
Cryptanalysis of a Pseudorandom Generator

Based on Braid Groups

Rosario Gennaro1 and Daniele Micciancio2,?

1 IBM T.J.Watson Research Center, New York, USA,
rosario@watson.ibm.com

2 University of California, San Diego. La Jolla, California, USA,
daniele@cs.ucsd.edu

Abstract. We show that the decisional version of the Ko-Lee assump-
tion for braid groups put forward by Lee, Lee and Hahn at Crypto 2001 is
false, by giving an efficient algorithm that solves (with high probability)
the corresponding decisional problem. Our attack immediately applies to
the pseudo-random generator and synthesizer proposed by the same au-
thors based on the decisional Ko-Lee assumption, and shows that neither
of them is cryptographically secure.

1 Introduction

The search for computationally hard problems to be used as a basis of secure
encryption functions is a central problem in cryptography. Recently, braid groups
have attracted the attention of many cryptographers as a potential source of
computational hardness and many cryptographic protocols have been suggested
based on braid groups [1, 10, 11]. Computational assumptions and cryptographic
protocols based on braid groups often resemble similar constructions based on
number theoretic groups.
In this paper we point out some fundamental differences between braid groups

and number theoretic ones, and show that protocols based on braid groups that
are naively designed by analogy with number theoretic groups, can be easily
broken. In particular, we show that the decisional version of the Ko-Lee problem
put forward by Lee, Lee and Hahn in [11], can be efficiently solved and cannot
be used as a basis for the design of secure cryptographic functions. Our attack
is extremely efficient: for the values of the security parameters suggested in
[11] it only requires a handful of arithmetic operations. Moreover, the attack is
asymptotically fast (i.e., polynomial in the input size) and cannot be avoided
simply by increasing the value of the security parameter.
Our attack immediately invalidates the security proof of the pseudo-random

generator suggested in [11], based on the conjectured (and now disproved) hard-
ness of the decisional Ko-Lee problem. In fact, the scope of our attack extends
beyond simply invalidating the computational assumption. Essentially the same
techniques used to show that the computational assumption is false, can be used

? Supported in part by NSF Career Award CCR-0093029

to break the “pseudo-random” braid generator proposed in [11] and efficiently
distinguish the braids produced by the generator from truly random braids. Our
attack applies to the pseudo-random braid generator, as well as the pseudo-
random braid synthesizer proposed in [11].

We point out that our attack does not seem to apply to the computational
version of the Ko-Lee problem, as used in [10] to design a practical encryption
scheme in the random oracle model [2]. Without “random oracles”, our attack
could have been used to extract partial information about the message in the
encryption scheme proposed in [10], thereby breaking semantic security. (I.e.,
the standard notion of security for encryption schemes, see [9].) The use of “ran-
dom oracles” in [10] protects their encryption scheme from the kind of attacks
described in this note, and seems to require a solution to the computational
version of the Ko-Lee assumption in order to successfully attack the system. A
similar “fix” (i.e., applying a hash function modeled as a random oracle to the
output of the generator) would clearly apply to the generator of [11] as well,
but it would also make the problem studied in [11] completely trivial: in the
random oracle model, an extremely efficient pseudo-random generator can be
immediately built applying the random oracle directly to the seed, without any
computational assumption about braids whatsoever.

It is important to observe that in order to make the result of a Diffie-Hellman
or Ko-Lee key exchange look pseudo-random, it is not enough to apply a universal
hash function [6]. Indeed universal hash functions produce an almost-random
output when starting from an input that has enough entropy to begin with, and
this seems to require the decisional assumption which we prove to be false for
the case of braid groups. In other words, to prove semantic security based only
on the computational Diffie-Hellman or Ko-Lee assumption the full power of the
random oracle model seems to be required.

Our attack does not imply that braid groups cannot be used for cryptographic
purposes, and we believe that the use of braid groups as an alternative to number
theory in cryptographic applications is an attractive and promising research area.
However, extreme care must be used to avoid pitfalls as those exploited in our
attack, and cryptographic protocols based on the hardness of computational
problems on braid groups must be carefully validated by accurate proofs of
security.

Most of the proposed cryptographic schemes based on braid groups, rely on
the hardness of the conjugacy problem. Besides [10, 11] other schemes include [1]
for example. We point out that our attack to the Decisional Ko-Lee assumption,
also reveals a more general fact that applies to all the schemes above. The one-
way function constructed from the conjugacy problem reveals partial information
about its input (it is indeed this partial information that allows us to build our
attack). This leakage of information can be avoided by a careful choice of the
design parameters (i.e., by working in an appropriate subgroup), which should
be incorporated in all schemes based on the braid conjugacy problem. This is
however not enough to save the Decisional Ko-Lee Assumption which we show
to be insecure for essentially any choice of the design parameters.

As a final remark, we point out that the proof of security of the “hard-
core” predicate for the conjugacy one-way function described in [11] contains a
fundamental flaw (see Sect. 5). Although we do not know of any cryptanalytic
attack at the time of this writing, the security of that predicate by no means
can be considered proven based on the conjectured intractability of standard
problems on braid groups. Until a satisfactory proof of security is found, the
only way to get hard-core predicates for the braid conjugacy function is to invoke
general results like the Goldreich-Levin predicate [8].

2 Preliminaries

The n-braid group Bn is an infinite non-commutative group defined by the fol-
lowing group presentation:

Bn =

〈

σ1, . . . , σn−1 :
σiσjσi = σjσiσj if |i− j| = 1, and
σiσj = σjσi if |i− j| ≥ 2

〉

The integer n is called the braid index. Elements of Bn are called n-braids.
We can give braids the following geometric interpretation. Think of n strands
hanging contiguously from the ceiling. Each generator σi represents the process
of swapping the ith strand with the next one (with the ith strand going under
the (i+ 1)th one).
The multiplication of two braids a, b is then defined as their concatenation

(i.e. geometrically putting a on top of b). The identity e is the braid of n straight
strands. The inverse of a is the reflection of a across an horizontal line at the
bottom.
There is an efficient algorithm to put braids in a normal form. We are not

going to use this fact, except for allowing us to define uniquely the length of a
braid a, which we denote by |a|.

Permutations vs Braids. It is interesting to note that there is a natural
projection from braids to permutations. Geometrically, given a braid a we can
define a permutation πa induced by a as follows. For the i

th strand, consider the
position j in which this strand ends at the bottom of a, and define πa(i) = j.
We will make extensive use of this projection from braids to permutations.

Conjugacy. Given a braid a, we say that another braid y is a conjugate of a
if there exists a braid x such that y = xax−1. It is assumed that solving the
conjugacy problem (i.e., retrieving x from a and y) is computationally hard in
Bn.

2.1 Key Exchange Based on Braids

At Crypto 2000, [10] suggested a new key exchange protocol based on the con-
jugacy problem on braid groups. We briefly recall their ideas here.

Notation: For the rest of the paper, we assume that n is even, and let ` = n
2
.

The key exchange protocol in [10] concerns the braid groups Bn with even n,
and the two subgroups BL, BR ⊂ Bn defined as follows:

– BL is the subgroup generated by σ1, . . . , σ`−1, i.e., the subgroup of braids
that only act on the left strings 1, . . . , `.

– BR is the subgroup generated by σ`+1, . . . , σn−1, i.e., the subgroup of braids
that only act on the right strings `+ 1, . . . , n.

The relevant property is that elements of BL and BR commute, i.e., for any
xl ∈ BL and xr ∈ BR we have xlxr = xrxl.

This property was used in [10] to construct the following key exchange pro-
tocol. Let a be a public braid, a ∈R Bn, with |a| = k (where k is a security
parameter). Alice has a public key y, where y = xlax

−1
l for xl ∈R BL, |xl| = k.

Similarly Bob has a public key z, where z = xrax
−1
r for xr ∈R BR, |xr| = k.

The shared key is s = xlxrax
−1
r x−1

l . Indeed, since xl and xr commute, s can be
computed given one of the public keys and the other secret key:

s = xlxrax
−1
r x−1

l = xrxlax
−1
l x−1

r = xryx
−1
r = xlzx

−1
l

Notice that it is necessary to assume that conjugacy is hard in Bn for this to
be a secure protocol (otherwise an attacker could compute x or w on its own).
But the security of the protocol actually relies on a stronger assumption: i.e. that
s must be hard to compute given y, z. We call this the Computational Ko-Lee
Assumption.

Moreover this assumption alone is not sufficient to achieve provable semantic
security for the resulting cryptosystem, since if s is used as a shared key it
should be random or pseudo-random. In [10] this problem is resolved by setting
key = H(s) where H is a suitable hash function and security can be proven in
the random oracle model.

There is an analogy with the Diffie-Hellman key exchange, where Alice has
a public key y = axl and Bob has public key z = axr , and they share the key
key = H(s) where s = axlxr . In order to prove security (in the random oracle
model) the (Computational) Diffie-Hellman assumption is required, not just the
hardness of computing discrete logarithms. Alternatively, one can assume that
the Diffie-Hellman problem is hard even in its decisional version: given a, y, z, w
it is hard to tell (with probability substantially better than 1/2 if w = s or
w is a randomly chosen element in the group generated by a. This Decisional
Diffie-Hellman (DDH) assumption has been widely used in cryptography and
it is now a relatively established assumption. Under the DDH assumption, no
random oracle is needed because s is already a pseudo-random group element.
(See [3] for further discussion of the DDH problem.)

3 Main Result

In this section we prove the main result of the paper, namely that the decisional
version of the Ko-Lee assumption is false. This assumption was suggested in [11]
as the basis for some constructions of pseudo-random generators and synthesizers
based on braid groups.

The assumption can be considered the equivalent of the Decisional Diffie-
Hellman Assumption for the key exchange scheme based on braid groups pro-
posed in [10].
Informally the Decisional Ko-Lee assumption says the following.

Given the following public information: a, y, z where
– a ∈R Bn, with |a| = k,
– y = xlax

−1
l for xl ∈R BL, |xl| = k

– z = xrax
−1
r for xr ∈R BR, |xr| = k

it is hard to distinguish the “shared key” s = xlxrax
−1
r x−1

l from a ran-
dom conjugate of a of the form waw−1.

The Ko-Lee Decisional Assumption, goes a step further with respect to its
computational counterpart. It claims that, not only s is hard to compute, but
it’s even hard to distinguish from a random conjugate of a. In other words, under
this assumption the hash function H would not be necessary to prove security
since s could be used directly as a random shared key.
More formally the decisional version of the Ko-Lee Assumption can be stated

as follows.

Assumption 1. For every probabilistic polynomial-time Turing machine D, for
every polynomial P , for all sufficiently large k

|Pr[D(a, xlax
−1
l , xrax

−1
r , xlxrax

−1
r x−1

l) = 1]

−Pr[D(a, xlax
−1
l , xrax

−1
r , waw−1) = 1]| ≤

1

P (k)

where the probability is taken over the coin tosses of D and the following random
choices: a,w ∈R Bn, xl ∈R BL, xr ∈R BR, all braids of length k.

We show that Assumption 1 is false, by exhibiting partial information about
s that can be computed from the public information a, y, z. In fact we describe a
sequence of attacks. Each attack exploits some specific partial information, and
can be avoided by suitably restricting the way a and w are chosen. But then,
another attack applies. The sequence of attacks leads to a complete break of
the system, showing that for any reasonable choice of probability distribution
on the key space a, xl, xr, w there is an efficient algorithm that distinguishes
(xlxr)a(xlxr)

−1 from a random conjugate waw−1.

3.1 The Permutation Attack

The main idea behind the first attack is to focus on the permutation induced by
each braid, over the set of strings {1, 2, . . . , n}. We are going to use the fact that
the braid xl only acts on the strings on the left, while the braid xr acts only on
the strings on the right.
Our attack shows that the permutation induced by s must satisfy some con-

straints, which are very unlikely to be satisfied by the permutation induced by
a random conjugate. Our attack is actually stronger than needed since it works
for almost any braid a and not just for a randomly selected one. We start with
a basic fact about the permutation induced by a conjugate of a braid.

Fact 2. Let a, x, y ∈ Bn be such that y = xax−1. Then πa and πy have the same

cycle structure. Moreover if A is a cycle in πa, then the corresponding cycle in

πy is π
−1
x (A).

The above fact gives some information about the permutation πx which is hidden
in the conjugate y. We are going to use this information to distinguish s from
a random conjugate. The only case in which the above fact does not reveal
anything about πx is when πa is the identity permutation. We say that a is a
pure braid if πa is the identity permutation. We are going to show that if a is
not a pure braid than Assumption 1 is false.

Remark: Before we show that Assumption 1 is false, let us point out that Fact 2
holds regardless of the way we choose the string x used for the conjugation. Thus,
we are basically pointing out that the conjugacy problem, although supposed to
be hard to solve, does reveal some partial information about x, unless the braid
a is chosen to be pure. Since the conjugacy problem is used in all the braid
group cryptosystems, this basic fact applies to all of them. To avoid this leakage
of partial information, it seems that the all the schemes above should select the
braid a as a pure braid.

We now resume the proof that Assumption 1 is false when a is not a pure
braid. We distinguish two cases. In the first case, the permutation πa maps some
elements of {`+1, `+2, . . . , n} to the set {1, 2, . . . , `}, i.e., from the right half to
the left half. (Notice that this is equivalent to the symmetric condition, i.e., the
permutation maps some string from the left half to the right half.) The second
case covers all the other non-trivial permutations, i.e., the ones that have cycles
of at least size 2 and they are all contained in one of the two halves.

Case 1. Let i be an integer in {` + 1, ` + 2, . . . , n} such that j = πa(i) ∈
{1, 2, . . . , `}.
We now find the element j′ = πy(i) = π−1

xl
(πa(πxl

(i))). Since πxl
only acts

on elements on the left, we have that πxl
(i) = i. Thus j′ = π−1

xl
(πa(i)) = π−1

xl
(j).

In other words we found the mapping of the point j under π−1
xl
.

A similar reasoning tells us that if we take i′ such that πz(i
′) = j we have that

πxr
(i′) = i. Indeed by taking the inverse of πz we get i

′ = πx−1

r

(πa−1(πxr
(j))).

Now recall that j = πa(i) is on the left and xr acts only on the right elements,
thus we simplify to πxr

(i′) = i as desired.
At this point we can check if s was generated from the public keys since if

so πs must map i
′ into j′. When s = waw−1, this is true if and only if πa maps

πw(i
′) to πw(j

′). For a randomly generated conjugate, the pair (πw(i
′), πw(j

′)) is
distributed (almost) uniformly, so the probability that πa maps πw(i

′) to πw(j
′)

is roughly proportional to 1/n.

Case 2. This case is actually easier than the previous one. We are assuming
that πa does not map any element “across the border” from the two halves. In
other words all the cycles of πa are fully contained in either half and πa can be
written as the product πa = πal

πar
where πal

acts only on the left elements and

πar
only on the right ones. But then the cycles in πs will be the union of the

cycles on the left half of πy and the cycles on the right half of πz. A random
conjugate will not have this property with probability close to 1, unless a is a
pure braid and πa is the identity permutation.

We have seen that when the braid a is randomly chosen (or, even more
generally, whenever a does not belong to the subgroup of pure braids) it is
easy to distinguish triples xlax

−1
l , xrax

−1
r , xlxra(xlxr)

−1 (xl and xr chosen at
random from BL and BR) from xlax

−1
l , xrax

−1
r , waw−1 (where w is just any

random braid).

An easy “fix” that comes to mind is to redefine the decisional Ko-Lee assump-
tion, setting w to the product of two random braids w = wlwr, uniformly chosen
from BL and BR. In other words, instead of claiming that s = xlxra(xlxr)

−1

is indistinguishable from a random conjugate of the form waw−1 with w ∈R

Bn, one could claim that s is indistinguishable from a conjugate of the form
wlwraw

−1
r w−1

l where wl ∈R BL and wr ∈R BR. But our distinguisher works
with this modified definition as well, as long as a is not a pure braid. Details
follows. (1) If permutation πa maps some element of {`+ 1, . . . , n} to {1, . . . , `}
we can find i′ and j′ such that πs(i

′) = j′, exactly the same way we did is
Case 1 above. If w is chosen as the product wlwr of a left and right half braids,
then πw(i

′) = πwr
(i′) is distributed uniformly at random in {` + 1, . . . , n} and

πw(j
′) = πwl

(i′) is distributed uniformly at random in {1, . . . , `}. So, the prob-
ability that πa maps πw(i

′) to πw(j
′) is at most 1/(n/2) = 2/n. (2) If permu-

tation πa is the product πal
πar

of a left and right permutation, then πs is also
the product of a left and right permutation, and we can completely recover πs

as the product of the left half of πy and the right half of πz. Also in this case,
if s = waw−1 is a random conjugate with w = wlwr, the probability of getting
the right permutation πs is at most 2/n, unless a is a pure braid and πa is the
identity permutation.

This shows that restricting w to the product wlwr of a left and half braid does
not make the problem substantially harder. Still we believe that the decisional
Ko-Lee problem is more naturally defined with w chosen at random within the
subgroup BRBL, and in the rest of this section we concentrate on this alternative
definition.

3.2 The Half-Braid Attack

We now consider the case where a is a pure braid, and show that unless the choice
of a is restricted to even a smaller subgroup, it is possible to successfully attack
the decisional problem. For a pure braid a, define the left and right projections
τl(a) and τr(a) as the braids (over n/2 strings) obtained removing the first or last
half of the strings. Now, we are given a, xlax

−1
l , xrax

−1
r and s = waw−1 where

either w = xlxr or w = wlwr for independently and randomly chosen wl, wr. It
is easy to see that in the first case τl(xlax

−1
l) = τl(s) and τl(xrax

−1
r) = τr(s),

while in the second case equality does not hold (with high probability) unless
τl(a) = τr(a) = e are both the identity braid over n/2 strings.

At this point, the only case for which our attacks do not work is when a is
chosen as a pure braid with τl(a) = τr(a) = e, and w is chosen as the product
w = wlwr of a left and right braid. This seems an interesting subgroup of
braids and an interesting special case of the conjugacy problem. If the conjugacy
problem were hard for this special case even in the decisional version, then one
could build a pseudo-random generator out of it, fixing the problem of [11].
Unfortunately we will see in the next subsection that even under this restrictions
the decisional problem is easy.

3.3 The Single String Attack

Assume we start from a braid a such that τl(a) = τr(a) is the identity. For every
i = n/2 + 1, . . . , n, consider the braid τ i

l (a) obtained from a removing all right
strings except the ith. These are very simple braids: braids obtained running a
single string around n/2 parallel strings. We claim that unless braids τ i

l (a) are
the same for all i = n/2+1, . . . , n, we can break the decisional Ko-Lee problem.
Assume they are not all the same and divide the indices i = n/2, . . . , n

according to their equivalence classes, with i ≡ j if and only if τ i
l (a) = τ j

l (a).
Notice that this equivalence relation is efficiently computable because the word
problem on braids can be solved in polynomial time. Moreover, since here we
are considering a very special class of braids, equivalence can be decided very
efficiently.
Notice that the equivalence relation induced by τ i

l (a) = τ j
l (a) is the same as

the one induced by τ i
l (xlax

−1
l) = τ j

l (xlax
−1
l). Similarly, τ

i
l (xrax

−1
r) = τ j

l (xrax
−1
r)

induces the same equivalence classes as τ i
l (xlxra(xlxr)

−1) = τ j
l ((xlxr)a(xlxr)

−1).
On the other hand, when we compute the conjugate under a right braid xr the
equivalence classes are mapped by the permutation associated to xr. So, we
can decide whether (wlwr)a(wlwr)

−1 = (xlxr)a(xlxr)
−1 or not by comparing

the equivalence relation induced by τ i
l (wlwra(wlwr)

−1) = τ j
l ((wlwr)a(wlwr)

−1)

with that of τ i
l (xra(xr)

−1) = τ j
l ((xr)a(xr)

−1).
In order to avoid this attach braid a should be chosen in such a way that not

only τr(a) = τl(a) = e, but also for all i, j ∈ {n/2, . . . , n}, τ i
l (a) = τ j

l (a).
Using τr instead of τl we get a symmetric attack that shows that we need

an analogous condition τ i
r(a) = τ j

r (a) for all i, j = 1, . . . , n/2. Now the question
is: assume that the braids are chosen in such a way that all above conditions
are satisfied; what are the remaining braids? and, is the conjugacy problem for
these braids still hard?

3.4 The Trivial Attack

Consider pure braids a satisfying all the conditions stated at the end of the
previous subsection:

– τr(a) = e
– τl(a) = e
– τ i

l (a) = τ j
l (a) for all i, j ∈ {n/2 + 1, . . . , n},

– τ i
r(a) = τ j

r (a) for all i, j ∈ {1, . . . , n/2}.

It is easy to see that there are only very few braids that satisfy these con-
ditions: the group generated by the braid a = (∆n/2∆

−1
n ∆n/2)

2, where ∆k is
the fundamental braid over (the first) k strings. Essentially this is a braid ob-
tained swapping the left and right strings without permuting string in each half,
and passing all the right strings over the left strings. The whole operation is
performed twice so that the permutation of a is the identity, i.e., a is a pure
braid.
But the conjugacy class under left or right braids of a (or any of its powers)

is trivial, i.e., xlax
−1
l = a and xrax

−1
r = a. So, the instances of the decisional

Ko-Lee problem have always the form (a, a, a, a) and the answer is always yes.

4 The Attack Extends to the Pseudo-Random
Constructions

In [11] the Ko-Lee Decisional Assumption is used to construct a pseudo-random
generator and a pseudo-random synthesizer. By showing that the underlying as-
sumption is false we have removed the proof of security for the above construc-
tions. However that does not immediately imply an attack on the generators.
In this section we show that it is possible to use the above attack to distin-

guish the output of the generators from random. This is because the construc-
tions are a straightforward application of the conjugacy function. Here we only
show the attack on the pseudo-random generator.
The construction is a follows: there are the following public parameters:

– a ∈R Bn, with |a| = k
– a1, . . . , am, with ai = xiax

−1
i for xi ∈R BL with |xi| = k.

On input a random seed w ∈R BR the generator outputs the conjugate of
w with respect to all the ai’s. That is, the output is m braids s1, . . . , sn where
si = waiw

−1. Clearly each component of the output can be distinguished from
random using the attack described above.
It should be noted that this attack applies to the “pseudo-random braid

generator”, i.e., a function that on input a short seed, produces a sequence of
seemingly random braids. In [11] it is suggested that if one wants a “pseudo-
random bit generator”, then universal hashing and the left-over hash lemma can
be used to transform a pseudo-random sequence of braids into a pseudo-random
sequence of bits. However, the converse is not necessarily true: if the original
braid sequence is not pseudo-random, there is no guarantee that applying univer-
sal hashing results in a bit-sequence which is computationally indistinguishable
from random.

5 On the Bit Security of the Conjugacy Problem

We now offer some remarks on an independent result still contained in [11]. Be-
sides the pseudo-random constructions based on the Ko-Lee Decisional Assump-

tion, [11] claims to construct a hard-core bit for the one-way function induced
by the conjugacy problem.
Let a ∈ Bn and define the following function over Bn, f(x) = xax−1. By

restricting the input size and assuming the conjugacy problem is hard, it is
reasonable to assume that f is a one-way function.
The next question is: does f have any natural hard-core predicate (by natural,

we mean something specific to the description of f and not a generic hard-core
predicate like the Goldreich-Levin [8] which holds for any one-way function).
We recall that a hard-core predicate π for f is defined as follows. We say

that the predicate π over Bn is hard-core if for any efficient (i.e., PPT) Turing
machine A we have that

Probx,a∈Bn
[A(a, xax−1) = π(x)] =

1

2
+ ε (1)

where ε is a negligible quantity. We stress that the probability of success is taken
over BOTH the internal coin tosses of A and the choice of x. In other words if
we find an A that predicts π(x) for just 51% of the inputs x, then π is NOT an
hard-core bit for f .
Usually proofs for hard-core bits go by contradiction. We assume that there

exists an oracle A that contradicts Equation 1. We then show how to use A to
invert f over a random point. The proof is usually complicated by the fact that
A’s responses on any input (a, xax−1) may be wrong and cannot be accepted at
face value. Usually the proof contains some random self-reducibility argument
(although that’s not necessarily the only way to prove hard-core bits). That is
instead of querying A only on (a, xax−1) we also query it on several randomized
versions of it and then use some trick to extract the right value of π(x) from all
these responses (which in the majority are correct).
In [11] such an hard-core predicate and a proof of security is supposedly pre-

sented. For the discussion that follows, it is not really important to understand
what the hard-core predicate is. For completeness, we briefly recall the definition
anyway. Every braid can be uniquely expressed in canonical form as the product
∆u

nχ1 · · ·χp where ∆n is the fundamental braid defined in Sect. 3, and χp are
permutation braids, i.e., braids where each string can be described as a straight
line from the initial point to the end point, and at all the crossings the left
string goes under the right string. This normal form (called the left canonical
form) can be computed in polynomial time. The candidate hard core predicated
π proposed in [11] takes a braid x as input, computes the left canonical form
x = ∆u

nχ1 · · ·χp and outputs the parity of u.
The proof of security in [11] misses the whole step of randomizing over the

inputs to the predicting oracle. The reduction from predicting π to inverting f
assumes that the oracle A answers correctly FOR ALL x with sufficiently high
probability (bounded away from a 1/2), but this probability is taken ONLY over
the coin tosses of A. If x happen to be one of the bad inputs for which A gives
the wrong answer (possibly for any value of A internal coin tosses), there is no
guarantee that majority voting on A answers relative to the same input x and
independent coin tosses produces the right answer.

Such set of bad inputs might constitute 49% of the possible braids, and still π
not be a hard-core predicate because (when x is chosen at random) A has a 1%
advantage in predicting π(x) over a random guess. (For cryptographic security,
even 1% is not a negligible advantage. Formally speaking, the 49% and 1% above
should be interpreted as (50−ε)% and ε% where ε(k) is a function of the security
parameter such that ε(k) < 1/kc for all c > 0 and for all sufficiently large k.)
We were not able to repair the proof of security for the hard-core predicate

presented in [11]. Moreover we were not able to construct any other natural hard-
core predicate. Thus we conclude that the construction of a hard-core predicate
for the conjugacy problem is still an (interesting) open problem.

6 Conclusion

We showed that the decisional version of the Ko-Lee Assumption is false in a
very strong sense: for essentially all reasonable input probability distributions,
there is a very efficient distinguisher that invalidate the assumption. The attack
extends to the pseudo-random generator and synthesizer proposed in [11] which
are consequently shown to be insecure.
With regard to the conjugacy problem over braids, which is at the basis of

all the cryptographic schemes based on braid groups, we show two facts. (1)
The conjugacy problem reveals some partial information about the permutation
induced by the input braid, unless the central braid is chosen to be pure; we
suggest to incorporate this choice in the design of cryptographic schemes based
on the conjugacy problem. (2) The proof of a hard-core bit for the conjugacy
problem in [11] is flawed and we were not able to repair it.
In spite of our attacks, braid groups remain an attractive and promising tool

for the construction of cryptographic algorithms. However our findings highlight
the need for extreme care in analyzing these new protocols and warn about
drawing unmotivated conclusions from parallel ones in number-theoretic con-
structions.
Which leads us, in turn, to many interesting open problems. For example,

although we proved that the result of a Ko-Lee exchange is not totally random, it
might still be possible to prove that it contains a lot of “computational entropy”.
If true, this would allow the construction of an efficient secure encryption scheme
without resorting to the random oracle model, and possibly provide a fix for
the pseudorandom constructions presented in [11]. Also, is there a hard-core
bit for the conjugacy problem? Another interesting problem is related to the
construction of digital signatures. In [13] it is shown that certain groups of
points on an supersingular elliptic curves have the property that the Decisional
Diffie-Hellman problem is easy, while the Computational Diffie-Hellman problem
is presumably hard. This properties can be used to design a digital signature
scheme as shown in [5, 12, 4]. The idea is the following. The secret and public
keys of the system are a and y = ga, and the signature of messagem is computed
as s = ma. It is easy to see that the signature is valid if and only if (g, y,m, s) is
a valid DDH sequence. An interesting open question is whether the conjectured

hardness of the conjugacy problem for braid groups, together with the techniques
to attack the decisional problem presented in this paper, can be used to design
a provably secure digital signature scheme based on braid groups.

7 Acknowledgements

We would like to thank N. Howgrave-Graham for useful discussions and for
drawing our attention to the subgroup of pure braids. A preliminary version of
this attack was presented at the rump session of Crypto 2001 [7]. We would like
to thank E. Lee and S.G. Hahn for useful discussions following the rump session
presentation, and the anonymous referees for their comments to the preliminary
version of this paper.

References

1. I. Anshel, M. Anshel and D. Goldfeld. An Algebraic Method for Public-Key Cryp-
tography. Mathematical Research Letters, 6 (1999), pp. 287–291.

2. M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for design-
ing efficient protocols”, 1st ACM Conference on Computer and Communications

Security, 1993, 62-73.
3. D. Boneh. The Decision Diffie-Hellman Problem. Third Algorithmic Number
Theory Symposium. LNCS 1423, pp.48–63, Springer 1998.

4. D. Boneh, H. Shacham, and B. Lynn. Short signatures from the Weil pairing.
Asiacrypt ’2001. LNCS 2248, pp. 514–532, Springer-Verlag 2001.

5. S. Brands. An efficient off-line electronic cash system based on the representa-
tion problem. Technical Report CS–R9323, CWI (Centre for Mathematics and
Computer Science), Amsterdam, 1993.

6. J.L. Carter and M.N. Wegman, Universal classes of hash functions, Journal of
Computer and System Sciences 18:143-154, 1979.

7. R. Gennaro, D. Micciancio. Cryptanalysis of a Pseudorandom Generator based on
Braid Groups. CRYPTO’2001 rump session, August 2001.

8. O. Goldreich, L. Levin. Hard-core Predicates for any One-way Function. 21st
STOC, pp.25-32, 1989.

9. S. Goldwasser, S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences 28:270–299, April 1984.

10. K.H. Ko, S.J. Lee, J.H. Cheon, J.W. Han, J. Kang, C. Park. New Public-Key Cryp-
tosystem Using Braid Groups. CRYPTO’2000, LNCS 1880, pp.166–183, Springer
2000.

11. E. Lee, S.J. Lee, S.G. Hahn. Pseudorandomness from Braid Groups.
CRYPTO’2001, Springer 2001.

12. T. Okamoto, D. Pointcheval The Gap problem: a new class of problems for the
security of cryptographic primitives Public Key Cryptography, PKC 2001, LNCS
1992, Springer-Verlag 2001.

13. E. R. Verheul Evidence that XTR Is More Secure than Supersingular Elliptic
Curve Cryptosystems Eurocrypt’2001. LNCS 2045, p. 195-210

