
PRESENT Runs Fast:

Efficient and Secure Implementation in Software

Tiago B. S. Reis1, Diego F. Aranha1, and Julio López1

Institute of Computing – University of Campinas

Abstract. The PRESENT block cipher was one of the first hardware-
oriented proposals for implementation in extremely resource-constrained
environments. Its design is based on 4-bit S-boxes and a 64-bit permu-
tation, a far from optimal choice to achieve good performance in soft-
ware. As a result, most software implementations require large lookup
tables in order to meet efficiency goals. In this paper, we describe a
new portable and efficient software implementation of PRESENT, fully
protected against timing attacks. Our implementation uses a novel de-
composition of the permutation layer, and bitsliced computation of the
S-boxes using optimized Boolean formulas, not requiring lookup tables.
The implementations are evaluated in embedded ARM CPUs ranging
from microcontrollers to full-featured processors equipped with vector
instructions. Timings for our software implementation show a significant
performance improvement compared to the numbers from the FELICS
benchmarking framework. In particular, encrypting 128 bits using CTR
mode takes about 2100 cycles on a Cortex-M3, improving on the best
Assembly implementation in FELICS by a factor of 8. Additionally, we
present the fastest masked implementation of PRESENT for protection
against timing and other side-channel attacks in the scenario we consider,
improving on related work by 15%. Hence, we conclude that PRESENT
can be remarkably efficient in software if implemented with our tech-
niques, and even compete with a software implementation of AES in
terms of latency while offering a much smaller code footprint.

1 Introduction

The need for secure and efficient implementations of cryptography for embedded
systems has been an active area of research since at least the birth of public-key
cryptography. While considerable progress has been made over the last years,
with development of many cryptographic engineering techniques for optimizing
and protecting implementations of both symmetric [24] and asymmetric algo-
rithms [9], the emergence of the Internet of Things (IoT) brings new challenges.
The concept assumes an extraordinary amount of devices connected to the Inter-
net and among themselves in local networks. Devices range from simple radio-
frequency identification (RFID) tags to complex gadgets like smartwatches, home
appliances and smartphones; and fulfill a wide variety of roles, from the automa-
tion of simple processes to critical tasks such as traffic control and environmental
surveillance [5].



In a certain sense, the IoT is already here, as the number of devices storing
and exchanging sensitive data rapidly multiplies. Realizing the scale in which
security issues arise in this scenario poses challenges in terms of software se-
curity, interoperable authentication mechanisms, cryptographic algorithms and
protocols. The possible proliferation of weak proprietary standards is particu-
larly worrying, aggravated by the fact that IoT devices are many times physically
exposed or widely accessible via the network, which opens up new possibilities
of attacks making use of side-channel leakage. These leaks occur through op-
erational aspects of a concrete realization of the cryptographic algorithm, such
as the execution time of a program [25, 14]. Consequently, securely implement-
ing cryptographic algorithms in typical IoT devices remains a relevant research
problem for the next few years, which is further complicated by the limited avail-
ability of resources such as RAM and computational power in these devices.

In order to fulfill the need for cryptographic implementations tailored for
resource-constrained embedded devices, many different lightweight algorithms
have been proposed for various primitives. One such proposal is the PRESENT
block cipher [11], a substitution-permutation network designed by Bogdanov et
al. and published in CHES 2007, that has received a great deal of attention
from the cryptologic community and was standardized by ISO for lightweight
cryptographic methods [37]. The block cipher has two versions: PRESENT-80
with an 80-bit key, and PRESENT-128 with a 128-bit key, both differing only
by the key schedule, being one of its main design goals to optimize the hardware
implementation. In this work, we focus on this block cipher, providing an al-
ternative formulation of the original PRESENT algorithm. We discuss why our
formulation is expected to be more efficient in software and provide implemen-
tation results that support this claim. Also, we analyze the impact of using a
second-order masking scheme as a side-channel leakage countermeasure.

Our Contributions. We introduce a new portable and secure software im-
plementation of PRESENT that leads to significant performance improvement
compared to previous work. The main idea consists in optimizing the computa-
tion of permutation P in two consecutive rounds, by replacing it with two more
efficient permutations P0 and P1 in alternated rounds. In this work, side-channel
resistance is implemented through constant time execution and masking coun-
termeasures. Our implementations are evaluated on embedded ARM processors,
but the techniques should remain efficient across platforms. Extensive experi-
mental results provided on both Cortex-M microcontrollers and more powerful
Cortex-A processors indicate that we obtained the fastest side-channel resistant
implementation of PRESENT for our target architectures.

Organization. Section 2 reviews related work on software implementation of
PRESENT and Section 3 describes the original specification of the block cipher.
Novel techniques for efficient software implementation are discussed in Section 4,
security properties and side-channel countermeasures in Section 5. Section 6
describes our target platforms, relevant aspects about our implementation and
present the performance figures we obtained, before comparing them with results
from the open research literature. Conclusions are drawn in Section 7.

2



2 Related Work

The design of PRESENT [11] has motivated an extensive amount of research
in the cryptologic community, both in terms of cryptanalysis and engineering
aspects. The main results in these regards are summarized here.

Starting from the cryptanalytic results, many techniques have been explored
to break PRESENT’s security claims [10, 27, 38, 15], and, yet, the best full-round
attack found is a biclique attack [27] able to recover the secret key based on
279.76 encryptions of PRESENT-80 or 2127.91 encryptions of PRESENT-128.
Although the result is technically a proof that PRESENT is not an ideally secure
block cipher, it actually helps building up confidence in the cipher design. After
extensive research efforts, the best known attack still requires almost as much
computational effort as a brute-force attack.

Regarding the efficient implementation of PRESENT, one of the most com-
prehensive works is the PhD thesis by Axel Poschmann, one of PRESENT’s
designers [33]. The author discusses a plethora of implementation results, both
in hardware and in software, for a wide selection of architectures, ranging from
4-bit to 64-bit devices. For the software implementations, the author presents
different versions optimized for either code size or speed. He focuses on imple-
menting the S-box as a lookup table, which is potentially vulnerable to timing
attacks in processors equipped with cache memory. Hence, the optimizations in-
troduced to improve the S-box performance cannot be used in our work, because
we are concerned with side-channel security.

In [31], Papapagiannopoulos et al. present efficient bitsliced implementations
of PRESENT, along with implementations for other block ciphers, having as tar-
get architecture the ATtiny family of AVR microcontrollers. This work employs
an extension [17] of Boyar-Peralta heuristics [13] to minimize the complexity
of digital circuits applied to PRESENT, providing a set of 14 instructions to
compute the S-box. Bao et al. [6] adapt the approach to implement the inverse
S-box in 15 instructions for the LED cipher, which shares the same substitution
layer with PRESENT.

Similarly to [31], Benadjila et al. [7] also provide bitsliced implementations
for many different block ciphers, including PRESENT, but this time for Intel
x86 architectures. One of the primary focuses of this work is the usage of SIMD
instructions to speed up the implementations through vectorization.

It is also important to cite the work of Dinu et al. [18], which implements
and optimizes PRESENT alongside with twelve other different block ciphers
for three different platforms: 8-bit ATmega, 16-bit MSP430 and 32-bit ARM
Cortex-M3. Their best results for PRESENT were obtained through a table-
based implementation that merges the permutation layer and the substitution
layer of the cipher in some instances. Since the Cortex-M3 is also one of the target
architectures for our work, it is relevant to observe actual figures in this case.
For this platform, the authors report an execution time of 16,919 clock cycles
for encrypting 128 bits of data in CTR mode and 270,603 cycles for running the
key schedule, encrypting and decrypting 128 bytes of data in CBC mode.

3



Out of all the aforementioned works, none of them discusses side-channel
security and many even explicitly state the usage of large tables to compute
the PRESENT S-box, which is a well-known source of side-channel leakage [12].
However, there are some researchers who address this issue. For example, [22]
presents a bitsliced implementation for PRESENT that uses a masking scheme
to provide second-order protection against side-channel attacks. The authors use
a device endowed with a Cortex-M4 processor and report an execution time of
6,532 cycles to encrypt one 64-bit block, excluding the time consumed by the ran-
dom number generator in the masking routine. They also provide experimental
evidence for the effectiveness of masking as a side-channel attack countermea-
sure in ARM-based architectures. It is worth noting, however, that the masking
scheme used by the authors only aims to protect the S-box computation, hence
leaving the key unmasked and the algorithm open to possible attacks that might
target specific sections of the code.

At last, we mention the paper [32], which applies a technique called Threshold
Implementation to counteract differential power analysis attacks and glitches
on hardware circuitry. This alternative masking scheme, originally proposed by
Nikova et al. [29], has the advantage of not requiring the generation of random
bits for computing operations between shares of secret information, but demands
the evaluation of multiple S-boxes which can become computationally expensive
in software.

3 The PRESENT block cipher

The PRESENT block cipher [11] is a substitution-permutation network (SPN)
that encrypts a 64-bit block using a key with 80 or 128 bits. The key is first
processed by the key schedule to generate 32 round keys subkey1, ..., subkey32
with 64 bits each. To encrypt a given block of data, it repeats the following
steps over 31 rounds: the block is XORed with the corresponding round key;
each contiguous set of 4 bits in the block is substituted according to the output
of the substitution box (S-box) S; and then the 64 bits are rearranged by a
permutation P . After the final round, the block is XORed with subkey32. A
high-level description of PRESENT encryption is given in Algorithm 1.

The S-box S acts over every 4 bits of the block, as specified in Table 1.
Although the most straightforward way to implement the S-box in software
is by using a lookup table, [31] shows how to simulate one evaluation of this
function by performing 14 Boolean operations over the 4 input bits. Listing 1.1
contains a C-language implementation of the S-box and also of the inverse of
this S-box, which can be useful for the decryption algorithm. The S-box was
directly obtained from [31] using the extended Boyar-Peralta heuristics [13]. We
computed the inverse S-box using the same approach with software from Brian
Gladman [21]. Our inverse S-box has 15 instructions and reproduces the same
number obtained by Bao et al. [6], in which the function was not explicitly given.

Listing 1.1: Bitsliced implementation in C for both the direct and inverse S-boxes
of the PRESENT block cipher.

4



Algorithm 1 PRESENT encryption of one message block.

Input: A 64-bit block of plaintext B, a key K.
Output: A 64-bit block of ciphertext C.

1: subkey = (subkey1, subkey2, ..., subkey32)← keySchedule(K)
2: C ← B
3: for i = 1 to 31 do
4: C ← C ⊕ subkeyi
5: C ← S(C)
6: C ← P (C)
7: end for
8: C ← C ⊕ subkey32
9: return C

Table 1: PRESENT S-box, given in hexadecimal notation.
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

/* Each macro takes as input 4 words and transforms

* them in -place according to the S-box function

* or its inverse.

*/

#define PRESENT_SBOX(x0 ,x1 ,x2 ,x3) \

T1 = x2 ^ x1; T2 = x1 & T1; \

T3 = x0 ^ T2; T5 = x3 ^ T3; \

T2 = T1 & T3; T1 = T1 ^ T5; \

T2 = T2 ^ x1; T4 = x3 | T2; \

x2 = T1 ^ T4; x3 = ~x3; \

T2 = T2 ^ x3; x0 = x2 ^ T2; \

T2 = T2 | T1; x1 = T3 ^ T2; \

x3 = T5;

#define PRESENT_INV_SBOX(x0 ,x1 ,x2 ,x3) \

T0 = ~x3; T1 = x2 ^ x0; \

T2 = x2 & x0; T3 = x1 ^ T2; \

T4 = x3 ^ T1; x3 = T0 ^ T3; \

T0 = T1 & x3; T1 = x2 ^ T0; \

T2 = T4 | T1; x0 = T3 ^ T2; \

T5 = T4 ^ T1; T2 = T3 & T5; \

x2 = T4 ^ T2; x1 = T2 ^ (~T1); \

The permutation P is specified by Equation 1 below and moves the i-th bit
of the state to the position P (i):

P (i) =

{
16i mod 63, if i 6= 63,

63, if i = 63.
(1)

5



From the definition of P , one can easily verify that P 2 = P−1. By looking at
Figure 1, another interesting property of this permutation can be noticed: if the
64-bit state of the cipher is stored in four 16-bit registers, the application of the
permutation P aligns the state in a way that the concatenation of the i-th bit
of each of the four registers of the permuted state corresponds to 4 consecutive
bits of the original state. These properties will be explored by the technique
proposed later.

B =


00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

 ,

P (B) =


00 04 08 12 16 20 24 28 32 36 40 44 48 52 56 60
01 05 09 13 17 21 25 29 33 37 41 45 49 53 57 61
02 06 10 14 18 22 26 30 34 38 42 46 50 54 58 62
03 07 11 15 19 23 27 31 35 39 43 47 51 55 59 63

 .

Fig. 1: Matrix representation of the 64-bit input block B and its permutation
P (B), both split into four 16-bit rows.

4 Efficient implementation

The main novelty introduced in this work lies in the techniques devised to ef-
ficiently implement the PRESENT block cipher in software, which are now de-
scribed. First, we limit the scope to PRESENT-80, the version using an 80-bit
key, which is better suited for lightweight applications due to a smaller memory
footprint. The encryption and decryption routines are exactly the same for the
128-bit version, the only difference is in the key schedule, which should not be
a critical section of the algorithm in terms of performance. In fact, applying the
same techniques exposed here to PRESENT-128, provides, within a 5% margin,
the same time measurements for all scenarios we consider.

Algorithm 2 specifies our proposal for implementing encryption of a single
block with PRESENT. Essentially, every two applications of permutation P are
replaced by evaluations of permutations P0 and P1, which satisfy the property
that P1◦P0 = P 2, a fact that preserves the correctness of the modified algorithm.
The way P0 and P1 act upon the cipher state is represented in Figure 2, and
code in the C programming language to implement both permutations follows in
Listing 1.2. On the description of this algorithm, we use the function SBS , wich
we define as being the same S-box used for PRESENT, but taking as inputs state
bits whose indexes are congruent modulo 16 instead of every four consecutive
bits. In other words, this S-box interprets the state of the cipher as four 16-bit
words and operates on them in a bitsliced fashion.

6



Algorithm 2 Our proposal for PRESENT encryption of one message block.

Input: A 64-bit block of plaintext B, a key K.
Output: A 64-bit block of ciphertext C.

1: subkey = (subkey1, subkey2, ..., subkey32)← keySchedule(K)
2: C ← B
3: for i = 1 to 15 do
4: C ← C ⊕ subkey2i−1

5: C ← P0(C)
6: C ← SBS(C)
7: C ← P1(C)
8: C ← C ⊕ P (subkey2i)
9: C ← SBS(C)

10: end for
11: C ← C ⊕ subkey31
12: C ← P (C)
13: C ← SBS(C)
14: C ← C ⊕ subkey32
15: return C

We need to observe two facts to prove the equivalence between Algorithm 1
and Algorithm 2. First, the S-box S in Algorithm 1 acts on the same quadruplets
of bits that SBS acts on Algorithm 2, since both P0 and P bitslice the state
over 16-bit words. Then note that P (P (X ⊕ subkeyi) ⊕ subkeyi+1) = P 2(X ⊕
subkeyi) ⊕ P (subkeyi+1) = P1(P0(X ⊕ subkeyi)) ⊕ P (subkeyi+1), being that
leftmost term exactly the transformation undergone by state X over rounds i
and i+ 1 on Algorithm 1 and the rightmost term the transformation undergone
by state X over rounds i and i+1, for i odd, on Algorithm 2, when we disregard
the S-box step on both algorithms. Since the S-boxes operate equivalently and,
without S-boxes, the algorithms are also equivalent, the proof is concluded.

Now, at first glance, it may not be clear why our alternative version for
PRESENT is faster than the original one, but there are two main advantages.
The first one is due to complexity in software. Permutations P0 and P1 are sim-
ply more software friendly, requiring less operations to be implemented, when
compared to the permutation P . An evidence to corroborate this fact was ob-
tained from the source code generator for bit permutations provided by Jasper
Neumann in [28], estimating a cost of 14 clock cycles to execute either P0 or P1

and a cost of 24 cycles to execute P , when implemented optimally.

Listing 1.2: Efficient implementation in C of the permutations P0 and P1 of our
proposal for PRESENT encryption.

/* The following macros permute two 64-bit blocks

* simultaneously , using an auxiliary variable t

* and storing one block on the high 16-bit word

* of the 32-bit variables X0 , X1 , X2 and X3 , and

* the other block on the low 16-bit word of the

7



* same variables.

*/

#define PRESENT_PERMUTATION_P0(X0 ,X1 ,X2 ,X3) \

t = (X0^(X1 >>1)) & 0x55555555; \

X0 = X0^t; X1 = X1^(t<<1); \

t = (X2^(X3 >>1)) & 0x55555555; \

X2 = X2^t; X3 = X3^(t<<1); \

t = (X0^(X2 >>2)) & 0x33333333; \

X0 = X0^t; X2 = X2^(t<<2); \

t = (X1^(X3 >>2)) & 0x33333333; \

X1 = X1^t; X3 = X3^(t<<2); \

#define PRESENT_PERMUTATION_P1(X0 ,X1 ,X2 ,X3) \

t = (X0^(X1 >>4)) & 0x0F0F0F0F; \

X0 = X0^t; X1 = X1^(t<<4); \

t = (X2^(X3 >>4)) & 0x0F0F0F0F; \

X2 = X2^t; X3 = X3^(t<<4); \

t = (X0^(X2 >>8)) & 0x00FF00FF; \

X0 = X0^t; X2 = X2^(t<<8); \

t = (X1^(X3 >>8)) & 0x00FF00FF; \

X1 = X1^t; X3 = X3^(t<<8); \

B =


00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

 ,

P0(B) =


00 16 32 48 04 20 36 52 08 24 40 56 12 28 44 60
01 17 33 49 05 21 37 53 09 25 41 57 13 29 45 61
02 18 34 50 06 22 38 54 10 26 42 58 14 30 46 62
03 19 35 51 07 23 39 55 11 27 43 59 15 31 47 63

 ,

P1(B) =


00 01 02 03 16 17 18 19 32 33 34 35 48 49 50 51
04 05 06 07 20 21 22 23 36 37 38 39 52 53 54 55
08 09 10 11 24 25 26 27 40 41 42 43 56 57 58 59
12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

 .

Fig. 2: Matrix representation of the 64-bit input block B and its permutations
P0(B) and P1(B), all of them divided into four 16-bit rows.

The second advantage of our proposal involves the application of the S-box. A
careful analysis of Algorithm 2 leads to the conclusion that, at lines 6, 9 and 13,
where the S-box is applied, the state of the variable C is not the same as the state
to which the S-box is applied in Algorithm 1. At line 6, the state has undergone
an extra P0 permutation in relation to the original formulation; and at lines 9

8



and 13 the state has undergone an extra evaluation of P . By looking at Figures
1 and 2, it stands clear that, if the ciphertext is stored into four 16-bit registers,
both P and P0 organize the state in such a way that every four consecutive
bits are aligned in columns throughout those four registers, similarly to what
would be seen in a fully bitsliced implementation. Therefore, an implementation
following the structure in Algorithm 2 can make use of bitwise operations to
simulate the S-box step, calculating sixteen S-box applications simultaneously.

The same rationale may be applied to generate other alternative versions of
the PRESENT encryption algorithm. Figure 3 illustrates different versions of
PRESENT obtained by interchanging S-box applications and permutations. In
this figure, S represents the S-box applied over every four consecutive bits of the
state and SBS represents the S-box computed in a bitsliced fashion.

One last observation to further improve performance of the implementation
in a 32-bit architecture is that two blocks of plaintext can be encrypted in
CTR mode at once, organizing the state such that 32 S-boxes are calculated
simultaneously instead of only 16. For a 64-bit architecture, the same strategy
can be carried out to encrypt four blocks at once.

All of the algorithmic observations and implementation techniques discussed
here extend directly to the decryption routine, as shown by Algorithm 3. The
inversion of encryption is particularly simplified by the fact that P0 and P1 are
involutory permutations, that is, P−10 = P0 and P−11 = P1. The involutory
property of P0 and P1 has yet another advantage. Since P1 ◦ P0 = P 2 and
P 2 = P−1, it follows that P = P0 ◦ P1, what might be used to reduce the
code size of the implementation, because the permutation P does not need to
be implemented provided that P0 and P1 have already been coded.

Algorithm 3 Our proposal for PRESENT decryption of one message block.

Input: A 64-bit block of ciphertext C, a key K.
Output: A 64-bit block of plaintext B.

1: subkey = (subkey1, subkey2, ..., subkey32)← keySchedule(K)
2: B ← C
3: B ← B ⊕ subkey32
4: B ← S−1

BS(B)
5: B ← P−1(B)
6: B ← B ⊕ subkey31
7: for i = 15 to 1 do
8: B ← S−1

BS(B)
9: B ← B ⊕ subkey2i

10: B ← P1(B)
11: B ← S−1

BS(B)
12: B ← P0(B)
13: B ← B ⊕ P (subkey2i−1)
14: end for
15: return B

9



S

P

S

P

subkeyi

subkeyi+1

(a)

P

SBS

P

SBS

subkeyi

subkeyi+1

(b)

P

SBS

P

SBS

subkeyi

P (subkeyi+1)

(c)

P0

SBS

P1

SBS

subkeyi

P (subkeyi+1)

(d)

Fig. 3: Diagram showing equivalent ways to implement two consecutive rounds
(i and i+1) of PRESENT for encryption. The original specification for the block
cipher corresponds to the leftmost diagram and the rightmost one corresponds
to the version proposed here with alternating P0 and P1 permutations.

At last, it is important to notice that our proposal has the drawback of apply-
ing the permutation P to some of the round keys. Although, since typically many
blocks of message are encrypted or decrypted with the same key, the key sched-
ule routine should have a low impact on the algorithm’s practical performance,
since it is executed only once for several executions of encryption/decryption
routines.

5 Side-channel countermeasures

As commented previously, there has been extensive work on the cryptanalysis
of PRESENT and the lack of significant advances provides evidence that the
cipher is likely to fulfill the desired security goals. However, even if the block
cipher design is ideally secure, a careless implementation may leak sensitive data
during execution and undermine the security of the algorithm with its insecure
realization.

Particularly, a major concern is side-channel attacks, that is, attacks which
are crafted based on information obtained from the physical implementation
of a cryptographic primitive. For instance, an attacker may gather data such
as execution time of an algorithm [25, 14, 19], power consumption [30], sound

10



produced by the hardware [20] or even magnetic radiation emitted during the
computation [26] and, through these data, the attacker may gain access to sen-
sitive information processed by the device under analysis.

It is worth noting that side-channel attacks are limited to situations where
the attacker has physical access to the hardware executing the implementation
or at least can interact with the device through the network. It is not completely
unreasonable to ignore the possibility of such attacks when the implementation
of the algorithm is physically protected from the attacker or not accessible for
any kind of interaction, but reality tends to go in the opposite direction in the
IoT context. In this scenario, devices are frequently accessible to the attacker
by either physical means or through the network and typically lack tamper-
resistance countermeasures for protecting the hardware from external influence.

5.1 Protecting against timing attacks

The focus is primarily on timing attacks, since they are entirely within the scope
of software implementation, and appear to be the most practical side-channel
attack. Furthermore, protecting software implementations from more invasive
side-channel attacks is very challenging, since the software countermeasures can
be typically circumvented by an invasive attacker. Recent work has developed
static analysis tools to detect variances in execution time correlated with secret
information at a rather low level [34, 2], allowing implementers to formally guar-
antee constant execution time of their code or at least implement mitigations.

In practice, the main sources of timing vulnerabilities are memory accesses
and conditional branches depending on secret data. Conditional branching, by
definition, may cause different instructions to be executed among different runs
of a program, which, by its turn, may cause the execution time of the algorithm
to depend on sensitive data given as input. The effect of branch misprediction
in more sophisticated processors may further interfere with pipelined datapaths
and provoke significant variations [1]. In a similar way, if a processor is equipped
with cache memory, the execution time may leak information about the rate of
cache misses or hits during memory accesses, and, clearly, if these accesses de-
pend on sensitive data, this implementation becomes susceptible to side-channel
attacks [8]. Therefore, by avoiding these situations, a software implementation
can encrypt a message block in constant time, independently of characteristics
about the inputs (plaintext message or cryptographic key). This runtime prop-
erty is called isochronicity.

5.2 Masking the implementation

Ensuring that code runs in constant time is sufficient to render timing attacks
impractical, although other side-channel leakages might still be exploited. An-
other family of techniques for improving side-channel resistance is called secret
sharing, or masking, which consists in splitting sensitive variables occurring in
the computation into d + 1 shares (or masks) in order to unlink the correla-
tion between environmental information and the secret data being processed.

11



A masking technique based on d + 1 masks is said to be a d-th order masking
and can only be broken by an attacker who manages to obtain leakage related
to at least d + 1 intermediate variables of the algorithm. It is possible to prove
that the difficulty for a side-channel attack to succeed, in practice, increases
exponentially with d and, hence, the masking order can be considered a sound
criterion to evaluate the robustness of the implementation against side-channel
analysis [16].

The literature presents different alternatives to implement a masked encryp-
tion algorithm [32], but analysis will be restricted to the proposal given by Ishai
et al. in [23], which appears to be the most appropriate for a fast software im-
plementation. In this proposal, the masked state of a sensitive variable m with
d + 1 shares is

m =

d⊕
i=0

mi = m0 ⊕m1 ⊕ . . .⊕md, (2)

where each mi is a share of the secret and all shares form together a masked
secret. In order to create a masked implementation on the variable m, one can
randomly generate the d masks m1,m2, ...,md and calculate m0 such that Equa-
tion 2 holds.

From this definition, we can derive ways to calculate different operations over
the masks. The following list contains all operations necessary to implement a
masked version of PRESENT.

1. A NOT operation over a masked secret has to be carried out as a NOT oper-
ation performed on an odd number of masks to preserve the relationship in
Equation 2. A single mask can just as well be negated:

¬m = ¬m0 ⊕m1 ⊕ . . .⊕md.

2. An XOR operation between masked secrets a =
d⊕

i=0

ai and b =
d⊕

i=0

bi can be

performed by calculating the XOR of all corresponding masks:

a⊕ b =

d⊕
i=0

(ai ⊕ bi).

3. An AND operation between two masked secrets is more complicated and can
be computed as follows: for every pair (i, j), 1 ≤ i < j ≤ d + 1, generate
a random bit zi,j . Then, compute zi,j = (zi,j ⊕ aibi) ⊕ ajbi. Now, for every
1 ≤ i ≤ d + 1, the i-th share may be computed as

mi = aibi ⊕
⊕
i 6=j

zi,j .

4. An OR operation might be calculated using the logical identity OR(a, b) =
¬(¬a · ¬b), which depends only on operations previously defined.

12



The nonlinear operations OR and AND stand out as the most expensive ones,
requiring O(d2) calls to a random bit generator and memory to store a matrix z of
O(d2) entries. This is the main drawback of the technique in resource-constrained
devices and makes the use of high-order masking impractical in many scenarios.

6 Implementation details and results

6.1 Target architecture

Currently, there is a vast variety of processors under consideration for integra-
tion to the IoT. The focus given in this work is on some representatives of the
ARM architecture, since it is the world leader in the market of microprocessors
and, thus, attracts relevant academic work as well as commercial interest. More
specifically, our implementations were benchmarked on the following platforms:

– Cortex-M0+: Arduino Zero powered by an Atmel SAMD21G18A ARM
Cortex-M0+ CPU, clocked at 48MHz.

– Cortex-M3: Arduino Due powered by an Atmel SAM3X8E ARM Cortex-
M3 CPU, clocked at 84MHz.

– Cortex-M4: Teensy 3.2 board containing a MK20DX256VLH7 Cortex-M4
CPU, clocked at 72 MHz.

– Cortex-A7/A15: ODROID-XU4 board containing a Samsung Exynos5422
2GHz Cortex-A15 and Cortex-A7 octa-core CPU.

– Cortex-A53: ODROID-C2 board containing an Amlogic 64-bit ARM 2GHz
Cortex-A53 (ARMv8) quad-core CPU.

Members of the Cortex-M [4] family are commonly used in embedded appli-
cations, being found on devices ranging from medical instrumentation equipment
to domestic household appliances. The design of these processors is optimized
for cost and energy efficiency, making them relatively low-end when compared
to the other targets.

As for the members of Cortex-A [3] family, they are more computationally
powerful than the Cortex-M processors, being able to execute complex tasks
such as running a robust operating system or a high-quality multimedia task.
These processors have access to the NEON engine, a powerful Single Instruc-
tion Multiple Data (SIMD) extension, and may have sophisticated out-of-order
execution.

6.2 Main results

In order to discuss our results, the code size and speed of our implementations
are measured in two scenarios based on what is proposed in the FELICS frame-
work [18], such that results can be comparable in a fair and reliable manner.

Scenario 1 simulates a communication protocol established in sensor networks
or between IoT devices. It is assumed here that the device possesses the master
key stored in RAM, calculates the key schedule and then proceeds to encrypt

13



and decrypt 128 bytes of sensitive data using the CBC mode of operation. Due
to the employment of the CBC mode, the suggested trick of encrypting more
than one block in parallel does not work, since this mode of operation forces
dependencies between consecutive input blocks. Hence, it stands clear that it is
not the optimal scenario to use our techniques, but we still chose to implement
it exactly as described in [18] for the sake of comparison.

Scenario 2 simulates an authentication protocol in which the block cipher is
used to encrypt 128 bits of data in CTR mode of operation. The round keys are
assumed to be stored in memory and, consequently, no key schedule is required.
This is a very appropriate stance to employ all of the optimizations proposed so
far, since the CTR mode encrypts and decrypts blocks of input independently.

Results for both scenarios are expressed in Table 2 and Table 3. All the
measurements were based on code fully written in C language, compiled by
GCC 6.3.1 in the case of the Cortex-A family and by GCC 4.8.4 for the Cortex-M
family, using the flag -O3 for optimized speed results. The isochronicity property
of the constant time implementations was validated using the FlowTracker static
analysis tool [34]. FlowTracker performs information flow analysis from function
inputs marked as secret to branch instructions and memory addresses, effectively
detecting and thwarting timing attacks. This tool analyzes compiled code at the
LLVM Intermediate Representation level, thus closer to the platform-specific
native code. All timings for Cortex-M processors were reproduced to a reasonable
degree in the ARM Cortex-M Prototyping System (MPS2), an FPGA-based
board with support to microcontrollers ranging from the Cortex-M0 to M7.
However, we only report timings collected in the widely available platforms to
simplify comparisons with future competing implementation efforts.

One of the main observations attained from these measurements is that the
cost to protect the implementations with masking is high, especially in lower-end
processors. In our case, a second-order masking was used and the time consumed
by the random number generator was disregarded. Still, a slowdown of up to 6.8
times was observed in the case of the Cortex-M0+. For higher-end processors,
however, the slowdown can be inferior to a 4-factor. Throughout all processors,
a sensible increase in code size due to masking is observed.

Another fact to notice is that, as expected, even when differences in input
size are taken into account, the performance of PRESENT in Scenario 2 is sub-
stantially better than the performance in Scenario 1, mainly due to the choice
of mode of operation. In Scenario 1, using the CBC mode, only decryption can
be parallelized, and encryption ends up being roughly twice as slow as in CTR
mode.

6.3 Vector implementation using NEON

For the platforms with access to NEON instructions, parallelism within the
PRESENT encryption algorithm can also be explored for enhancing perfor-
mance. In particular, it is relevant to mention that the NEON instructions VTBL
and VTBX allow the computation of fast table lookups by performing register
operations, without the need of memory accesses.

14



Table 2: Performance results for Scenario 1 – key schedule, encryption and de-
cryption of 128 bytes in CBC mode – of side-channel resistant implementations
of PRESENT, encompassing both isochronous (constant time) and second-order
masking countermeasures.

Processor
Code size

[bytes]
Key schedule

[cycles]
Encryption

[cycles]
Decryption

[cycles]

Isochronous implementation

Cortex-M0+ 1436 6381 46429 23445
Cortex-M3 1320 5043 29442 16291
Cortex-M4 1328 3464 22993 11731
Cortex-A7 2732 3232 21027 10657
Cortex-A15 1792 1740 14780 7050
Cortex-A53 2484 1554 13583 3726

Masked implementation

Cortex-M0+ 8056 7145 332079 204690
Cortex-M3 7048 4628 197601 122521
Cortex-M4 9216 3413 186556 100417
Cortex-A7 9248 2657 116004 64041
Cortex-A15 9248 1894 59474 29130
Cortex-A53 8452 1943 39983 12848

Besides the original formulation of the algorithm, that implements S-boxes
as lookup tables, we were also able to evaluate the performance of a different
proposal mentioned in [33] and attributed to Gregor Leander. The idea is similar
to ours, in principle, since it decomposes the permutation P into two others.
However, Leander’s decomposition aims to allow a faster lookup table-based
implementation, which is the opposite direction we are looking for. Still, even
using the NEON instructions to implement the lookup tables used in Leander’s
method, our formulation was found to be faster.

NEON implementations can process eight blocks simultaneously due to the
support of 128-bit registers, in the same fashion as processing two blocks in
parallel in 32-bit processors or four blocks in parallel using 64-bit ones. For
this reason, neither scenario used previously is appropriate to evaluate vector
implementations. Scenario 1 does not support parallelism due to the mode of
operation employed and Scenario 2 processes only 128 bits of data, which is only
two blocks of input, not making use of the full capacity of processing eight blocks
at once.

For this reason, we chose to analyze the performance of our NEON imple-
mentations under a third scenario, in which we run the key schedule, encrypt
and decrypt 128 bytes of data. These results are reported in Table 4 and Ta-
ble 5, alongside with the results of the native implementation, without vector
instructions, to provide a baseline for comparison.

15



Table 3: Performance results for Scenario 2 – encryption of 128 bits in CTR
mode – of side-channel resistant implementations of PRESENT, encompassing
both isochronous (constant time) and second-order masking countermeasures.

Processor
Code size

[bytes]
Execution time

[cycles]

Isochronous implementation

Cortex-M0+ 2524 3183
Cortex-M3 2476 2116
Cortex-M4 2612 1599
Cortex-A7 2456 1708
Cortex-A15 2456 960
Cortex-A53 2536 1052

Masked implementation

Cortex-M0+ 12392 21744
Cortex-M3 9728 12387
Cortex-M4 11012 11096
Cortex-A7 13322 7482
Cortex-A15 13322 3688
Cortex-A53 18028 3681

Table 4: Performance results for isochronous execution of the key schedule, en-
cryption and decryption of 128 bytes of data in CTR mode, using both serial
and vectorized code.

Processor
Code size

[bytes]
Key schedule

[cycles]
Encryption+Decryption

[cycles]

Serial implementation

Cortex-M0+ 2524 6381 47884
Cortex-M3 2476 5043 31830
Cortex-M4 2612 3464 26785
Cortex-A7 2456 2732 27161
Cortex-A15 2456 1740 14169
Cortex-A53 2536 1554 7406

Vector implementation using NEON

Cortex-A7 2798 2299 14274
Cortex-A15 2798 1533 8083
Cortex-A53 3908 1552 7322

By analyzing the results, we notice that the NEON instructions were able to
provide a meaningful speedup for the 32-bit processors. For the 64-bit Cortex-
A53, however, the efficiency of native instructions associated with the possibility

16



Table 5: Performance results for execution of the key schedule, encryption and
decryption of 128 bytes of data in CTR mode, using both serial and vectorized
code, protected by second-order masking.

Processor
Code size

[bytes]
Key schedule

[cycles]
Encryption+Decryption

[cycles]

Serial implementation

Cortex-M0+ 12392 7145 345619
Cortex-M3 9728 4628 205244
Cortex-M4 11012 3413 192454
Cortex-A7 13322 2657 119542
Cortex-A15 13322 1894 58635
Cortex-A53 18028 1943 23207

Vector implementation using NEON

Cortex-A7 2798 2671 76286
Cortex-A15 2798 1948 28633
Cortex-A53 3908 1941 28343

of processing four blocks in parallel beats the vector implementation by a small
margin. Naturally, these implementations have a substantial impact on code size
when compared to Table 2.

Notice also that the only difference introduced by this third scenario com-
pared to Scenario 1 is the choice of the mode of operation. It further illustrates
how much better CTR performs in this case, in which we can make use of the
parallelism intrinsic to the encryption routine.

6.4 Comparison with related work

Although many implementation results for PRESENT are published, we focus
here on comparing our metrics to the works of [18] and [22], which are, to the
best of our knowledge, the most efficient publicly available implementations of
PRESENT in similar platforms to the ones we use.

In [18], a series of implementations is presented for many block ciphers which
are benchmarked on a Cortex-M3 processor. For a scenario identical to the Sce-
nario 2 we described, they report an execution time of 16,786 clock cycles and
a code size of 3,568 bytes. Our results are almost 8 times better considering the
execution time, and over 30% better regarding the code size. They also measure
these metrics for Scenario 1, in which they report the usage of 270,603 cycles of
execution and 2,528 bytes of code, which is slower and more space-consuming
than our implementation, but by a smaller margin, since the CBC mode of op-
eration employed in this case does not benefit from some of the optimizations.

The work of [22] showcases a bitsliced implementation of PRESENT on a
Cortex-M4, protected by a second-order masking. It claims to be able to encrypt

17



one input block in 6,532 cycles. We argue that our results are better, since, even
if there is no penalty caused by the tight coupling with a mode of operation, it
would encrypt 128 bits of data in 13,064 cycles, which is slower than the 11,096
cycles we achieved for the same processor on Scenario 2. Furthermore, since this
implementation has a bitslice factor of 32, it cannot actually encrypt only 128
bits of data without having to do extra work, whereas our implementation is not
only faster, but more flexible in the sense that it allows small amounts of data
to be efficiently encrypted.

It is also relevant to take into consideration performance results from other
block ciphers to gauge how useful our techniques may be in practice. In partic-
ular, we take a closer look at AES, arguably the most extensively used block
cipher today and which has been originally praised for its good performance in
software [35]. The current state-of-the-art implementations for AES on Cortex-M
processor are from [36], in which several different results are presented. Table 6
compares our results to theirs when encrypting 128 bits of data through CTR
mode in constant time. We notice that PRESENT is slower than AES on Cortex-
M3, but slightly faster on Cortex-M4 and, on both processors, PRESENT’s code
footprint is several times smaller.

Table 6: Comparison between our results for PRESENT and results from [36]
for AES when encrypting 128 bits of data in CTR mode, in constant time.

Implementation
Code size

[bytes]
Execution time

[bytes]

AES on Cortex-M3 12120 1617
PRESENT on Cortex-M3 2476 2116

AES on Cortex-M4 12120 1618
PRESENT on Cortex-M4 2612 1599

7 Conclusion

In this work, we presented a novel technique for accelerating encryption and de-
cryption using the PRESENT block cipher. Our modified algorithm is expected
to be faster in software when compared to the original PRESENT specification
for many platforms and, indeed, our experimental data supports that we were
able to significantly outperform state-of-the-art results for processors within the
ARM Cortex-M family. This makes PRESENT competitively efficient even when
compared to secure implementations of widely used software-oriented ciphers
such as AES.

Furthermore, our proposal has the advantage to be readily implemented in
constant time, which is relevant in contexts where there is concern regarding side-

18



channel attacks. For further side-channel security, we implemented and analyzed
the performance impact of a second-order masking scheme.

At last, we show that our technique can also be applied to vector implemen-
tations – using the ARM-NEON extension, for example – to achieve even higher
performance gains in some compatible platforms.

8 Acknowledgements

The authors gratefully acknowledge financial support from LG Electronics Inc.
during the development of this research, under the project “Efficient and Secure
Cryptography for IoT”. The third author also acknowledges financial support
from CNPq: a research productivity scholarship.

References

1. Aciiçmez, O., Koç, c.K., Seifert, J.P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM Symposium on Information, Computer
and Communications Security. pp. 312–320. ASIACCS ’07, ACM, New York, NY,
USA (2007), http://doi.acm.org/10.1145/1229285.1266999

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations (2016)

3. ARM: Cortex-A Series Family. https://www.arm.com/products/processors/

cortex-a/index.php, accessed: June, 2016
4. ARM: Cortex-M Series Family. https://www.arm.com/products/processors/

cortex-m/index.php, accessed: June, 2016
5. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer

Networks 54(15), 2787–2805 (2010), https://doi.org/10.1016/j.comnet.2010.
05.010

6. Bao, Z., Luo, P., Lin, D.: Bitsliced implementations of the prince, LED and RECT-
ANGLE block ciphers on AVR 8-bit microcontrollers. In: ICICS. Lecture Notes in
Computer Science, vol. 9543, pp. 18–36. Springer (2015)

7. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 8282, pp. 324–351. Springer (2013)

8. Bernstein, D.J.: Cache-timing attacks on aes. \tthttp://cr.yp.to/papers.html\
#cachetiming (2005)

9. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Public Key
Cryptography. Lecture Notes in Computer Science, vol. 3958, pp. 207–228. Springer
(2006)

10. Blondeau, C., Nyberg, K.: Links between truncated differential and multidimen-
sional linear properties of block ciphers and underlying attack complexities. In: EU-
ROCRYPT. Lecture Notes in Computer Science, vol. 8441, pp. 165–182. Springer
(2014)

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: CHES. Lecture Notes in Computer Science, vol. 4727, pp. 450–466. Springer
(2007)

19



12. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: CHES.
Lecture Notes in Computer Science, vol. 4249, pp. 201–215. Springer (2006)

13. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: SEA. Lecture Notes in Computer Science, vol. 6049,
pp. 178–189. Springer (2010)

14. Cheval, V., Cortier, V.: Timing attacks in security protocols: Symbolic framework
and proof techniques. In: POST. Lecture Notes in Computer Science, vol. 9036,
pp. 280–299. Springer (2015)

15. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: CT-RSA. Lecture
Notes in Computer Science, vol. 5985, pp. 302–317. Springer (2010)

16. Coron, J., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: FSE. Lecture Notes in Computer Science, vol. 8424, pp.
410–424. Springer (2013)

17. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems
in cryptography and cryptanalysis. IACR Cryptology ePrint Archive 2011, 475
(2011), http://eprint.iacr.org/2011/475

18. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:
Triathlon of lightweight block ciphers for the internet of things. IACR Cryptology
ePrint Archive 2015, 209 (2015), http://eprint.iacr.org/2015/209

19. Doychev, G., Köpf, B.: Rational protection against timing attacks. In: Fournet,
C., Hicks, M.W., Viganò, L. (eds.) IEEE 28th Computer Security Foundations
Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015. pp. 526–536. IEEE (2015),
http://dx.doi.org/10.1109/CSF.2015.39

20. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 8616,
pp. 444–461. Springer (2014)

21. Gladman, B.: Serpent S Boxes as Boolean Functions. http://www.gladman.me.uk/
22. de Groot, W., Papagiannopoulos, K., de la Piedra, A., Schneider, E., Batina, L.:

Bitsliced masking and ARM: friends or foes? In: LightSec. Lecture Notes in Com-
puter Science, vol. 10098, pp. 91–109. Springer (2016)

23. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: CRYPTO. Lecture Notes in Computer Science, vol. 2729, pp.
463–481. Springer (2003)

24. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: CHES.
Lecture Notes in Computer Science, vol. 5747, pp. 1–17. Springer (2009)

25. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: CRYPTO. Lecture Notes in Computer Science, vol. 1109, pp.
104–113. Springer (1996)

26. Kuhn, M.G.: Electromagnetic eavesdropping risks of flat-panel displays. In: Privacy
Enhancing Technologies. Lecture Notes in Computer Science, vol. 3424, pp. 88–107.
Springer (2004)

27. Lee, C.: Biclique cryptanalysis of PRESENT-80 and PRESENT-128. The Jour-
nal of Supercomputing 70(1), 95–103 (2014), http://dx.doi.org/10.1007/

s11227-014-1103-3
28. Neumann, J.: Code generator for bit permutations. http://programming.

sirrida.de/calcperm.php
29. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-

channel attacks and glitches. In: ICICS. Lecture Notes in Computer Science, vol.
4307, pp. 529–545. Springer (2006)

30. O’Flynn, C., Chen, Z.D.: Side channel power analysis of an AES-256 bootloader.
In: CCECE. pp. 750–755. IEEE (2015)

20



31. Papapagiannopoulos, K.: High Throughput in Slices: The Case of PRESENT,
PRINCE and KATAN64 Ciphers. In: RFIDSec. Lecture Notes in Computer Sci-
ence, vol. 8651, pp. 137–155. Springer (2014)

32. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptology 24(2), 322–345 (2011),
https://doi.org/10.1007/s00145-010-9086-6

33. Poschmann, A.Y.: Lightweight cryptography: cryptographic engineering for a per-
vasive world. Ph.D. thesis, Ruhr University Bochum (2009), http://d-nb.info/
996578153

34. Rodrigues, B., Pereira, F.M.Q., Aranha, D.F.: Sparse representation of implicit
flows with applications to side-channel detection. In: CC. pp. 110–120. ACM (2016)

35. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.,
Kohno, T., Stay, M.: The Twofish Team’s Final Comments on AES Selec-
tion. https://www.schneier.com/academic/paperfiles/paper-twofish-final.
pdf, accessed: March, 2017

36. Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4. In: Avanzi,
R., Heys, H. (eds.) Selected Areas in Cryptology – SAC 2016. Lecture Notes in
Computer Science, Springer-Verlag Berlin Heidelberg (2016), to appear.

37. for Standardization, I.O.: ISO/IEC 29192-2:2012. https://www.iso.org/

standard/56552.html, accessed: February, 2017
38. Wang, M.: Differential cryptanalysis of PRESENT. IACR Cryptology ePrint

Archive 2007, 408 (2007), http://eprint.iacr.org/2007/408

21


