
Faster Secure Two-Party Computation in the
Single-Execution Setting

Xiao Wang1?, Alex J. Malozemoff2??, and Jonathan Katz1?

1 University of Maryland, USA
{wangxiao,jkatz}@cs.umd.edu

2 Galois, USA
amaloz@galois.com

Abstract. We propose a new protocol for two-party computation, se-
cure against malicious adversaries, that is significantly faster than prior
work in the single-execution setting (i.e., non-amortized and with no pre-
processing). In particular, for computational security parameter κ and
statistical security parameter ρ, our protocol uses only ρ garbled circuits
and O(ρ + κ) public-key operations, whereas previous work with the
same number of garbled circuits required either O(ρ · n + κ) public-key
operations (where n is the input/output length) or a second execution
of a secure-computation sub-protocol. Our protocol can be based on the
decisional Diffie-Hellman assumption in the standard model.

We implement our protocol to evaluate its performance. With ρ = 40,
our implementation securely computes an AES evaluation in 65 ms over
a local-area network using a single thread without any pre-computation,
22× faster than the best prior work in the non-amortized setting. The
relative performance of our protocol is even better for functions with
larger input/output lengths.

1 Introduction

Secure multi-party computation (MPC) allows multiple parties with private in-
puts to compute some agreed-upon function such that all parties learn the output
while keeping their inputs private. Introduced in the 1980s [38], MPC has become
more practical in recent years, with several companies now using the technology.
A particularly important case is secure two-party computation (2PC), which is
the focus of this work.

Many existing applications and implementations of 2PC assume that all par-
ticipants are semi-honest, that is, they follow the protocol but can try to learn
sensitive information from the protocol transcript. However, in real-world appli-
cations this assumption may not be justified. Although protocols with stronger

? Research supported by NSF awards #1111599 and #1563722.
?? Conducted in part with Government support through the National Defense Science

and Engineering Graduate (NDSEG) Fellowship, 32 CFG 168a, awarded by DoD, Air
Force Office of Scientific Research. Work done while at the University of Maryland.

security guarantees exist, 2PC protocols secure against malicious adversaries are
relatively slow, especially when compared to protocols in the semi-honest setting.
To address this, researchers have considered variants of the classical, “single-
execution” setting for secure two-party computation, including both the batch
setting [18,28,29,33] (in which the computational cost is amortized over multi-
ple evaluations of the same function) and the offline/online setting [28,29,33]
(in which parties perform pre-processing when the circuit—but not the parties’
inputs—is known). The best prior result [33] (done concurrently and indepen-
dently of our own work) relies on both amortization and pre-processing (as well
as extensive parallelization) to achieve an overall amortized time of 6.4 ms for
evaluating AES with 40-bit statistical security. Due to the pre-processing, how-
ever, it introduces a latency of 5222 ms until the first execution can be done.

In addition, existing 2PC schemes with security against malicious adversaries
perform poorly on even moderate-size inputs or very large circuits. For example,
the schemes of Lindell [24] and Afshar et al. [1] require a number of public-key
operations at least proportional to the statistical security parameter times the
sum of one party’s input length and the output length. The schemes tailored to
the batch, offline/online setting [29,33] do not scale well for large circuits due to
memory constraints: the garbled circuits created during the offline phase need
either to be stored in memory, in which case evaluating very large circuits is
almost impossible, or else must be written/read from disk, in which case the
online time incurs a huge penalty1 due to disk I/O (see §5).

Motivated by these issues, we design a new 2PC protocol with security against
malicious adversaries that is tailored for the single-execution setting (i.e., no
amortization) without any pre-processing. Our protocol uses the cut-and-choose
paradigm [25] and the input-recovery approach introduced by Lindell [24], but
the number of public-key operations required is independent of the input/output
length. Overall, we make the following contributions.

– Our protocol is more efficient, and often much more efficient, than the pre-
vious best protocol with malicious security in the single-execution setting
(see Table 1). Concretely, our protocol takes only 65 ms to evaluate an AES
circuit over a local-area network, better than the most efficient prior work
in the same setting.

– We identify and fix bottlenecks in various building blocks for secure computa-
tion; these fixes may prove useful in subsequent work. As an example, we use
Streaming SIMD Extensions (SSE) to improve the performance of oblivious-
transfer extension, and improve the efficiency of the XOR-tree technique
to avoid high (non-cryptographic) complexity when applied to large inputs.
Our optimizations reduce the cost of processing the circuit evaluator’s input
by 1000× for 216-bit inputs, and even more for larger inputs.

– We release an open-source implementation, EMP-toolkit [36], with the aim
of providing a benchmark for secure computation and allowing other re-
searchers to experiment with, use, and extend our code.

1 The performance numbers reported in [29,33] do not take this into account.

Protocol ρ Time Notes

PSSW09 [32] 40 1,114 s
SS11 [34] 40 192 s

NNOB12 [31] 55 4,000 ms
KSS12 [23] 80 1,400 ms 256 CPUs/party
FN13 [13] 39 1,082 ms GPU

AMPR14 [1] 40 5,860 ms
FJN14 [11] 40 455 ms GPU
LR15 [29] 40 1,442 ms

Here 40 65 ms

Table 1. Times for two-party computation of AES, with security against malicious
adversaries, in the single-execution setting. The statistical security parameter is ρ.
All numbers except for [29] are taken directly from the cited paper, and thus are
based on different hardware/network configurations. The numbers for [29] are from
our own experiments, using the same hardware/network configuration as for our own
implementation. We do not include [33] here because it is not in the single-execution
setting. See §5 for more details.

1.1 High-Level Approach

Our protocol is based on the cut-and-choose paradigm. Let f be the circuit
the parties want to compute. At a high level, party P1, also called the circuit
garbler, begins by generating s garbled circuits for f and sending those to P2, the
circuit evaluator. Some portion of those circuits (the check circuits) are randomly
selected and checked for correctness by the evaluator, and the remaining circuits
(the evaluation circuits) are evaluated. The outputs of the evaluation circuits
are then processed in some way to determine the output.

The input-recovery technique. To achieve statistical security 2−ρ, early cut-
and-choose protocols [34,26,35] required s ≈ 3ρ. Lindell [24] introduced the
input-recovery technique and demonstrated a protocol requiring only s = ρ gar-
bled circuits of f (plus additional, smaller garbled circuits computing another
function). At a high level, the input-recovery technique allows P2 to obtain P1’s
input x if P1 cheats; having done so, P2 can then compute the function itself to
learn the output. For example, in one way of instantiating this approach [24],
every garbled circuit uses the same output-wire labels for a given output wire i,
and moreover the labels on every output wire share the same XOR difference ∆.
That is, for every wire i, the output-wire label Zi,0 corresponding to ‘0’ is random
whereas the output-wire label Zi,1 corresponding to ‘1’ is set to Zi,1 := Zi,0⊕∆.
(The protocol is set up so that ∆ is not revealed by the check circuits.) If P2

learns different outputs for some output wire i in two different gabled circuits—
which means that P1 cheated—then P2 recovers ∆. The parties then run a second
2PC protocol in which P2 learns x if it knows ∆; here, input-consistency checks
are used to enforce that P1 uses the same input x as before.

Afshar et al. [1] designed an input-recovery mechanism that does not require
a secondary 2PC protocol. In their scheme, P1 first commits to its input bit-

by-bit using ElGamal encryption; that is, for each bit x[i] of its input, P1 sends
(gr, hrgx[i]) to P2, where h := gω for some ω known only to P1. As part of the
protocol, P1 sends {Zi,b + ωb}b∈{0,1} to P2 (where, as before, Zi,b is the label
corresponding to bit b for output wire i), with ω = ω0 +ω1. Now, if P2 learns two
different output-wire labels for some output wire, P2 can recover ω and hence
recover x. Afshar et al. use homomorphic properties of ElGamal encryption to
enable P2 to efficiently check that the {Zi,b +ωb}b∈{0,1} are computed correctly,
and for this bit-by-bit encryption of the input is required. Overall, O(ρ · n)
public-key operations (where |x| = n) are needed.

Our construction relies on the same general idea introduced by Afshar et
al., but our key innovation is that we are able to replace most of the public-key
operations with symmetric-key operations, overall using only O(ρ) public-key
operations rather than O(ρ · n); see §3.1 for details.

Input consistency. One challenge in the cut-and-choose approach with the
input-recovery technique is that P2 needs to enforce that P1 uses the same input x
in all the evaluation circuits, as well as in the input-recovery phase. Afshar et
al. address this using zero-knowledge proofs to demonstrate (in part) that the
ElGamal ciphertexts sent by P1 all commit to the same bit across all evaluation
circuits. We observe that it is not actually necessary to ensure that P1 uses the
same input x across all evaluation circuits and in the input-recovery step; rather,
it is sufficient to enforce that the input x used in the input-recovery step is used
in at least one of the evaluation circuits. This results in a dramatic efficiency
improvement; see §3.1 for details.

Preventing a selective-failure attack. 2PC protocols must also prevent a
selective-failure attack whereby a malicious P1 uses one valid input-wire label
and one invalid input-wire label (for one of P2’s input wires) in the oblivious-
transfer step. If care is not taken, P1 could potentially use this to learn a bit
of P2’s input by observing whether or not P2 aborts. Lindell and Pinkas [25]
proposed to deal with this using the XOR-tree approach in which P2 replaces
each bit yi of its input by ρ random bits that XOR to yi. By doing so, it can
be shown that the probability with which P2 aborts is (almost) independent of
its actual input. This approach increases the number of oblivious transfers by a
factor of ρ, but this can be improved by using a ρ-probe matrix [25,35], which
only increases the length of the effective input by a constant factor.

Nevertheless, this constant-factor blow-up in the number of (effective) in-
put bits corresponds to a quadratic blow-up in the number of XOR operations
required. Somewhat surprisingly (since these XORs are non-cryptographic op-
erations), this blow-up can become quite prohibitive. For example, for inputs
as small as 4096 bits, we find that the time to compute all the XORs required
for a ρ-probe matrix is over 3 seconds! We resolve this bottleneck by breaking
P2’s input into small chunks and constructing smaller ρ-probe matrices for each
chunk, thereby reducing the overall processing required. See §4 for details.

Results. Combining the above ideas, as well as other optimizations identified
in §4, we obtain a new 2PC protocol with provable security against malicious

adversaries; see §3.2 for a full description. Implementing this protocol, we find
that it outperforms prior work by up to several orders of magnitude in the
single-execution setting; see Table 1 and §5.

Subsequent work. In our extended version [37] we adopt ideas by David et
al. [10] to further improve the efficiency of our protocol—especially when com-
munication is the bottleneck—by reducing the communication required for the
check circuits (as in [14]).

1.2 Related Work

Since the first implementation of a 2PC protocol with malicious security [27],
many implementations with better performance (including those already dis-
cussed in the introduction) have been developed [32,31,23,35,11,13]. Although
other approaches have been proposed for two-party computation with malicious
security (e.g., [12,31,9]), here we focus on protocols using the cut-and-choose
paradigm that is currently the most efficient approach in the single-execution
setting when pre-processing is not used. Lindell and Pinkas [25] first showed
how to use the cut-and-choose technique to achieve malicious security. Their
construction required 680 garbled circuits for statistical security 2−40, but this
has been improved in a sequence of works [34,26,17,24,7,11,1] to the point where
currently only 40 circuits are required.

2 Preliminaries

Let κ be the computational security parameter and let ρ be the statistical se-
curity parameter. For a bit-string x, let x[i] denote the ith bit of x. We use
the notation a := f(· · ·) to denote the output of a deterministic function,
a ← f(· · ·) to denote the output of a randomized function, and a ∈R S to
denote choosing a uniform value from set S. Let [n] = {1, . . . , n}. We use the
notation (c, d) ← Com(x) for a commitment scheme, where c and d are the
commitment and decommitment of x, respectively.

In Figures 1 and 2, we show functionalities FOT and FcOT for parallel oblivi-
ous transfer (OT) and a weak flavor of committing OT used also by Jawurek et
al. [19]. FcOT can be made compatible with OT extension as in [19].

Throughout this paper, we use P1 and P2 to denote the circuit garbler and
circuit evaluator, respectively. We let n1, n2, and n3 denote P1’s input length,
P2’s input length, and the output length, respectively.

Two-party computation. We use a (standard) ideal functionality for two-
party computation in which the output is only given to P2; this can be ex-
tended to deliver (possibly different) outputs to both parties using known tech-
niques [25,34].

Building blocks. Our implementation of garbled circuits uses all recent op-
timizations [22,32,5,21,39]. Our implementation uses the base OT protocol of
Chou and Orlandi [8], and the OT extension protocol of Asharov et al. [4].

Functionality FOT

Private inputs: P1 has input x ∈ {0, 1}n and P2 has input {Xi,b}i∈[n],b∈{0,1} .

1. Upon receiving x from P1 and {Xi,b}i∈[n],b∈{0,1} from P2, send {Xi,x[i]}i∈[n]
to P1.

Fig. 1. Functionality FOT for oblivious transfer.

Functionality FcOT

Private inputs: P1 has input x ∈ {0, 1}n and P2 has input {Xi,b}i∈[n],b∈{0,1} .

1. Upon receiving x from P1 and {Xi,b}i∈[n],b∈{0,1} from P2, send {Xi,x[i]}i∈[n]
to P1.

2. Upon receiving open from P2, send {Xi,b}i∈[n],b∈{0,1} to P1.

Fig. 2. Reactive functionality FcOT for committing oblivious transfer.

ρ-probe matrix. A ρ-probe matrix, used to prevent selective-failure attacks,
is a binary matrix M ∈ {0, 1}n2×m such that for any L ⊆ [n2], the Hamming
weight of

⊕
i∈LMi (where Mi is the ith row of M) is at least ρ. If P2’s actual

input is y ∈ {0, 1}n2 , then P2 computes its effective input by sampling a random
y′ ∈ {0, 1}m such that y = My′.

The original construction by Lindell and Pinkas [25] has m = max{4n2, 8ρ}.
shelat and Shen [35] improved this to m = n2 + O(ρ + log(n2)). Lindell and
Riva [29] proposed to append an identity matrix to M to ensure that M is full
rank, and to make it easier to find y′ such that y = My′.

3 Our Protocol

3.1 Protocol Overview

We describe in more detail the intuition behind the changes we introduce. This
description is not complete, but only illustrates the main differences from prior
work. Full details of our protocol are given in §3.2.

In our protocol, the two parties first run ρ instances of OT, where in the
jth instance P1 sends a random key keyj and a random seed seedj , while P2

chooses whether to learn keyj (thereby choosing to make the jth garbled circuit
an evaluation circuit) or seedj (thereby choosing to make the jth garbled circuit a
check circuit). The protocol is designed such that keyj can be used to recover the
input-wire labels associated with P1’s input in the jth garbled circuit, whereas
seedj can be used to recover all the randomness used to generate the jth garbled
circuit. Thus far, the structure of our protocol is similar to that of Afshar et
al. [1]. However, we differ in how we recover P1’s input if P1 is caught cheating,
and in how we ensure input consistency for P1’s input.

Input recovery. Recall that we want to ensure that if P2 detects cheating by
P1, then P2 can recover P1’s input. This is done by encoding some trapdoor in
the output-wire labels of the garbled circuits such that if P2 learns both labels for
some output wire (in different garbled circuits) then P2 can recover the trapdoor
and thus learn P1’s input. In slightly more detail, input recovery consists of the
following high-level steps:

1. P1 “commits to” its input x using some trapdoor.
2. P1 sends garbled circuits and the input-wire labels associated with x, using

an input-consistency protocol (discussed below) to enforce that consistent
input-wire labels are used.

3. P1 and P2 run some protocol such that if P2 detects cheating by P1, then
P2 gets the trapdoor without P1 learning this fact.

4. P2 either (1) detects cheating, recovers x using the trapdoor, and locally
computes (and outputs) f(x, y), or (2) outputs the (unique) output of the
evaluated garbled circuits, which is f(x, y).

In Afshar et al. [1], the above is done using ElGamal encryption and efficient zero-
knowledge checks to enforce input consistency. However, this approach requires
O(ρ · (n1 + n3)) public-key operations. In contrast, our protocol achieves the
same functionality with only O(ρ) public-key operations.

Our scheme works as follows. Assume for ease of presentation that P1’s input
x is a single bit and the output of the function is also a single bit. The parties run
an OT protocol in which P1 inputs x and P2 inputs two random labels M0,M1,
with P1 receiving Mx. Then, for the jth garbled circuit, P1 “commits” to x by
computing Rj,x := PRFseedj (“R”)⊕Mx and sending to P2 an encryption of Rj,x
under keyj . Note that P1 cannot “commit” to 1− x unless P1 can guess M1−x.
Also, if P1 is honest then x remains hidden from P2 because P2 knows either keyj
or seedj for each j, but not both. The value seedj for any evaluation circuit j
serves as a trapdoor since, in conjunction with the value keyj that P2 already
has, it allows P2 to learn Mx (and hence determine x) .

The next step is to devise a way for P2 to recover seedj if it learns inconsistent
output-wire labels in two different evaluation circuits. We do this as follows.
First, P1 chooses random ∆,∆0, ∆1 such that ∆ = ∆0 ⊕ ∆1. Then, for all j
it encrypts ∆0 using Zj,0 and encrypts ∆1 using Zj,1, where Zj,0, Zj,1 are the
two output-wire labels of the jth garbled circuit. It sends all these encryptions
to P2. Thus, if P2 learns Zj1,0 for some j1 it can recover ∆0, and if it learns Zj2,1
for some j2 it can recover ∆1. If it learns both output-wire labels, it can then of
course recover ∆.

P1 and P2 then run a protocol that guarantees that if P2 knows ∆ it recovers
seedj , and otherwise it learns nothing. This is done as follows. P2 sets Ω := ∆
if it learned ∆, and sets Ω := 1 otherwise. P2 then computes (h, g1, h1) :=
(gω, gr, hrΩ), for random ω and r, and sends (h, g1, h1) to P1. Then, for each
index j, party P1 computes Cj := gsjhtj and Dj := g

sj
1 (h1/∆)tj for random

sj , tj , and sends Cj along with an encryption of seedj under Dj . Note that if
Ω = ∆, then Crj = Dj and thus P2 can recover seedj , whereas if Ω 6= ∆ then P2

learns nothing (in an information-theoretic sense).

Notation Meaning

E evaluation set
E ρ-probe matrix

GCj jth garbled circuit
{Aj,i,b}b ith input-wire labels for P1 in GCj
{Bj,i,b}b ith input-wire labels for P2 in GCj
{Zj,i,b}b ith output-wire labels in GCj
{Tj,i,b}b ith output-mapping table for GCj
{Rj,i,b}j,b commitments for the ith bit of P1’s input
Cj , Dj input-recovery elements

Table 2. Notation used in our protocol.

Of course, the protocol as described does not account for the fact that P1

can send invalid messages or otherwise try to cheat. However, by carefully in-
tegrating appropriate correctness checks as part of the cut-and-choose process,
we can guarantee that if P1 tries to cheat then P2 either aborts (due to de-
tected cheating) or learns P1’s input with high probability without leaking any
information.

Input consistency. As discussed in §1.1, prior schemes enforce that P1 uses
the same input x for all garbled circuits and also for the input-recovery sub-
protocol. However, we observe that this is not necessary. Instead, it suffices to
ensure that P1 uses the same input in the input-recovery sub-protocol and at
least one of the evaluated garbled circuit. Even if P1 cheats by using different
inputs in two different evaluated garbled circuits, P2 still obtains the correct
output: if P2 learns only one output then this is the correct output; if P2 learns
multiple outputs, then the input-recovery procedure ensures that P2 learns x
and so can compute the correct output.

We ensure the above weaker notion of consistency by integrating the consis-
tency check with the cut-and-choose process as follows. Recall that in our input-
recovery scheme, P1 sends to P2 a “commitment” Rj,x := PRFseedj (“R”)⊕Mx for
each index j. After these commitments are sent, we now have P2 reveal M0⊕M1

to P1 (we use committing OT for this purpose), so P1 learns both M0 and M1.
P1 then computes and sends (in a randomly permuted order) Com(Rj,0, Aj,0)
and Com(Rj,1, Aj,1), where Aj,0, Aj,1 are P1’s input-wire labels in the jth gar-
bled circuit and the commitments are generated using randomness derived from
seedj . P1 also sends Enckeyj (Decom(Com(Rj,x, Aj,x))). Note that (1) if P2 chose
j as a check circuit then it can check correctness of the commitment pair, since
everything is computed from seedj , and (2) if P2 chose j as an evaluation circuit
then it can open the appropriate commitment to recover Rj,x, and check that
this matches the value sent before.

Protocol Π2pc

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .

Common inputs:
ρ-probe matrix E ∈ {0, 1}n2×m, where m = O(n2);
Circuit f : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 ;
Circuit f ′ : {0, 1}n1 × {0, 1}m → {0, 1}n3 such that f ′(x, y′) = f(x,Ey′);
Prime q with |q| = poly(κ).

Protocol:

1. P1 picks random κ-bit strings {keyj , seedj}j∈[ρ], and sends them to FOT. P2

picks E ∈R {0, 1}ρ, sends E to FOT, and receives {seedj}j /∈E and {keyj}j∈E .
2. P1 computes {Bj,i,b := PRFseedj (i, b, “B”)}j∈[ρ],i∈[m],b∈{0,1} and sends
{B1,i,b‖ · · · ‖Bρ,i,b}i∈[m],b∈{0,1} to FOT. P2 chooses random y′ ∈R {0, 1}m such
that y = Ey′, sends y′ to FOT, and receives {B1,i,y′[i]‖ · · · ‖Bρ,i,y′[i]}i∈[m].

3. P2 sends random labels {Mi,b}i∈[n1],b∈{0,1} to FcOT. P1 sends x to FcOT

and receives {Mi,x[i]}i∈[n1]. For j ∈ [ρ], i ∈ [n1], P1 computes Rj,i,x[i] :=
PRFseedj (i, “R”) ⊕Mi,x[i], and sends Enckeyj ({Rj,i,x[i]}i∈[n1]) to P2. P2 sends
open to FcOT (which sends {Mi,0,Mi,1}i∈[n1] to P1), and for j ∈ E uses keyj
to decrypt and learn Rj,i,x[i].

4. For j ∈ [ρ], i ∈ [n1], P1 computes Rj,i,1−x[i] := Rj,i,x[i]⊕Mi,0⊕Mi,1, {Aj,i,b :=
PRFseedj (i, b, “A”)}b∈{0,1} , and {(cRj,i,b, dRj,i,b)← Com(Rj,i,b, Aj,i,b)}b∈{0,1} us-

ing randomness derived from seedj , and sends {(cRj,i,0, cRj,i,1)} (in random per-
muted order) and Enckeyj ({d

R
j,i,x[i]}i∈[n1]) to P2. For j ∈ E , i ∈ [n1], P2 opens

cRj,i,x[i] to obtain Rj,i,x[i] and Aj,i,x[i], and checks that Rj,i,x[i] equals the value
from Step 3. If any decommitment is invalid or any check fails, P2 aborts.

5. P1 picks random κ-bit labels ∆, {∆i,0}i∈[n3], sets {∆i,1 := ∆i,0 ⊕ ∆}i∈[n3],
and sends {H(∆i,b)}i∈[n3],b∈{0,1} to P2. For j ∈ [ρ], P1 computes garbled
circuit GCj for function f ′ using Aj,i,b, Bj,i,b as the input-wire labels and
randomness derived from seedj for internal wire labels. Let Zj,i,b denote the
output-wire labels. P1 computes {Tj,i,b := EncZj,i,b(∆i,b)}i∈[n3],b∈{0,1} and

(cTj , d
T
j) ← Com({Tj,i,b}i∈[n3],b∈{0,1}) using randomness derived from seedj ,

and sends GCj , c
T
j , and Enckeyj (d

T
j) to P2.

6. For j ∈ E , P2 decrypts to learn dTj and opens cTj to learn {Tj,i,b}i∈[n3],b∈{0,1} ;
if any decommitment is invalid, P2 aborts. P2 evaluates GCj using labels
{Aj,i,x[i]}i∈[n1] and {Bj,i,y′[i]}i∈[m], and obtains output-wire labels {Zj,i}i.
P2 checks validity of these labels by checking if H(DecZj,i(Tj,i,b)) matches
H(∆i,b) for some b ∈ {0, 1}, and if so sets z′j [i] := b; else it sets z′j [i] :=⊥.
– Invalid circuits. If, for every j ∈ E , there is some i with z′j [i] =⊥, then P2

sets Ω := 1, z := ⊥.
– Inconsistent output labels. Else if, for some i ∈ [n3], j1, j2 ∈ E , P2 ob-

tains z′j1 [i] = 0 and z′j2 [i] = 1, then P2 sets Ω := DecZj1,i(Tj1,i,0) ⊕
DecZj2,i(Tj2,i,1). If different Ωs are obtained, P2 sets z := ⊥.

– Consistent output labels. Else, for all i, set z[i] := z′j [i] for the first index
j such that z′j [i] 6=⊥, and set Ω := 1.

Fig. 3. The full description of our malicious 2PC protocol, part 1.

Protocol Π2pc continued

Protocol:

7. P2 picks ω, r ∈R Fq, and sends (h, g1, h1) := (gω, gr, hrΩ) to P1. P1 sends
∆ and {∆i,b}i∈[n3],b∈{0,1} to P2, who checks that {∆ = ∆i,0 ⊕ ∆i,1}i∈[n3]

and that H(∆i,b) matches the values P1 sent in Step 5; if any check fails, P2

aborts. For j ∈ [ρ], P1 picks sj , tj ∈R Fq using randomness derived from seedj ,

computes Cj := gsjhtj , Dj := g
sj
1

(
h1
∆

)tj , and sends Cj and EncDj (seedj) to
P2. For j ∈ E , P2 uses Crj to decrypt and obtains some seed′j .

8. If Ω 6= 1, P2 recovers x as follows: For j ∈ E , i ∈ [n1], if Rj,i,x[i] =
PRFseed′j

(i, “R”)⊕Mi,0, P2 sets xj [i] := 0; if Rj,i,x[i] = PRFseed′j
(i, “R”)⊕Mi,1,

P2 sets xj [i] := 1; and otherwise, P2 sets xj [i] := ⊥. If no valid xj is obtained,
or more than two different xj are obtained, P2 sets z := ⊥; otherwise P2 sets
z := f(xj , y).

9. If all the following checks hold for all j /∈ E , then P2 outputs z; otherwise, P2

aborts.
(a) For i ∈ [m], the Bj,i,y′[i] value received in Step 2 equals

PRFseedj (i, y
′[i], “B”).

(b) GCj is computed correctly using Aj,i,b := PRFseedj (i, b, “A”) and Bj,i,b :=
PRFseedj (i, b, “B”) as input-wire labels and randomness derived from
seedj .

(c) Compute Tj,i,b using Zj,i,b from GCj and ∆i,b sent by P1, and check that
cTj is computed correctly with randomness derived from seedj .

(d) The Cj ,EncDj (seedj) values in Step 7 are correctly computed, using ∆
and seedj .

(e) For i ∈ [n1], b ∈ {0, 1}, cRj,i,b is correctly computed using seedj , Aj,i,b, and
Rj,i,b (which are themselves computed from seedj).

Fig. 4. The full description of our malicious 2PC protocol, part 2.

3.2 Protocol Details and Proof of Security

We present the full details of our protocol in Figures 3 and 4. To aid in un-
derstanding the protocol, we also present a graphical depiction in Figure 5. We
summarize some important notations in Table 2 for reference.

Our protocol, including the optimizations detailed in §4, requires a total of
O(ρ·(n1+n2+n3+|C|)) symmetric-key operations andO(ρ+κ) group operations.
Most of the symmetric-key operations, including circuit garbling and computing
the PRFs, can be accelerated using hardware AES instructions.

Theorem 1. Let Com be a computationally hiding/binding commitment scheme,
let the garbling scheme satisfy authenticity, privacy, and obliviousness (cf. [6]),
let H be collision-resistant, and assume the decisional Diffie-Hellman assump-
tion holds. Then the protocol in Figures 3 and 4 securely computes f in the
(FOT,FcOT)-hybrid model with security 2−ρ + negl(κ).

Proof. We consider separately the case where P1 or P2 is malicious.

Common Input: E ∈ {0, 1}n2×mP1 : x ∈ {0, 1}n1 P2 : y ∈ {0, 1}n2

FOT

{seedj , keyj}j∈[ρ] E

{seedj}j /∈E , {keyj}j∈E

E ∈R {0, 1}
ρkeyj , seedj ∈R {0, 1}

κ

FOT

{B1,i,b‖..}i∈[m] y′ s.t. y = Ey′

{B
1,i,y′[i]‖..‖Bρ,i,y′[i]}i∈[m]

Bj,i,b := PRFseedj
(i, b, “B”)

FcOT
x

{Mi,b}i∈[n1]

{Mi,x[i]}i∈[n1]

Mi,b ∈R {0, 1}
κ

{Enckeyj ({Rj,i,x[i]}i∈[n1])}j∈[ρ]Rj,i,x[i] :=

PRFseedj
(i, “R”) ⊕Mi,x[i]

FcOT

{Mi,0,Mi,1}i∈[n1] open

{cRj,i,0, c
R
j,i,1}j∈[ρ],i∈[n1](randomly permuted)

{Enckeyj ({dj,i,x[i]}i∈[n1])}j∈[ρ]
Rj,i,1−x[i] :=

Rj,i,x[i] ⊕Mi,0 ⊕Mi,1
Aj,i,b := PRFseedj

(i, b, “A”)

(cRj,i,b, d
R
j,i,b) ← Com(Rj,i,b, Aj,i,b)

Use {dRj,i,b}j∈E to obtain

{Rj,i,x[i], Aj,i,x[i]}j∈E
Check Rj,i,x[i] same as received

{H(∆i,b)}i∈[n3],b∈{0,1}
{GCj , c

T
j , Enckeyj

(dTj)}j∈[ρ]Tj,i,b := EncZj,i,b
(∆i,b)

(cTj , d
T
j) ← Com({Tj,i,b}i,b)

{GCj , Aj,i,x[i], Bj,i,y′[i], Tj,i,z[i]}yDetails in Step 6

z or Ω := ∆

h, g1, h1
(h, g1, h1) := (gω, gr, hrΩ)

∆, {∆i,b}i∈[n3],b∈{0,1}
{Cj, EncDj (seedj)}j∈[ρ]Cj := g

sj h
tj

Dj := g
sj
1

(
h1
∆

)tj
Check ∆ = ∆i,0 ⊕∆i,1

seed′j := DecCr
j
(EncDj

(seedj))

Other computation in Steps 7–9

Fig. 5. Graphical depiction of our protocol.

Malicious P1. Our proof is based on the fact that with all but negligible proba-
bility, P2 either aborts or learns the output f(x, y), where x is the input P1 sent
to FcOT in Step 3 and y is P2’s input. We rely on the following lemma, which
we prove in §3.3.

Lemma 1. Consider an adversary A corrupting P1 and denote x as the input
A sends to FcOT in Step 3. With probability at least 1− 2−ρ− negl(κ), P2 either
aborts or learns f(x, y).

Given this, the simulator essentially acts as an honest P2 using input 0, extracts
P1’s input x from the call to FcOT, and outputs f(x, y) if no party aborts.

We now proceed to the formal details. Let A be an adversary corrupting P1.
We construct a simulator S that runs A as a subroutine and plays the role of P1

in the ideal world involving an ideal functionality F evaluating f . S is defined
as follows.

1–2 S interacts with A, acting as an honest P2 using input 0.

3 S obtains the input x that A sends to FcOT. It forwards x to F .

4–6 S acts as an honest P2, where if P2 would abort then S sends abort to F
and halts, outputting whatever A outputs.

7–8 S acts as an honest P2 using Ω := 1, where if P2 would abort then S sends
abort to F and halts, outputting whatever A outputs.

9 S acts as an honest P2, except that after the check in Step 9a, S also checks
if {Bj,i,b}j /∈E,i∈[m],b∈{0,1} are correctly computed and aborts if, for at least
ρ different i ∈ [m], {Bj,i,b}j /∈E,b∈{0,1} contains incorrect values. If P2 would
abort then S sends abort to F and halts, outputting whatever A outputs;
otherwise, S sends continue to F .

We now show that the joint distribution over the outputs of A and the honest
P2 in the real world is indistinguishable from their joint distribution in the ideal
world.

H1. Same as the hybrid-world protocol, where S plays the role of an honest P2

using the actual input y.

H2. S now extracts the input x that A sends to FcOT and sends x to F if no
party aborts. S also performs the additional checks as described above in
Step 9 of the simulator.

There are two ways A would cheat here, and we address each in turn. For
simplicity, we let I ⊂ [m] denote the set of indices i such that Bj,i,b is not
correctly computed.

1. A launches a selective-failure attack with |I| < ρ. Lemma 1 ensures (in

H1) that P2 either aborts or learns f(x, y) with probability at least 1−
2−ρ. In H2, note that P2 either aborts or learns f(x, y) with probability 1.
Further, since fewer than ρ wires are corrupted, the probability of an
abort due to the selective-failure attack is exactly the same in both
hybrids. Therefore the statistical distance between H1 and H2 is at
most 2−ρ.

2. A launches a selective-failure attack with |I| ≥ ρ. By the security of the

ρ-probe matrix [29], S aborts in H1 with probability at least 1 − 2−ρ.
(If A cheats elsewhere, the probability of abort can only increase.) But
in H2 in this case P2 aborts with probability 1, and so there is at most
a 2−ρ difference between H1 and H2.

H3. Same as H2, except S uses y := 0 throughout of protocol and sets Ω := 1
in Step 7.

In H3, P2 sends (h, g1, h1) := (gω, gr, gωr), which is indistinguishable from
(gω, gr, gωrΩ) by the decisional Diffie-Hellman problem. Computationally
indistinguishability of H2 and H3 follows.

As H3 is the ideal-world execution, the proof is complete. ut
Malicious P2. Here, we need to simulate the correct output f(x, y) that P2

learns. Rather than simulate the garbled circuit, as is done in most prior work,
we modify the output-mapping tables {Tj,i,b} to encode the correct output. At
a high level, the simulator acts as an honest P1 with input 0, which lets P2

learn the output-wire labels for f(0, y) when evaluating the garbled circuits.
The simulator then “tweaks” the output mapping tables {Tj,i,b} to ensure that
P2 reconstructs the “correct” output f(x, y).

We now proceed to the formal details. Let A be an adversary corrupting P2;
we construct a simulator S as follows.

1 S acts as an honest P1 and obtains the set E that A sends to FOT.

2 S acts as an honest P1, and obtains the input y′ that A sends to FOT. S
computes y from y′, sends (input, y) to F, which sends back z := f(x, y) to
S.

3 S acts as an honest P1 with input x := 0. That is, S receives {Mi,b} labels
and sends {Enckeyj ({Rj,i,0}i∈[n1])}j∈[ρ] to A. If A send abort to FcOT, S
aborts, outputting whatever A outputs.

4 S acts as an honest P1 with input x := 0. That is, S sends {(cRj,i,0, cRj,i,1)}
(in random permuted order) and Enckeyj ({d

R
j,i,0}i∈[n1]) to A.

5 S acts as an honest P1, except as follows. S computes z′ := f(0, y) and for
j ∈ E , i ∈ [n3], and b ∈ {0, 1}, sets Tj,i,b := EncZj,i,b(∆i,1−b) if z[i] 6= z′[i].

6–7 S acts as an honest P1.

We now show that the joint distribution over the outputs of the honest P1 and
A in the real world is indistinguishable from their joint distribution in the ideal
world.

H1. Same as the hybrid-world protocol, where S plays the role of an honest P1.

H2. S extracts P2’s input y from FOT and sends (input, y) to F, receiving
back z. S uses x := 0 throughout the simulation and “tweaks” {Tj,i,b} as is
done by the simulator using knowledge of z.

H1 and H2 are the same except:

1. In H1, P2 learns {Rj,i,x[i]}j∈E , while P2 learns {Rj,i,0}j∈E in H2. Note
that these values are computed such that Rj,i,b := PRFseedj (i, “R”) ⊕
Mi,b. Since P2 does not know any {seedj}j∈E , PRFseedj (i, “R”) looks
random to P2. Because only one of {Rj,i,b}b∈{0,1} is given in both Hs,
Rj,i,x[i] in H1 and Rj,i,0 in H2 are uniformly random to P2.

2. In H1, party P2 gets Zj,i,z[i] and Tj,i,z[i] := EncZj,i,z[i](∆i,z[i]), while in
H2, if z[i] 6= z′[i] then P2 gets Zj,i,1−z[i] and Tj,i,1−z[i] := EncZj,i,1−z[i](∆i,z[i])
instead. In both hybrids, P2 cannot learn any information about the
other output-wire label due to the authenticity property of the garbled
circuit.
By the obliviousness property of the garbling scheme, Zj,i,0 and Zj,i,1
are indistinguishable. Likewise, by the security of the encryption scheme
the values Tj,i,0 and Tj,i,1 are indistinguishable.

As H2 is the same as the ideal-world execution, the proof is complete.

3.3 Proving Lemma 1

We now prove a series of lemmas toward proving Lemma 1. We begin with a
definition of what it means for an index j ∈ [ρ] to be “good.”

Definition 1. Consider an adversary A corrupting P1, and denote {seedj} as
the labels A sent to FOT. An index j ∈ [ρ] is good if and only if all the following
hold.

1. The Bj,i,y′[i] values A sent to FOT in Step 2 are computed honestly using
seedj.

2. The commitments {cRj,i,b}i∈[n1],b∈{0,1} that A sent to P2 in Step 4 are com-
puted honestly using seedj.

3. GCj is computed honestly using {Aj,i,b} and {Bj,i,b} as the input-wire labels
and seedj.

4. The values Cj and EncDj (seedj) are computed honestly using seedj and the
∆ value sent by A in Step 7.

5. The commitment cTj is computed honestly using ∆i,b and seedj.

It is easy to see the following.

Fact. If an index j ∈ [ρ] is not good then it cannot pass all the checks in Step 9.

We first show that P2 is able to recover the correct output-wire labels for a good
index.

Lemma 2. Consider an adversary A corrupting P1, and denote x as the input
A sent to FcOT. If an index j ∈ E is good and P2 does not abort, then with all
but negligible probability P2 learns output labels Zj,i,z[i] with z = f(x, y).

Proof. Since j is good, we know that P2 receives an honestly computed GCj and
Tj,i,b from A and honest Bj,i,y′[i] from FOT. However, it is still possible that P2

does not receive correct input labels for P1’s input that corresponds to the input
x that A sent to FcOT. We will show that this can only happen with negligible
probability.

Note that if j is good, then the commitments {cRj,i,b} are computed correctly.
Since P2 obtains the Aj,i,x[i] labels by decommitting one of these commitments,

the labels P2 gets are valid input-wire labels, although they may not be consistent
with the input x that A sent to FcOT.

Assume that for some i ∈ [n1], P2 receives Aj,i,1−x[i]. This means P2 also re-
ceives Rj,i,1−x[i] from the same decommitment, since cj,i,b is computed honestly.
However, if P2 does not abort, then we know that P2 receives the same label
Rj,i,1−x[i] in Step 3 since the checks pass. We also know that

Rj,i,1−x[i] = PRFseedj (i, “R”)⊕Mi,1−x[i].

Therefore A needs to guess Mi,1−x[i] correctly before P2 sends both labels, which
happens with probability at most 2−κ.

We next show that P2 can recover x if P1 tries to cheat on a good index.

Lemma 3. Consider an adversary A corrupting P1, and denote x as the input
A sent to FcOT. If an index j ∈ E is good and P2 learns Ω = ∆, then P2 can
recover xj = x in Step 8 if no party aborts.

Proof. Since j is good, we know that Cj and EncDj (seedj) are constructed cor-
rectly, where seedj is the one P1 sent to FOT in Step 1. Therefore, P2 can recom-
pute seedj from them. We just need to show that P2 is able to recover x from a
good index using seedj .

Using a similar argument as the previous proof, we can show that the label
Rj,i,x[i] that P2 learns in Step 4 is a correctly computed label using x that P1

sent to FcOT in Step 3: Since j is good, the cRj,i,b values are all good, which means
that the Rj,i,x[i] labels P2 learns are valid. However, P1 cannot “flip” the wire
label unless P1 guesses a random label correctly, which happens with negligible
probability.

In conclusion, P2 has the correct Rj,i,x[i] = PRFseedj (i, “R”) ⊕Mi,x[i] and
the seedj used in the computation. Further P2 has Mi,0,Mi,1. Therefore P2 can
recover x that P1 sent to FcOT if P2 has Ω = ∆.

Note that given the above lemma, it may still be possible that a malicious
P1 acts in such a way that P2 recovers different x’s from different indices. In the
following we show this only happens with negligible probability.

Lemma 4. Consider an adversary A corrupting P1 and denote x as the input
P1 sends to FcOT in Step 3. If P2 does not abort, then P2 recovers some x′ 6= x
with negligible probability.

Proof. Our proof is by contradiction. Assume that P2 does not abort and recovers
some x′ 6= x for some j ∈ E . Let i be an index at which x′[i] 6= x[i]; we will show
in the following that A will have to complete some task that is information-
theoretically infeasible, and thus a contradiction.

Since P2 does not abort at Step 4, we can denote Rj,i,x[i] as the label P1 learns
in Step 3, which also equals the one decommitted to in Step 4. P2 recovering
some x′ means that

Rj,i,x[i] = PRFseed′j
(i, “R”)⊕Mi,x′[i],

where seed′j is the seed P2 recovers in Step 7. Therefore we conclude that

PRFseed′j
(i, “R”) = Rj,i,x[i] ⊕Mi,x′[i]

= Rj,i,x[i] ⊕Mi,1−x[i].

Although A receives Mi,x[i] in Step 3, Mi,1−x[i] remains completely random
before A sends Rj,i,x[i]. Further, A receives Mi,b only after sending Rj,i,x[i].
Therefore, the value of Rj,i,x[i] ⊕ Mi,1−x[i] is completely random to A. If A
wants to “flip” a bit in x, A needs to find some seed′j such that {PRFseed′j

(i,

“R”)}i∈[n1] equals a randomly chosen string, which is information theoretically
infeasible if n1 > 1.

Finally, we are ready to prove Lemma 1, namely, that P2 either aborts or
learns f(x, y), regardless of P1’s behavior.

Lemma 1. Consider an adversary A corrupting P1 and denote x as the input
P1 sends to FcOT in Step 3. With probability at least 1 − (2−ρ + negl(κ)), P2

either aborts or learns f(x, y).

Proof. Denote the set of P1’s good circuits as E ′ and consider the following three
cases:

– Ē ∩ Ē ′ 6= ∅. In this case P2 aborts because P2 checks some j /∈ E ′ which is
not a good index.

– E ∩ E ′ 6= ∅. In this case, there is some j ∈ E ∩ E ′, which means P2 learns
z := f(x, y) and Zj,i,z[i] from the jth garbled circuit (by Lemma 2). However,
it is still possible that P2 learns more than one valid z. If this is the case,
P2 learns ∆. Lemma 3 ensures that P2 obtains x; Lemma 4 ensures that P2

cannot recover any other valid x′ even from bad indices.
– E = E ′. This only happens when A guesses E correctly, which happens with

at most 2−ρ probability.

This completes the proof.

3.4 Universal Composability

Note that in our proof of security, the simulators do not rewind in any of the
steps. Similarly, none of the simulators in the hybrid arguments need any rewind-
ing. Therefore, if we instantiate all the functionalities using UC-secure variants
then the resulting 2PC protocol is UC-secure.

4 Optimizations

We now discuss several optimizations we discovered in the course of implement-
ing our protocol, some of which may be applicable to other malicious 2PC im-
plementations.

4.1 Optimizing the XOR-tree

We noticed that when using a ρ-probe matrix to reduce the number of OTs
needed for the XOR-tree, we incurred a large performance hit when P2’s input
was large. In particular, processing the XOR gates introduced by the XOR-tree,
which are always assumed to be free due to the free-XOR technique [22], takes
a significant amount of time. The naive XOR-tree [25] requires ρn OTs and ρn
XOR gates; on the other hand, using a ρ-probe matrix of dimension n×cn, with
c � ρ, requires cn OTs but cn2 XOR gates. We observe that this quadratic
blowup becomes prohibitive as P2’s input size increases: for a 4096-bit input,
it takes more than 3 seconds to compute just the XORs in the ρ-probe matrix
of Lindell and Riva [29] across all circuits. Further, it also introduces a large
memory overhead: it takes gigabytes of memory just to store the matrix for
65,536-bit inputs.

In the following we introduce two new techniques to both asymptotically
reduce the number of XOR gates required and concretely reduce the hidden
constant factor in the ρ-probe matrix.

A general transformation to a sparse matrix. We first asymptotically
reduce the number of XORs needed. Assuming a ρ-probe matrix with dimensions
n × cn, we need cρn2 XOR gates to process the ρ-probe matrices across all ρ
circuits. Our idea to avoid this quadratic growth in n is to break P2’s input
into small chunks, each of size k. When computing the random input y′, or
recovering y in the garbled circuits, we process each chunk individually. By
doing so, we reduce the complexity to ρ · nk c(k)2 = ckρn. By choosing k = 2ρ,
this equates to a 51× decrease in computation even for just 4096-bit inputs. This
also eliminates the memory issue, since we only need a very small matrix for any
input size.

A better ρ-probe matrix. After applying the above technique, our problem
is reduced to finding an efficient ρ-probe matrix for k-bit inputs for some small
k, while maintaining a small blowup c. We show that a combination of the
previous solutions [25,29] with a new tighter analysis results in a better solution,
especially for small k. Our solution can be written as A = [M‖Ik], where M ∈
{0, 1}k×(c−1)k

is a random matrix and Ik is an identity matrix of dimension k.
The use of Ik makes it easy to find a random y′ such that y = Ay′ for any y, and
ensures that A is full rank [29]. However, we show that it also helps to reduce c.
The key idea is that the XOR of any i rows of A has Hamming weight at least i,
contributed by Ik, so we do not need as much Hamming weight from the random
matrix as in prior work [25].

In more detail, for each S ⊆ [k], denote MS :=
⊕

i∈SMi and use random
variable XS to denote the number of ones in MS . In order to make A a ρ-probe
matrix, we need to ensure that XS + |S| ≥ ρ for any S ⊆ [k], because XORing
any |S| rows from Ik gives us a Hamming weight of |S|.

k

Scheme 40 65 80 103 143 229 520

LP07 [25] 6.66 4.1 4 4 4 4 4
sS13 [35] 7.95 5.2 4.5 4.1 3.2 2.4 1.6

This work 5.68 4 3.5 3 2.5 2 1.5

Table 3. Values of c as a function of chunk size k for an ρ-probe matrix with ρ = 40.

XS is a random variable with distribution Bin(ck − k, 1
2). Therefore, we can

compute the probability that A is not a ρ-probe matrix as follows:

Pr[A is bad] = Pr

 ⋃
S⊆[k]

XS < ρ− |S|

≤
∑
S⊆[k]

Pr[XS < ρ− |S|]

=
∑
S⊆[k]

cdf(ρ− |S| − 1) =

k∑
i=1

(
k

i

)
cdf(ρ− i− 1),

where cdf() is the cumulative distribution function for Bin(ck − k, 1
2). Now, for

each k we can find the smallest c such that Pr[A is bad] ≤ 2−ρ; we include some
results in Table 3. We see that our new ρ-probe matrix achieves smaller c than
prior work [25,35]. Note that the number of XORs is cρkn and the number of
OTs is cn. In our implementation we use k = 232 and c = 2 to achieve the
maximum overall efficiency.

Performance results. See Figure 6 for a comparison between our approach and
the best previous scheme [35]. When the input is large, the cost of computing
the ρ-probe matrix over all circuits dominates the overall cost. As we can see,
our design is about 10× better for 1,024-bit inputs and can be 1000× better
for 65,536-bit inputs. We are not able to compare beyond this point, because
just storing the ρ-probe matrix for 262,144 bits for the prior work takes at least
8.59 GB of memory.

4.2 Other Optimizations

Oblivious transfer with hardware acceleration. As observed by Asharov
et al. [3], matrix transposition takes a significant amount of the time during
the execution of OT extension. Rather than adopting their solution using cache-
friendly matrix transposition, we found that a better speedup can be obtained by
using matrix transposition routines based on Streaming SIMD Extensions (SSE)
instructions [30]. The use of SSE-based matrix transposition in the OT extension

128 1024 8192 65536
Number of Bits in P2 's input

101

102

103

104

105

106

R
un

in
g
Ti
m
e
(m

ill
is
ec
on
ds
)

OT Cost in Our Construction
ρ-probe Matrix Cost in Our Construction
OT Cost in sS13
ρ-probe Matrix Cost in sS13

Fig. 6. Comparing the cost of our ρ-probe matrix design with the prior best scheme [35].
When used in a malicious 2PC protocol, computing the ρ-probe matrix needs to be
done ρ times, and OT extension needs to process a cn-bit input because of the blowup
of the input caused by the ρ-probe matrix.

protocol is also independently studied in a concurrent work by Keller et al. [20]
in a multi-party setting.

Given a 128-bit vector of the form a[0], . . . , a[15] where each a[i] is an 8-
bit number, the instruction mm movemask epi8 returns the concatenation of
the highest bits from all a[i]s. This makes it possible to transpose a matrix of
dimension 8× 16 very efficiently in 15 instructions (8 instructions to “assemble
the matrix” and 7 instructions to shift the vector left by one bit). By composing
such an approach, we achieve very efficient matrix transposition, which leads to
highly efficient OT extension protocols; see §5.1 for performance results.

Reducing OT cost. Although our protocol requires three instantiations of OT,
we only need to construct the base OTs once. The OTs in Steps 1 and 2 can
be done together, and further, by applying the observation by Asharov et al. [3]
that the “extension phase” can be iterated, we can perform more random OTs
along with the OTs for Steps 1 and 2 to be used in the OTs of Step 3.

Pipelining. Pipelining garbled circuits was first introduced by Huang et al. [16]
to reduce memory usage and hence improve efficiency. We adopt a similar idea
for our protocol. While as written we have P2 conduct most of the correctness
checks at the end of the protocol, we note that P2 can do most of the checks much
earlier. In our implementation, we “synchronize” P1 and P2’s computation such
that P2’s checking is pipelined with P1’s computation. Pipelining also enables
us to evaluate virtually any sized circuit (as long as the width of the circuit is
not too large). As shown in §5.4, we are able to evaluate a 4.3 billion-gate circuit
without any memory issue, something that offline/online protocols [29] cannot
do without using lots of memory or disk I/O.

localhost LAN WAN

n1 n2 n3 |C| SE Offline Online SE Offline Online SE Offline Online

ADD 32 32 33 127 29 60 6 (0.2) 39 27 12 (0.2) 1060 474 697 (0.2)
AES 128 128 128 6,800 50 82 14 (2) 65 62 21 (3) 1513 867 736 (2)
SHA1 256 256 160 37,300 136 156 48 (32) 200 206 52 (27) 3439 2705 820 (20)

SHA256 256 256 256 90,825 277 356 85 (144) 438 497 92 (128) 6716 5990 856 (99)

Table 4. Performance of common functions over various networks. SE stands for “single
execution.” All numbers are in milliseconds. Offline time includes disk I/O. For online
time, disk I/O is shown separately in the parentheses.

Building block localhost LAN WAN

ρ-probe matrix for 215-bit input 5.8 ms — —
Garble 104 AES circuits 3.42 s — —

Garble and send 104 AES circuits 4.83 s 7.53 s 87.4s
210 malicious base OTs 113 ms 133 ms 249 ms

8× 106 malicious OT extension 4.99 s 5.64 s 25.6 s

Table 5. Performance of our building blocks. The first row gives the running time of
P2 recovering its input when using a ρ-probe matrix. The second row gives the running
time of garbling, and the third row gives the running time for both garbling and sending.
The remaining rows give the performance of OT and malicious OT extension.

Pushing computation offline. Although the focus of our work is better effi-
ciency in the absence of pre-processing, it is still worth noting that several steps
of our protocol can be pushed offline (i.e., before the parties’ inputs are known)
when that is an option. Specifically:

1. In addition to the base OTs, most of the remaining public-key operations
can also be done offline. P2 can send (h, g1) := (gω, gr) before knowing the
input to P1, who can compute the Cj values and half the Dj values. During
the online phase, P1 and P2 only need to perform ρ exponentiations.

2. Garbled circuits can be computed, sent, and checked offline. P2 can also
decommit cTj to learn the output translation tables for the evaluation circuits.

5 Implementation and Evaluation

We implemented our protocol in C++ using RELIC [2] for group operations,
OpenSSL libssl for instantiating the hash function, and libgarble for gar-
bling [15]. We adopted most of the recent advances in the field [5,39,4,8,29]
as well as the optimizations introduced in §4. We instantiate the commitment
scheme as (SHA-1(x, r), r)← Com(x), though when x has sufficient entropy we
use SHA-1(x) alone as the commitment.

Evaluation setup. All evaluations were performed with a single-threaded pro-
gram with computational security parameter κ = 128 and statistical security
parameter ρ = 40. We evaluated our system in three different network settings:

Our Protocol [29] [1]

ADD 39 1034 —
AES 65 1442 5860

SHA1 200 2007 —
SHA256 438 2621 7580

Table 6. Single execution performance. All numbers are in milliseconds. Numbers for
[29] were obtained by adapting their implementation to the single-execution setting,
using the same hardware as our results. Numbers for [1] are taken from their paper
and are for a single execution, not including any I/O time.

1. localhost. Experiments were run on the same machine using the loopback
network interface.

2. LAN. Experiments were run on two c4.2xlarge Amazon EC2 instances
with 2.32 Gbps bandwidth as measured by iperf and less than 1 ms latency
as measured by ping.

3. WAN. Experiments were run on two c4.2xlarge Amazon EC2 instances
with total bandwidth throttled to 200 Mbps and 75 ms latency.

All numbers are average results of 10 runs. We observed very small variance
between multiple executions.

5.1 Subprotocol Performance

Because of the various optimizations mentioned in §4, as well as a carefully engi-
neered implementation, many parts of our system perform better than previously
reported implementations. We summarize these results in Table 5.

The garbling speed is about 20 million AND gates per second. When both
garbling and sending through localhost, this reduces to 14 million AND gates
per second due to the overhead of sending all the data through the loopback
interface. Over LAN the speed is roughly 9.03 million gates per second, reaching
the theoretical upper bound of 2.32 · 109/256 = 9.06 · 106 gates per second.

For oblivious transfer, our malicious OT extension reports 5.64 seconds for
8 million OTs. Our implementation takes 0.133 seconds for 1024 base OTs. We
observe that when two machines are involved, bandwidth is the main bottleneck.

5.2 Overall Performance

We now discuss the overall performance of our protocol. Table 4 presents the
running time of our protocol on several standard 2PC benchmark circuits for var-
ious network settings. For each network condition, we report a single execution
running time, which includes all computation for one 2PC invocation, and an of-
fline/online running time. In order to be comparable with Lindell and Riva [29],
the offline time includes disk I/O and the online time does not; the time to
preload all garbled circuits before the online stage starts is reported separately

... 217 218 219 220

Number of Bits in P1’s Input

0

10

20

30

40

50

60

R
un

ni
ng

T
im

e
(s

ec
on

d)
WAN, 191.4µs / bit
LAN, 16.0µs / bit
localhost, 9.8µs / bit

... 217 218 219 220

Number of Bits in P2’s Input

0

5

10

15

20

25

30

35

40

45

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 146.9µs / bit
LAN, 22.5µs / bit
localhost, 16.4µs / bit

... 217 218 219 220

Numer of Bits in the Output

0

5

10

15

20

25

30

35

40

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 131.1µs / bit
LAN, 20.3µs / bit
localhost, 13.3µs / bit

... 222 223 224 225

Number of AND Gates

0

100

200

300

400

500

600

R
un

ni
ng

T
im

e
(s

ec
on

d)

WAN, 63.1µs / gate
LAN, 4.4µs / gate
localhost, 1.7µs / gate

Fig. 7. The performance of our protocol while modifying the input lengths, output
length and the circuit size. Input and output lengths are set to 128 bits initially and
circuit size is set as 16,384 AND gates. Numbers in the figure show the slope of the
lines, namely the cost to process an additional bit or gate.

in parentheses. We tried to compare with the implementation by Rindal and
Rosulek [33]; however, their implementation is inherently parallelized, making
comparisons difficult. Estimations suggest that their implementation is faster
than Lindell and Riva but still less efficient than ours in the single-execution
setting.

In Table 6, we compare the performance of our protocol with the existing
state-of-the-art implementations. The most efficient implementation for single
execution of malicious 2PC without massive parallelization or GPUs we are
aware of is by Afshar et al. [1]. They reported 5860 ms of computation time for
AES and 7580 ms for SHA256, with disk and network I/O excluded, whereas we
achieve 65 ms and 438 ms, respectively, with all I/O included. Thus our result is
17× to 90× better than their result, although ours includes network cost while
theirs does not.

We also evaluated the performance of the implementation by Lindell and
Riva [29] using the same hardware with one thread and parameters tuned for
single execution, i.e., 40 main circuits and 132 circuits for input recovery. Their

localhost LAN WAN

Time per P1’s input bit 9.8 16 191.4
Time per P2’s input bit 16.4 22.5 146.9

Time per output bit 13.3 20.3 131.1
Time per AND gate 1.7 4.4 63.1

Table 7. Scalability of our protocol. All numbers are in microseconds per bit or mi-
croseconds per gate.

Example n1 n2 n3 |C| Running Projected Total Non-GC
Time Time Comm. Comm.

16384-bit cmp 16,384 16,384 1 16,383 0.67 s 0.72 s 128 MB 84%
128-bit sum 128 128 128 127 0.04 s 0.03 s 1.8 MB 91%
256-bit sum 256 256 256 255 0.05 s 0.04 s 3.4 MB 90%
1024-bit sum 1024 1,024 1,024 1,023 0.08 s 0.09 s 11.2 MB 88%
128-bit mult 128 128 128 16,257 0.13 s 0.1 s 22.4 MB 7%
256-bit mult 256 256 256 65,281 0.4 s 0.37 s 86.6 MB 3%

Sort 1024 32-bit ints 32,768 32,768 32,768 1,802,240 9.43 s 9.8 s 2.6 GB 11.5%
Sort 4096 32-bit ints 131,072 131,072 131,072 10,223,616 53.7 s 52.7 s 14.2 GB 7.7%
1024-bit modular exp 1,024 1,024 1,024 4,305,443,839 5.3 h 5.26 h 5.5 TB 0.0002%

Table 8. Performance of our implementation on additional examples. Running Time
reports the performance of our single execution over LAN; Projected Time is calculated
using the formula in §5.3; Total Comm. is the total communication as measured by our
implementation; and Non-GC Comm. is the percentage of communication not used for
garbled circuits.

implementation is about 3× to 4× better than Afshar et al., but still 6× to 26×
slower than our LAN results.

5.3 Scalability

In order to understand the cost of each component of our construction, we in-
vestigated the scalability as one modifies the input lengths, output length, and
circuit size. We set input and output lengths to 128 bits and circuit size as 16,384
AND gates and increase each the variables separately. In Figure 7, we show how
the performance is related to these parameters.

Not surprisingly, the cost increases linearly for each parameter. We can thus
provide a realistic estimate of the running time (in µs) of a given circuit of size
|C| with input lengths n1 and n2 and output length n3 through the following
formula (which is specific to the LAN setting):

T = 16n1 + 22.5n2 + 20.3n3 + 4.4|C|+ 23, 000.

The coefficients for other network settings can be found in Table 7, with the
same constant cost of the base OTs.

5.4 Additional Examples

Finally, in Table 8 we report the performance of our implementation in the
LAN setting on several additional examples. We also show the projected time
calculated based on the formula in the previous section. We observe that over
different combinations of input, output and circuit sizes, the projected time
matches closely to the real results we get.

We further report the total communication and the percentage of the com-
munication not spent on garbled circuits. We can see the percentage stays low
except when the circuit is linear to the input lengths.

Acknowledgments

The authors thank Samuel Ranellucci and Yan Huang for helpful discussions
and comments.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Advances in Cryptology—Eurocrypt 2014. LNCS,
vol. 8441, pp. 387–404. Springer (2014)

2. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: 20th ACM Conf. on Computer
and Communications Security (CCS). pp. 535–548. ACM Press (2013)

4. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: Advances in Cryptology—
Eurocrypt 2015, Part I. LNCS, vol. 9056, pp. 673–701. Springer (2015)

5. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security & Privacy. pp. 478–
492. IEEE (2013)

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: 19th
ACM Conf. on Computer and Communications Security (CCS). pp. 784–796. ACM
Press (2012)

7. Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique. In: Advances in Cryptology—
Asiacrypt 2013, Part II. LNCS, vol. 8270, pp. 441–463. Springer (2013)

8. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Progress in
Cryptology—Latincrypt 2015. LNCS, vol. 9230, pp. 40–58. Springer (2015)

9. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the MiniMac protocol for secure computation. In: 9th Intl. Conf. on Security
and Cryptography for Networks (SCN). LNCS, vol. 8642, pp. 398–415. Springer
(2014)

10. David, B.M., Nishimaki, R., Ranellucci, S., Tapp, A.: Generalizing efficient mul-
tiparty computation. In: 8th Intl. Conference on Information Theoretic Security
(ICITS). LNCS, vol. 9063, pp. 15–32. Springer (2015)

https://github.com/relic-toolkit/relic

11. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-
party computation using the GPU. In: 9th Intl. Conf. on Security and Cryptogra-
phy for Networks (SCN). LNCS, vol. 8642, pp. 358–379. Springer (2014)

12. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Mini-
LEGO: Efficient secure two-party computation from general assumptions. In: Ad-
vances in Cryptology—Eurocrypt 2013. LNCS, vol. 7881, pp. 537–556. Springer
(2013)

13. Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party compu-
tation using the GPU. In: 11th Intl. Conference on Applied Cryptography and
Network Security (ACNS). LNCS, vol. 7954, pp. 339–356. Springer (2013)

14. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation
against covert adversaries. In: Advances in Cryptology—Eurocrypt 2008. LNCS,
vol. 4965, pp. 289–306. Springer (2008)

15. Groce, A., Ledger, A., Malozemoff, A.J., Yerukhimovich, A.: CompGC: Efficient
offline/online semi-honest two-party computation. Cryptology ePrint Archive, Re-
port 2016/458 (2016), http://eprint.iacr.org/2016/458

16. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: 20th USENIX Security Symposium. USENIX Association
(2011)

17. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Advances in Cryptology—Crypto 2013, Part II. LNCS,
vol. 8043, pp. 18–35. Springer (2013)

18. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Advances in Cryptology—Crypto 2014, Part II. LNCS, vol.
8617, pp. 458–475. Springer (2014)

19. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: 20th ACM Conf. on Computer
and Communications Security (CCS). pp. 955–966. ACM Press (2013)

20. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. pp. 830–842. ACM Press (2016)

21. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: Flexible garbling for XOR
gates that beats free-XOR. In: Advances in Cryptology—Crypto 2014, Part II.
LNCS, vol. 8617, pp. 440–457. Springer (2014)

22. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and ap-
plications. In: 35th Intl. Colloquium on Automata, Languages, and Programming
(ICALP), Part II. LNCS, vol. 5126, pp. 486–498. Springer (2008)

23. Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium. pp. 285–300. USENIX Association
(2012)

24. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Advances in Cryptology—Crypto 2013, Part II. LNCS, vol. 8043, pp.
1–17. Springer (2013)

25. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: Naor, M. (ed.) Advances in Cryptology—
Eurocrypt 2007. LNCS, vol. 4515, pp. 52–78. Springer (2007)

26. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: 8th Theory of Cryptography Conference (TCC) 2011. LNCS, vol. 6597,
pp. 329–346. Springer (2011)

27. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: 6th Intl. Conf. on Security
and Cryptography for Networks (SCN). LNCS, vol. 5229, pp. 2–20. Springer (2008)

http://eprint.iacr.org/2016/458

28. Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the on-
line/offline and batch settings. In: Advances in Cryptology—Crypto 2014, Part II.
LNCS, vol. 8617, pp. 476–494. Springer (2014)

29. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: 22nd ACM Conf. on Computer and Communications
Security (CCS). pp. 579–590. ACM Press (2015)

30. Mischasan: What is SSE good for? Transposing a bit
matrix. https://mischasan.wordpress.com/2011/07/24/

what-is-sse-good-for-transposing-a-bit-matrix/, accessed: 2015-12-10
31. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical

active-secure two-party computation. In: Advances in Cryptology—Crypto 2012.
LNCS, vol. 7417, pp. 681–700. Springer (2012)

32. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Advances in Cryptology—Asiacrypt 2009. LNCS, vol. 5912,
pp. 250–267. Springer (Dec 2009)

33. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: USENIX Security Symposium. pp. 297–314.
USENIX Association (2016)

34. Shelat, A., Shen, C.H.: Two-output secure computation with malicious adver-
saries. In: Advances in Cryptology—Eurocrypt 2011. LNCS, vol. 6632, pp. 386–405.
Springer (2011)

35. Shelat, A., Shen, C.H.: Fast two-party secure computation with minimal assump-
tions. In: 20th ACM Conf. on Computer and Communications Security (CCS). pp.
523–534. ACM Press (2013)

36. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient multiparty computa-
tion toolkit. https://github.com/emp-toolkit

37. Wang, X., Ranellucci, S., Malozemoff, A.J., Katz, J.: Faster secure two-party
computation in the single-execution setting. Cryptology ePrint Archive, Report
2016/762 (2016), http://eprint.iacr.org/2016/762

38. Yao, A.C.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science (FOCS). pp. 160–164. IEEE (1982)

39. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole—reducing data
transfer in garbled circuits using half gates. In: Advances in Cryptology—
Eurocrypt 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer (2015)

https://mischasan.wordpress.com/2011/07/24/what-is-sse-good-for-transposing-a-bit-matrix/
https://mischasan.wordpress.com/2011/07/24/what-is-sse-good-for-transposing-a-bit-matrix/
https://github.com/emp-toolkit
http://eprint.iacr.org/2016/762

	Faster Secure Two-Party Computation in the Single-Execution Setting

