implemented as
further described in Section 2.2 by Algorithm 1 [21]. The collision is able to find
whether two consecutive scalar bits are the same or not. Given this information,
the scalar is finally recovered using a modified version of the Baby-Step/Giant-
Step algorithm. If they target a regular scalar multiplication, HCA belong to the
DC class, since the position of the collisions in the leakage traces depends only
on the current scalar bit value in this case. In case of irregular algorithms, this
position depends on the previous bits and HCA then belong to the EP class. In
general, countermeasures aiming at increasing the noise level (e.g. shuffling, ran-
dom delays, ...) are the only effective ones against the attack presented in [21].
In this respect, one drawback of these attacks (from the adversary’s viewpoint)
is that they only exploit a very small part of the available information compared
to HDPA and TA (which implies that the amount of noise needed to hide the
collisions is more limited).

We additionally mention that all the aforementioned attacks (except the TA)
ignore the leakages due to the direct manipulation of the scalar bits during the
scalar multiplication (such as discussed in [22, 9, 33]). Exploiting these leakages
is an orthogonal concern to this study and is therefore out of the scope of our
investigations.

Our contribution. Based on this broad state of the art, our goal is to fur-
ther investigate and systematize the security evaluation of scalar multiplication
implementations against HDPA. Our motivations in this context are threefold:

First of all, such attacks can potentially exploit most of the informative sam-
ples provided by a leaking implementation, and are therefore a natural candidate
for approaching their worst-case security level, which we aim for.

Second, most of the HDPA literature is based on the correlation distinguisher
and assumes an a priori leakage model. Yet, given our goal to approach the
worst-case security level of scalar multiplication implementations, it is natural
to study efficient solutions allowing a better characterization of the leakages. In
view of its broad applicability in the context of block cipher implementations,
linear regression appears as an excellent candidate for this purpose [37], and we
therefore study its applicability in our asymmetric setting.

Third, and quite importantly, only few practical experiments have been re-
ported on the application of HDPA against actual implementations of scalar
multiplication algorithms. We contribute to this issue by providing the results
of experiments against two (more or less challenging) targets: the first one is a
low frequency ARM Cortex M4 micro-controller (without interrupts), the second
one runs a Linux operating system in background and runs at high frequency.
While successful attacks against this second target have been published for block
ciphers [1, 29], no public report discusses their vulnerabilities in the ECC case.
We also illustrate the application of framework to both ECDH and ECDSA.

The rest of the paper is organized as followed. Section 2 introduces the nota-
tions and the necessary background on elliptic curve cryptosystems and imple-
mentations. Section 3 describes the generic view we consider for regular scalar
multiplication along with the systematic security evaluation method. Finally,



Section 4 and Section 5 respectively show the experimental results for the ap-
plication of this framework against our two targets.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We use sans serif font for functions (e.g. F) and calligraphic fonts for sets (e.g.
A). We use capital bold letters for matrices (e.g. M) and small bold caps for
vectors (e.g. v). We denote the conditional probability of a random variable A
given B with Pr [A|B].

2.2 Elliptic Curves Cryptography (ECC)

Let Fp be a finite field with a characteristic bigger than 3. We define by E(Fp) the
set of points (x, y) ∈ F2

p (called affine coordinates) that satisfy the Weierstrass
equation y2 = x3+ax+b, (a, b) ∈ F2

p with discriminant ∆ = −16(4a3+27b2) 6= 0.
E(Fp) along with a point at infinity which form an Abelian additive group. The
addition over E(Fp) requires field additions, subtractions, multiplications and
one inversion. We denote by + the addition of two points P and Q, and by
[k]P the k-times repeated additions P + P + ... + P with k ∈ N (called scalar
multiplication).

Scalar multiplication. Most elliptic curve cryptosystems require to compute
a scalar multiplication [k]P from a number k ∈ [1, |<P>| − 1] and a curve point
P , where |<P>| is the order of the subgroup generated by P . In each case, k
is a sensitive variable unknown from the attacker which can be a private key
(e.g. for ECDH key exchange) or directly linked to it (e.g. for ECDSA). As
a result, the scalar multiplication represents an important source of potential
side-channel leakages. In order to thwart the most basic side-channel attacks,
scalar multiplication algorithms avoid conditional branching and have a regular
execution independently of the bits of k. In the following we will consider the
(left to right) Montgomery ladder [24] as described by Algorithm 1. We now
view the n-bit scalar as a binary vector k = (k0, ..., kn−1) (where k0 is the most
significant bit).

Jacobian Coordinates In general, field inversions are costly compared to ad-
ditions, subtractions and multiplications. Moving from affine coordinates to Ja-
cobian coordinates allows avoiding the inversion when performing an addition or
a doubling over E(Fp). The Jacobian plan J over F3

p is defined as {(X,Y, Z) ∈ F3
p

s.t. ∀λ ∈ Fp, (X,Y, Z) = (λ2X,λ3Y, λZ)}. The set of points EJ (Fp) defined by
the equation Y 2 = X3 + aXZ4 + bZ6 defines an elliptic curve over the Jaco-
bian plan. The Jacobian point (X,Y, Z), Z 6= 0 corresponds to the affine point



Algorithm 1 Montgomery ladder.

Input: P,k = (k0, ..., kn−1)
Output: [k]P

R0 ← O
R1 ← P
for i = 0 to n− 1 do

R1−ki ← R1−ki + Rki

Rki ← [2]Rki

end for
return R0

(X/Z2, Y/Z3). The point at infinity in affine coordinates corresponds to the
point (λ2, λ3, 0) in Jacobian coordinates.

Given two points P and Q in EJ (Fp) with P 6= ±Q, the formulas for the
addition P+Q and doubling P+P are respectively given by Algorithms 2 and 3.
As it is important for the rest of the paper, we stress the fact that an addition
over EJ (Fp) (resp. a doubling) requires 16 field multiplications (resp. 10).

Algorithm 2 Addition over EJ (Fp).
Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P 6= ±Q
Output: P + Q = (X3, Y3, Z3)

Z1 ← Z2
1 ,Z2 ← Z2

2 , U1 ← X1Z2, U2 ← X2Z1, H ← U1 − U2, S1 ← Y1Z2Z2, S2 ←
Y2Z1Z1, R← S1 − S2,H← H2, G← HH,V ← U1H
X3 ← R2 + G− 2V
Y3 ← R(V −X3)− S1G
Z3 ← Z1Z2H
return (X3, Y3, Z3)

Algorithm 3 Doubling over EJ (Fp).
Input: P = (X1, Y1, Z1)
Output: P + P = (X2, Y2, Z2)

X← X2
1 ,Y ← Y 2

1 ,Z← Z2
1 ,M ← 3X + aZ2, T ← Y2, S ← 4X1Y

X2 ←M2 − 2S
Y2 ←M(S −X2)− 8T
Z2 ← 2Y1Z1

return (X2, Y2, Z2)

Note that the Montgomery ladder algorithm is typically reflective of the
state of the art implementations of ECC secure against SPA. In the following, we
further considered implementations protected with scalar randomization in order



to avoid DPA attacks. So our focus is on single-trace attacks which naturally
goes with our worst-case information extraction motivation.

3 Systematic approach

In this section we describe a systematic method for the worst-case security anal-
ysis of scalar multiplications. We first give an abstract view of regular scalar
multiplications. We then use this abstraction to specify the amount of informa-
tive points in our leakage traces. We finally show how these informative points
can be extracted and combined to attack the scalar bits, and show how this
method applies on two ECC primitives, namely ECDH and ECDSA.

3.1 Generic scalar multiplication architecture

As explained in Section 2.2, elliptic curve cryptosystems require to compute a
scalar multiplication. Section 1 also discussed the regularity requirements of the
scalar multiplication implementations, which implies that they can be described
as a fixed and predictable sequence of operations. In this context, all operations
that affect the internal state depending on the scalar bit value contain sensitive
information. In order to quantify this information, we will next describe the
scalar multiplication based on different levels, depicted in Figure 2. At the top
level, a regular binary scalar multiplication is an iterative processing of the scalar
bits. Each bit handling is itself composed of a fixed number of additions and
doublings. Then, each addition (resp. doubling) contains a fixed number of field
operations (such as field additions, subtractions and multiplications). Finally,
each field operation is composed of a fixed number of register operations (such
as register additions, subtractions and multiplications). As a result, and for an
n-bit scalar, the sequence of register operations that can be exploited by an
adversary can be divided into n parts that depend on the scalar bit index.
Independently of the kind of operation, we assume that each part contains N
register operations. We therefore have that a regular binary scalar multiplication
leads to n sequences of N sensitive operations of which the results are stored in
registers. We denote as ri = (rji ), j ∈ [0, N −1] the N intermediate computation
results occurring during the manipulation of the i-th scalar bit.2 Eventually, each
of these computations will lead to side-channel leakages denoted as li = (lji ),
j ∈ [0, N − 1].

3.2 Information extraction

From the previous abstract view of the scalar multiplication and its associated
leakages, the next step is to extract the information. Given a leakage l on a regis-
ter r, we compute the probability Pr [l|r = x] , x ∈ [0, 2|r| − 1] that the observed

2 Note that this is an abstract view. In practice, an operation can have more than one
register input/output. In such case, one can count this operation as corresponding
to several registers or only use one of them.
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Fig. 2: Level view of a regular scalar multiplication. First level (top): scalar
bit handling. Second: elliptic curve arithmetic. Third: Field arithmetic. Fourth:
register operations. Fifth: leakages on register operations

leakage comes from the manipulation of the value x by r (where |r| denotes
the size of the register in bits). While using templates would be optimal, their
computational complexity is exponential in |r| as it requires to estimate 2|r|

Probability Density Functions (PDF) per register (e.g. 2|r| means and variances
for Gaussian templates). Therefore, and as a more efficient alternative, we use
linear regression [37] with a linear basis containing the |r| bits of the registers.
The latter decreases the profiling complexity from O(2|r|) to O(|r|), which is
particularly interesting in the case of a r = 32-bit architecture (as we will inves-
tigate). Yet, this admittedly comes at the cost of a potential information loss in
case the leakage function has informative non-linear terms (which we will briefly
discuss in Sections 4 and 5).

We denote by dkei the first i bits of k. We denote by rji (P, dkei) the internal

value processed by the register operation rji when the input point is P and

the first i bits of k are equal to dkei. Similarly, we denote by lji (P, dkei) the
leakage corresponding to its manipulation. Using Nprof leakages from random
inputs (P q) and random scalars (kq), q ∈ [0, Nprof −1], we compute the Nprof ×
33 matrix A where the q-th line is the binary representation of rji (P

q, dkqei)
appended with a constant 1. From A and the vector lji = (lji (P

q, dkqei)), q ∈
[0, Nprof − 1] containing the Nprof leakages, we compute the linear basis b that

characterizes lji using Equation 1 (where AT denotes the transpose of A):

b = (ATA)−1AT lji . (1)

Assuming that the noise follows a Gaussian distribution, the variance σ2 is
computed using a second set of traces (in order to avoid overfitting) as shown



by Equation 2. Note that we assume independence between the noise and the
value processed by the register [28].

σ2 = (lji −Ab)T · (lji −Ab). (2)

From b and σ2, the probability that a leakage lji comes from the manipulation

of x by rji is then given by Equation 3, where Nµ,σ2(l) denotes the evaluation in
l of the normal density function with mean µ and variance σ2, and (x)2 denotes
the binary decomposition of x appended with 1:

Pr
[
lji

∣∣∣ x] = N(x)2·b,σ2(lji ). (3)

3.3 Information combination

Now that we are able to identify and extract the information, we aim at com-
bining it to attack the scalar bits. As shown in section 2, HDPA belong to the
EP class. In order to exploit the information on a specific bit, a hypothesis on
the values of the previous ones must be made.

From the knowledge of input P and the knowledge of the first i − 1 bits,
the likelihood that the bit i is equal to 1 (resp. 0) is computed by guessing all
the register values rji (P, dkei−1||1) (resp. rji (P, dkei−1||0) and combining their
likelihoods. Given the leakages li on the i-th bit, Equation 4 gives the probability
that the leakages come from the first i − 1 bits being equal to dkei−1 and the
i-th bit being equal to v ∈ {0, 1} (where || denotes the concatenation):

Pr
[
li

∣∣∣ dkei = dkei−1||v
]

=

N−1∏
j=0

Pr
[
lji

∣∣∣ rji (P, dkei−1||v)
]
· (4)

This formula assumes that the leakages lji are independent (which simplifies
the profiling phase as we only consider univariate samples). While this assump-
tion may not be perfectly correct, we verified experimentally that considering
multivariate samples did not improve the efficiency of our attacks in the next
section, and therefore assume it to be sufficiently correct for simplicity. Extend-
ing this framework to attack k by chunks of d bits is straightforward. Given a d
bits hypothesis vector v, Equation 5 extends the previous equation to attack d
bits at a time, where v|j denotes the j first elements of v:

Pr
[
li, ..., li+d−1

∣∣∣ dkei+d−1 = dkei−1||v
]

=

d−1∏
j=0

Pr
[
li+j

∣∣∣ dkei−1||v|j] · (5)

When there is no ambiguity, we will refer to Pr
[
li, ..., li+d−1

∣∣∣ dkei+d−1 = dkei−1||v
]

as Prdkei−1||v for readability reasons.



3.4 ECDH vs. ECDSA

In the rest of the paper we always assume that k is attacked by chunks of d bits.
For simplicity, we assume that nd = n

d ∈ N and we rewrite k = (k0, ...,knd−1)
being viewed as binary vectors of d elements.

ECDH. In order to attack ECDH, the attacker has to recover the full scalar
in one trace. He starts by attacking the first d bits using Equation 5. Us-
ing a leakage from a known input, he computes the likelihoods Prv for all
the 2d scalar hypotheses v ∈ {0, 1}d. He then selects the hypothesis k∗0 =
argmaxv(Prv) that maximizes the likelihood as being the correct guess. The
following scalar guesses are selected iteratively according the previous results
as k∗i = argmaxv(Prk∗

0 ||...||k∗
i−1||v), with v ∈ {0, 1}d. The iterative process ends

when the adversary has obtained a full scalar hypothesis k∗ = (k∗0, ...,k
∗
nd−1).

The attack trivially succeeds if k∗ = k, which corresponds to a 1-O SR. If
this is not the case, one can use computational power to mitigate the lack of
information by enumerating through the other paths [27]. In this study we only
look at the 1-O SR as our focus is on optimal information extraction (rather
than exploitation).

Eventually, the chunk size d is a parameter chosen by the adversary. It in-
creases the attack complexity exponentially in d, but allows increasing linearly
the amount of leakage samples exploited by the adversary.

ECDSA. As for ECDH, a potential strategy to attack the ECDSA scalar nonce
is to recover all its bits. Another option is to use the algebraic relation between
the nonce and the secret key. Using lattice techniques, one can attack the secret
key by recovering partial on the first d bits of several nonces. This strategy fails
if at least one of the nonces’ partial information is not recovered properly. As
a consequence, the attacker has to make sure that the d-bit partial information
of each nonce is correct. As the attack on the first d bits does not suffer from
the conditional dependencies, one can turn the previously estimated likelihoods
into true probabilities by applying Bayes’ theorem, as in Equation 6. From these
probabilities, the adversary decides to ignore all the results having a probability
lower than a given threshold to maximize the success of the lattice attack.

Pr
[
k0 = v

∣∣∣ l0, ..., ld−1] =
Prv∑

v∗∈{0,1}d Prv∗
· (6)

To give more insight on the side-channel requirements of a lattice-based at-
tack against ECDSA, Figure 3 shows how many nonces are needed (y axis) in
function of the partial information d (x axis). As we can see, the number of
required nonces decreases exponentially when d increases. It confirms the need
of being able to extract most of the information and to discard the wrong results
in a meaningful way. We use the fplll [15] library v4.0.4 with block sizes of 20
and 30 (only for 4 bits leaked case) to perform the experiments.
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Fig. 3: Complexity of the lattice-based attack against ECDSA. Left: number of
nonces (y axis) needed when having d bits of partial information per nonce (x
axis).

4 Experimental results on Cortex-M4

In this section we apply previous systematic approach to attack ECC imple-
mentations in a 32-bit Cortex-M4 micro-controller. We first describe our imple-
mentation, device and the measurement setup. We then follow our evaluation
framework step by step and discuss experimental results.

4.1 Target implementation

We implemented the finite field and elliptic curve arithmetic in assembly on
both chips. We chose the NIST P-256 curve [36]. Our attack framework is inde-
pendent of the choice of curve, as its only requirement is the regularity of the
implementation. We thus focused on achieving constant time without optimiza-
tions. We implemented the Montgomery ladder as described in Section 2.2 using
Jacobian coordinates. We used the addition and doubling formulas from Algo-
rithm 2 and 3. The whole scalar multiplication runs in approximately 17,000,000
clock cycles.

Field additions and subtractions are implemented in a straightforward man-
ner using carry additions and subtractions. Field multiplications are done using
the Long Integer Multiplication (LIM) followed by a modular reduction. More
details on the implementation can be found in eprint version of the paper, such
as a description of the assembly long integer multiplication.



4.2 Device and setup

Our first target is a 32-bit ARM Cortex-M4 micro-controller from the atmel
SAM4C-EK evaluation kit.3 It proceeds most instructions in constant time and
does not have any programs running in parallel that could disturb the signal.
Moreover, this micro-controller runs at 100 MHz which makes it a relatively easy
target for power acquisition.

We monitored the voltage variation using a 4.7 Ω resistor inserted in the
supply circuit of the chip. We performed the trace acquisition using a Lecroy
WaveRunner HRO 66 ZI oscilloscope running at 200 megasamples per second.
For each scalar multiplication execution, we triggered the measurement at the
beginning of the execution and recorded the processing of the first 123 bits of
the scalar. Each trace contains 40,000,000 time samples and weighs 320,000,000
mega-bytes (written in double precision format).

Since the device does not suffer from any interruptions, the power traces are
directly used without any preprocessing.

4.3 Identifying and extracting the information

Among all the register operations ri available for a given bit, we target only the
higher 32-bit result of each umull and umaal instructions. This choice allows our
attack to remain implementation-independent (since those intermediate results
will indeed appear in most implementations). As shown by the doubling and
addition formulas in Section 2.2, an addition plus a doubling consist in 25 field
multiplications (the curve uses a = −3, thus the multiplication by a is done
using subtractions). Each field multiplication itself consists in 64 32-bits register
multiplications. As a result, we attack the implementation using N = 25× 64 =
1, 600 leakage samples per scalar bit.

In order to efficiently identify the time positions of the corresponding registers
rji , we use the unprofiled correlation and partial SNR described below. They
exploit a set of Npoi = 8, 000 traces l acquired using random known inputs (P q)
and scalars (kq), q ∈ [0, Npoi−1]. We denote by l[t] vector of size Npoi containing
the Npoi leakages of the t-th time sample of each trace.

Unprofiled correlation. Given the Npoi internal values rji = rji (P
q, dkqei) and

a leakage model M, we apply the Pearson’s correlation ρ on each time sample.
That is, we compute ρ(M(rji ), l[t]), t ∈ [0; 40, 000, 000]. We used the Hamming
weight function for M. The time sample showing the highest correlation is se-
lected as the time sample of rji . The disadvantage of using unprofilied correlation
for the POI research is the requirement of a leakage model. However, it allows
using the information from the full 32 bits of the internal values rji .

3 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B
cortex m4 r0p0 trm.pdf

http://www.atmel.com/tools/SAM4C-EK.aspx



Partial Signal to Noise Ratio (SNR). Computing the standard SNR is not
suitable to identify a specific register as any bijective relation between two reg-
isters will make them impossible to distinguish. Moreover, a 32-bit SNR would
require more than 232 leakages samples in the case of our 32-bit devices. Using
partial SNR allows avoiding these issues at the cost of a controlled information
lost. For this purpose, the 32-bit values of rji are first truncated to x bits. Each
trace is then labeled according to its truncated value and split into 2x sets Si.
For each time sample, the partial SNR is finally computed as var(mean(Si))

mean(var(Si)) where

var and mean respectively denote the sample variance and mean functions. The
time sample showing the highest SNR ratio is selected as the time sample of
rji . While partial SNR does not rely on a leakage model, it suffers from algo-
rithmic noise because of the truncation process (which reduces the information
exploited). That is, since the remaining 32 − x bits are not taken into account
when creating the sets Si, the actual signal is reduced. However, ignoring the
value of this remaining bits allows avoiding the bijection issue. In order to illus-
trate the bijection issue, one can take the AES as an example. Computing the
full SNR related to the plaintext m XORed with the key k doesn’t allow dif-
ferentiating whether we are before or after the S-box computation. This means
an SNR spike will be exhibited for both x ⊕ k and S(m ⊕ k), where S denotes
the AES S-box. However, computing a partial SNR on e.g. only 4 bits of x⊕ k
instead of the 8 bits will break the bijection between the input and the output
of the S-Box. As a result, it will allow discriminating between the input and the
output of the S-box in the partial SNR spike.

Optimizations. Applying one of these two methods on the full trace for all
rji ’s is very time consuming as we have 123×1, 600 registers to characterize over
40,000,000 time samples. However, we know that the time order of the register
is (r00, ..., r

N−1
0 , r01, ...r

j
i , ...r

N−1
n−1 ). Using that knowledge, we can first search r00

among the first W time samples. Using correlation, we select r00’s position by
computing a p-value with a threshold of 5 [17]. If r00 has not been found, we
move the window to the next W time samples and repeat this process until r00 is
found. Once this temporal location is found, we search r10 similarly, by setting the
initial offset of the window at r00. This process is iterated until all the registers
are found. We set the window value W to 20,000, chosen to be slightly higher
than 40,000,000

123×25 (the time samples divided by the number of field multiplications).

Extraction. Once the temporal locations of all the registers are found, we
apply linear regression on each of them to extract the information as described
in section 3.2, using a set of Nprof = 10, 000 traces. Note that for this simple
device, the leakage model was found to be close to Hamming weight and the
linear leakage model is not expected to cause a significant information loss.
Yet, the formal analysis of this statement with leakage certification tools is an
interesting scope for further research [19, 18].



4.4 Information combination

Using the maximum likelihood approach of Section 3.3, we attack the first 123
bits of the Cortex-M4 implementation with the 1-O SR described in Section 3.4.
We used a new set of traces that has not been used to identify nor to extract the
information for this purpose. As a first experiment, we compute the success rate
of recovering the 123 bits using all the information. Secondly, we simulate an
implementation with less information by reducing the number N of register per
scalar bit. In that case, we study how using computational power by increasing
the chunk’s size d can mitigate the lack of information. Finally, we study how
the number N of informative registers impacts the success rate of the attack.

Our first experiment is to look at the success rate using all the information.
In that case we have N = 1, 600 registers per scalar bit. We achieved a success
rate of 0.85 using a chunk’s size of 1 bit. It shows that such a device would
require much more algorithmic noise to be protected against worst case attacks
(e.g. using random delays, shuffling...).

As using all the information allows recovering all the 123 bits with a high
success rate, we next simulate a less informative implementation by using N =
600. In such a case, increasing the chunk size d is an option to increase success
rate. As stated in Section 3.4, the number of points of interest increases linearly
with the size of d at the cost of an exponential time complexity increase. Figure 4
shows the impact of the chunk size on the success rate. As we can see, the success
rate increases linearly with d. We also see that the slope of the curve is lower
than 1. This is explained by the fact that the number of points of interest for
the bits of indexes (0, 1, ..., d−1) of each chunk is equal to (dN, (d−1)N, ..., N).
That is, only the first chunk’s bit fully benefits from increasing d, while the last
one does not get any improvement.

As a last experiment, we study the impact of the number of target register N
on the success rate. Figure 5 shows the evolution of the success rate in function
of N for different values of d. Independently of d, the success rate increases
exponentially with N .

From these experiments, we conclude that as general in side-channel analysis,
the information extraction phase of the attacks is the most critical one, since it
is the one causing the exponential security loss. Computational power can then
be used as a useful (sometimes necessary) complementary ingredient to mitigate
a possible lack of information.

5 Experimental results on Cortex-A8

In this section we show the attack results on the Cortex-A8 micro-controller.
As in the previous section, we first describe the device and measurement setup.
We then show the application of the framework against this target along with
the results. The scalar multiplication is implemented the same way in Jacobian
coordinates as described in Section 4.1.
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Fig. 4: first-order success rate of the 123-bit recovery on the Cortex-M4 depend-
ing on the chunk size d for different N = 600.

5.1 Device and setup

Our second target is a 32-bit AM335x 1GHz ARM Cortex-A8 linux-based single
board computer.4 As opposed to the previous target, this one is way more chal-
lenging [1, 29]. As it is running a full version of Ubuntu 14.04 and more than 100
processes are running in the background while we execute our assembly Mont-
gomery ladder scalar multiplication implementation via SSH from the host PC.
The CPU has instruction cache and 13-stage ARM pipeline, all those factors
introduce a lot of noise and interruptions. Moreover, the high (1 GHz) frequency
also add more obstacles in terms of side channel measurements.

We measured the EM emission using a Langer HV100-27 magnetic near field
probe. As in [1, 29], we got the best EM signal when the probe is around the
capacitor C65. During the measurements, we set the CPU frequency to the
highest 1 GHz and the CPU frequency governor to ‘Performance’. We measured
the EM traces using a Lecroy WaveRunner 620Zi oscilloscope at a sampling
rate of 10 GS/s. For each scalar multiplication execution, we also triggered the
measurement at the beginning of the execution and recorded the processing of the
first 4 bits of the scalar, so that each trace contains 2,000,000 sample points. As
mentioned in [1, 29], the traces contain long interruptions that randomly appear
due to the Linux system. We eliminated these interruptions by running the
program with the “nohup” command via SSH without any elevating techniques.
While this technique removes the big interruptions, the traces still contain many
smaller ones.

4 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K
cortex a8 r3p2 trm.pdf

https://beagleboard.org/black
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Fig. 5: first-order success rate of the 123-bit recovery on the Cortex-M4 depend-
ing on the number of poi N for different values of d.

5.2 Preprocessing

In order to deal with the small interruptions, the traces have to be preprocessed.
The overall synchronization iterates over three steps. The first one consists in
synchronizing the traces around a particular field multiplication. The second
step is to cut the traces around the synchronized area into slices. Finally, each
slice is added to the set of preprocessed traces by concatenation. These three
steps are repeated for each field multiplication.

Synchronization. While the last two steps of the preprocessing are straightfor-
ward, the synchronization part deserves more insight. We use a correlation-based
alignment method to synchronize the EM traces per field multiplication opera-
tion. This method works in three steps that are depicted in Figure 6. The left
(resp. right) part of the figure shows the traces before (resp. after) synchroniza-
tion.

– Firstly, a searching interval A that contains the operation to be synchronized
is selected among all the traces. This is shown by the red window.

– Secondly, a second smaller reference interval Bq specific to each trace q is
chosen, shown by the yellow window on the three traces in Figure 6(a).

– For each trace, we finally find the portion to be synchronized by using the
second window Bq to search over the whole interval A. The right portion
is selected as the one having the maximum correlation with the reference
interval. If the correlation is lower than a given threshold (arbitrarily chosen
by the attacker), the trace is assumed not good enough and is thus discarded.

Once the traces are synchronized, we identify and extract the information the
same way as in the previous section on the Cortex-M4 with a different number



(a) Before alignment (b) After alignment

Fig. 6: Three EM traces before and after alignment

of traces. We used Npoi = Nprof = 100, 000 traces to both identify and extract
the information. As will be clear next, a linear leakage model was sufficient to
obtain positive results even for this more challenging device. However, as in the
previous section, analyzing the quality of this model with leakage certification
tools would certainly be worth further investigations.

5.3 Information combination

As for the experiment on the Cortex-M4, we use the maximum likelihood ap-
proach of Section 3.3 to attack the first 4 bits of the Cortex-A8 implementation.
This time, we assume we are attacking an ECDSA secret key and use the prob-
abilistic approach of Section 3.4 on ECDSA. We used a new set of 2,200 traces
that has not been used to identify nor to extract the information.

Our first experiment simply looks at the 1-O SR. In that case, we recovered
the 4 bits with a success rate of 0.8155. As shown by Figure 3, we know that
140 ECDSA nonces are required to recover the secret key with 4 bits of partial
information. As no error on the partial information is tolerated, the success rate
of the key recovery is equal to 0.8155140 ≈ 3.9 · 10−13. This confirms the strong
need of a sound way to discriminate the wrong results.

Motivated by this first experiment, we next studied how we can automati-
cally remove the wrong attack results. This is achieved by setting a probability
threshold under which some attack traces will be discarded. That is, an attack
trace is considered as invalid if the probability given by formula 6 for the most
likely partial nonce after the attack is below a given threshold. Intuitively, the
higher the threshold is, the more confident we are in having a successful partial
nonce recovery, which comes at the cost of increasing the number of discarded
attack traces. Table 1 shows how the success rate evolves in function of the prob-
ability threshold over the 2,200 attack traces. As we can see, using a threshold
of 0.5 does not discard much results and thus does not increase the probability
to recover the ECDSA secret key. However, the first-order success rate increases



when setting a higher probability threshold. We finally achieve a perfect success
rate using a threshold of 0.9999999999. Using this value, 1,958 of the attack
results were discarded, thus keeping 242 of them. As only 140 correct scalars are
needed to recover the ECDSA secret key, we achieve a success rate of 1.

Threshold Scalar 1-O SR Key 1-O SR # discarded result # remaining result

0.5 0.8174349612 3.9 · 10−13 9 2,191

0.75 0.8462296698 5.5 · 10−13 171 2,029

0.9 0.8680042239 2.5 · 10−9 306 1,894

0.99 0.9025578563 5.8 · 10−7 558 1,642

0.9999 0.956596 0.002 1,025 1,175

0.99999 0.980366 0.062 1,235 965

0.9999999 0.991708 0.312 1,597 613

0.999999999 0.9942363112 0.445 1,853 347

0.9999999999 1 1 1,958 242

Table 1: Evolution of the ECDSA scalar and key recovery success rate in function
of the threshold.

6 Conclusion

This paper provides a generic evaluation framework for HDPA against scalar
multiplication algorithms, instantiates it with state of the art tools for prepro-
cessing, POI detection, profiling and information extraction, and applies it to
concrete implementations reflective of the variety of targets that can be used
for embedded cryptographic applications. In view of the limited experimental
reports available on the topic, we hope these implementation and systematiza-
tion efforts can be used to clarify the practicality of such advanced attacks in
practice, even against challenging targets running at high clock frequencies, and
therefore argue for their integration as a part of current certification practices.

From a designer’s point of view, our results also highlight that implementa-
tions of scalar multiplications on commercial platforms with scalar randomiza-
tion activated are generally at risk, in view of the huge amount of informative
samples such implementations provide. Straightforward solutions to improve this
situation include performance optimizations (since implementations with less cy-
cles inevitably leak less to the horizontal adversary) and the addition of noise.
Yet, our analysis of an ARM Cortex-A8 running at 1 GHz (a presumably noisy
target) suggests that this may not be enough. In this respect, the systematic



implementation of point randomization seems strictly necessary to reach high
security levels, the evaluation of which (with a systematic evaluation framework
as we described in this paper) is an interesting scope for further research, in
order to better assess its worst-case security.
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