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Abstract. We propose an information-theoretically secure encryption
scheme for classical messages with quantum ciphertexts that offers de-
tection of eavesdropping attacks, and re-usability of the key in case no
eavesdropping took place: the entire key can be securely re-used for en-
crypting new messages as long as no attack is detected. This is known to
be impossible for fully classical schemes, where there is no way to detect
plain eavesdropping attacks.

This particular application of quantum techniques to cryptography was
originally proposed by Bennett, Brassard and Breidbart in 1982, even be-
fore proposing quantum-key-distribution, and a simple candidate scheme
was suggested but no rigorous security analysis was given. The idea was
picked up again in 2005, when Damg̊ard, Pedersen and Salvail suggested
a new scheme for the same task, but now with a rigorous security analy-
sis. However, their scheme is much more demanding in terms of quantum
capabilities: it requires the users to have a quantum computer.

In contrast, and like the original scheme by Bennett et al., our new
scheme requires from the honest users merely to prepare and measure
single BB84 qubits. As such, we not only show the first provably-secure
scheme that is within reach of current technology, but we also confirm
Bennett et al.’s original intuition that a scheme in the spirit of their
original construction is indeed secure.

1 Introduction

Background. Classical information-theoretic encryption (like the one-time
pad) and authentication (like Carter-Wegman authentication) have the serious
downside that the key can be re-used only a small number of times, e.g. only once
in case of the one-time pad for encryption or a strongly universal2 hash function
for authentication. This is inherent since by simply observing the communication,
an eavesdropper Eve inevitably learns a substantial amount of information on
the key. Furthermore, there is no way for the communicating parties, Alice and
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Bob, to know whether Eve is present and has observed the communication or
not, so they have to assume the worst.

This situation changes radically when we move to the quantum setting and
let the ciphertext (or authentication tag) be a quantum state: then, by the fun-
damental properties of quantum mechanics, an Eve that observes the communi-
cated state inevitably changes it, and so it is potentially possible for the receiver
Bob to detect this, and, vice versa, to conclude that the key is still secure and
thus can be safely re-used in case everything looks as it is supposed to be.

This idea of key re-usability by means of a quantum ciphertext goes back to
a manuscript titled “Quantum Cryptography II: How to re-use a one-time pad
safely even if P = NP” by Bennett, Brassard and Breidbart written in 1982.
However, their paper was originally not published, and the idea was put aside
after two of the authors discovered what then became known as BB84 quantum-
key-distribution [2].1 Only much later in 2005, this idea was picked up again by
Damg̊ard, Pedersen and Salvail in [5] (and its full version in [6]), where they
proposed a new such encryption scheme and gave a rigorous security proof — in
contrast, Bennett et al.’s original reasoning was very informal and hand-wavy.

The original scheme by Bennett et al. is simple and natural: you one-time-pad
encrypt the message, add some redundancy by encoding the ciphertext using an
error correction (or detection) code, and encode the result bit-wise into what we
nowadays call BB84 qubits. The scheme by Damg̊ard et al. is more involved; in
particular, the actual quantum encoding is not done by means of single qubits,
but by means of states that form a set of mutually unbiased bases in a Hilbert
space of large dimension. This in particular means that their scheme requires a
quantum computer to produce the quantum ciphertexts and to decrypt them.

Our Results. We are interested in the question of whether one can combine
the simplicity of the originally proposed encryption scheme by Bennett et al.
with a rigorous security analysis as offered by Damg̊ard et al. for their scheme;
in particular, whether there is a provably secure scheme that is within reach of
being implementable with current technology — and we answer the question in
the affirmative.

We start with the somewhat simpler problem of finding an authentication
scheme that allows to re-use the key in case no attack is detected, and we show
a very simple solution. In order to authenticate a (classical) message msg, we en-
code a random bit string x ∈ {0, 1}n into BB84 qubits Hθ|x〉, where θ ∈ {0, 1}n
is part of the shared secret key, and we compute a tag t = MAC(k,msg‖x) of the
message concatenated with x, where MAC is a classical information-theoretic
one-time message authentication code, and its key k is the other part of the
shared secret key. The qubits Hθ|x〉 and the classical tag t are then sent along
with msg, and the receiver verifies correctness of the received message in the
obvious way by measuring the qubits to obtain x and checking t.

1 A freshly typeset version of the original manuscript was then published more than
30 years later in [3].
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One-time security of the scheme is obvious, and the intuition for key-recycling
is as follows. Since Eve does not know θ, she has a certain minimal amount
of uncertainty in x, so that, if MAC has suitable extractor-like properties, the
tag t is (almost) random and independent of k and θ, and thus gives away no
information on k and θ. Furthermore, if Eve tries to gain information on k and θ
by measuring some qubits, she disturbs these qubits and is likely to be detected.
A subtle issue is that if Eve measures only very few qubits then she has a good
chance of not being detected, while still learning a little bit on θ by the fact
that she has not been detected. However, as long as her uncertainty in θ is large
enough this should not help her (much), and the more information on θ she tries
to collect this way the more likely it is that she gets caught.

We show that the above intuition is correct. Formally, we prove that as long
as the receiver Bob accepts the authenticated message, the key-pair (k, θ) can
be safely re-used, and if Bob rejects, it is good enough to simply refresh θ. Our
proof is based on techniques introduced in [19] and extensions thereof.

Extending our authentication scheme to an encryption scheme is intuitively
quite easy: we simply extract a one-time-pad key from x, using a strong extractor
(with some additional properties) with a seed that is also part of the shared secret
key. Similarly to above, we can prove that as long as the receiver Bob accepts,
the key can be safely re-used, and if Bob rejects it is good enough to refresh θ.

In our scheme, the description length2 of θ is m+3λ, where m is the length of
the encrypted message msg and λ is the security parameter (so that the scheme
fails with probability at most 2−λ). Thus, with respect to the number of fresh
random bits that are needed for the key refreshing, i.e. for updating the key in
case Bob rejects, our encryption scheme is comparable to the scheme by Damg̊ard
et al.3 and optimal in terms of the dependency on the message length m.

Our schemes can be made noise robust in order to deal with a (slightly)
noisy quantum communication; the generic solution proposed in [5, 6] of using
a quantum error correction code is not an option for us as it would require a
quantum computer for en- and decoding. Unfortunately, using straightforward
error correction techniques, like sending along the syndrome of x with respect to
a suitable error correcting code, renders our proofs invalid beyond an easy fix,
though it is unclear whether the scheme actually becomes insecure. However,
we can deal with the issue by means of using error correction “without leaking
partial information”, as introduced by Dodis and Smith [8] and extended to the
quantum setting by Fehr and Schaffner [9]. Doing error correction in a more
standard way, which would offer more freedom in choosing the error correction
code and allow for a larger amount of noise, remains an interesting open problem.

Encryption with Key Recycling vs QKD. A possible objection against
the idea of encryption with key recycling is that one might just as well use QKD

2 In our scheme, θ is not uniformly random in {0, 1}n but is chosen to be a code word,
as such, its description length is smaller than its physical bit length, and given by
the dimension of the code.

3 Their scheme needs m+` fresh random bits for key refreshing, where ` is a parameter
in their construction, and their scheme fails with probability approximately 2−`/2.
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to produce a new key, rather than re-using the old one. However, there are
subtle advantages of using encryption with key recycling instead. For instance,
encryption with key recycling is (almost) non-interactive and requires only 1 bit
of authenticated feedback: “accept” or “reject”, that can be provided offline, i.e.,
after the communication of the private message, as long as it is done before the
scheme is re-used. This opens the possibility to provide the feedback by means
of a different channel, like by confirming over the phone. In contrast, for QKD, a
large amount of data needs to be authenticated online and in both directions. If
no physically authenticated channel is available, then the authenticated feedback
can actually be done very easily: Alice appends a random token to the message
she communicates to Bob in encrypted form, and Bob confirms that no attack
is detected by returning the token back to Alice — in plain — and in case he
detected an attack, he sends a reject message instead.4 Furthermore, encryption
with key recycling has the potential to be more efficient than QKD in terms of
communication. Even though this is not the case for our scheme, there is certainly
potential, because no sifting takes place and hence there is no need to throw
out a fraction of the quantum communication. Altogether, on a stable quantum
network for instance, encryption with key-recycling would be the preferred choice
over QKD. Last but not least, given that the re-usability of a one-time-pad-
like encryption key was one of the very first proposed applications of quantum
cryptography — even before QKD — we feel that giving a satisfactory answer
should be of intellectual interest.

Related Work. Besides the work of Brassard et al. and of Damg̊ard et al.,
who focus on encrypting classical messages, there is a line of work, like [13, 15, 11],
that considers key recycling in the context of authentication and/or encryption
of quantum messages. However, common to almost all this work is that only part
of the key can be re-used if no attack is detected, or a new but shorter key can be
extracted. The only exceptions we know of are the two recent works by Garg et
al. [10] and by Portmann [16], which consider and analyze authentication schemes
for quantum messages that do offer re-usability of the entire key in case no
attack is detected. However, these schemes are based on techniques (like unitary
designs) that require the honest users to perform quantum computations also
when restricting to classical messages. Actually, [16] states it as an explicit open
problem to “find a prepare-and-measure scheme to encrypt and authenticate a
classical message in a quantum state, so that all of the key may be recycled if
it is successfully authenticated”. On the other hand, their schemes offer security
against superposition attacks, where the adversary may trick the sender into
authenticating a superposition of classical messages; this is something we do not
consider here — as a matter of fact, it would be somewhat unnatural for us since
such superposition attacks require the sender (wittingly or unwittingly) to hold
a quantum computer, which is exactly what we want to avoid.

4 Of course, when Bob sends back the token to confirm, Eve can easily replace it by
the reject message and so prevent Alice and Bob from finding agreement, but this is
something that Eve can always achieve by “altering the last message”, also in QKD.
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2 Preliminaries

2.1 Basic Concepts of Quantum Information Theory

We assume basic familiarity; we merely fix notation and terminology here.

Quantum states. The state of a quantum system with state space H is
specified by a state vector |ϕ〉 ∈ H in case of a pure state, or, more generally
in case of a mixed state, by a density matrix ρ acting on H. The set of density
matrices acting on H is denoted D(H). We typically identify different quantum
systems by means of labels A,B etc., and we write ρA for the state of system A
and HA for its state space, etc. The joint state of a bipartite system AB is given
by a density matrix ρAB in D(HA ⊗HB); it is then understood that ρA and ρB
are the respective reduced density matrices ρA = trB(ρAB) and ρB = trA(ρAB).

We also consider states that consist of a classical and a quantum part. For-
mally, ρXE ∈ D(HX ⊗HE) is called a cq-state (for classical-quantum), if it is of
the form

ρXE =
∑
x∈X

PX(x)|x〉〈x| ⊗ ρxE ,

where PX : X → [0, 1] is a probability distribution, {|x〉}x∈X is a fixed orthonor-
mal basis of HX , and ρxE ∈ D(HE). Throughout, we will slightly abuse notation
and express this by writing ρXE ∈ D(X ⊗HE).

In the context of such a cq-state ρXE, an event Λ is specified by means of
a decomposition ρXE = P [Λ] · ρXE|Λ + P [¬Λ] · ρXE|¬Λ with P [Λ], P [¬Λ] ≥ 0
and ρXE|Λ, ρXE|¬Λ ∈ D(X ⊗HE). Associated to such an event Λ is the indicator
random variable 1Λ, i.e., the cq-state ρX1ΛE ∈ D(X ⊗{0, 1}⊗HE), defined in the
obvious way. Note that, for any cq-state ρXE and any x ∈ X , the event X=x is
naturally defined and ρXE|X=x = |x〉〈x| ⊗ ρxE and ρE|X=x = ρxE.

If a state ρX is purely classical, meaning that ρX =
∑
x PX(x)|x〉〈x| and

expressed as ρX ∈ D(X ), we may refer to standard probability notation so that
probabilities like P [X=x] are well understood. Finally, we write µX for the fully
mixed state µX = 1

|X |
∑
x |x〉〈x| =

1
|X | IX ∈ D(X ).

General quantum operations. Operations on quantum systems are de-
scribed by CPTP maps. To emphasize that a CPTP map Q : D(HA)→ D(HA′)
acts on density matrices in D(HA), we sometimes write QA, and we say that it
“acts on A”. Also, we may write QA→A′ in order to be explicit about the range
too. If Q is a CPTP map acting on A, we often abuse notation and simply write
QA(ρAB) or ρQ(A)B for

(
QA⊗idB

)
(ρAB), where idB is the identity map on D(HB).

In line with our notation for cq-states, Q : D(X ⊗HE)→ D(X ′⊗HE′) is used
to express that Q maps any cq-state ρXE ∈ D(X ⊗HE) to a cq-state Q(ρX′E)
in D(X ′ ⊗HE′). We say that a CPTP map Q : D(X ⊗HE) → D(X ⊗HE′) is
“controlled by X and acts on E ” if on a cq-state ρXE ∈ D(X ⊗HE) it acts as

Q(ρXE) =
∑
x

PX(x)|x〉〈x| ⊗ Qx(ρxE)
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with “conditional” CPTP mapsQx : D(HE)→ D(HE′). Note that in this case we
write QXE→E′ rather than QXE→XE′ , as it is understood that Q keeps X alive.
For concreteness, we require that such a Q is of the form Q =

∑
x P|x〉〈x| ⊗Qx

where P|x〉〈x|(ρ) = |x〉〈x| ρ |x〉〈x| for any ρ ∈ D(HX).5 As such,Q is fully specified
by means of the conditional CPTP mapsQx. Finally, for any function f : X → Y,
we say that Q : D(X ⊗ HE) → D(X ⊗ HE′) is “controlled by f(X)” if it is
controlled by X, but Qx = Qx′ for any x, x′ ∈ X with f(x) = f(x′).

Markov-chain states. Let ρXY E ∈ D(X ⊗ Y ⊗ HE) be a cq-state with
two classical subsystems X and Y . Following [7], we define ρX↔Y↔E to be the
“Markov-chain state”

ρX↔Y↔E :=
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE

with ρyE =
∑
x PX|Y (x|y) ρx,yE . If the state ρXY E is clear from the context we

write X ↔ Y ↔ E to express that ρXY E = ρX↔Y↔E. It is an easy exercise
to verify that the Markov-chain condition X ↔ Y ↔ E holds if and only if
ρXY E = QY∅→E(ρXY ) for a CPTP map QY∅→E : D(Y) → D(Y ⊗HE) that is
controlled by Y and acts on the “empty” system ∅, i.e., the conditional maps
act as Qy∅→E : D(C)→ D(HE).

Quantum measurements. We model a measurement of a quantum system A
with outcome in X by means of a CPTP mapM : D(HA)→ D(X ) that acts as

M(ρ) =
∑
x∈X

tr(Exρ)|x〉〈x| ,

where {|x〉}x∈X is a fixed basis, and {Ex}x∈X forms a POVM, i.e., a family of
positive-semidefinite operators that add up to the identity matrix IX . A mea-
surement M : D(Z ⊗ HA) → D(Z ⊗ X ) is said to be a “measurement of A
controlled by Z” if it is controlled by Z and acts on A as a CPTP map. It is
easy to see that in this case the conditional CPTP maps Mz : D(HA)→ D(X )
are measurements too, referred to as “conditional measurements”.

Note that wheneverM : D(HZ ⊗HA)→ D(X ) is an arbitrary measurement
of Z and A that is applied to a cq-state ρZA ∈ D(Z ⊗ HA), we may assume
that M first “produces a copy of Z”, and thus we may assume without loss of
generality that M : D(Z ⊗HA)→ D(Z ⊗ X ) is controlled by Z.

For a given n ∈ N, Mbb84

ΘA→X denotes the BB84 measurement of an n-qubit
system A controlled by Θ. Formally, for every θ ∈ {0, 1}n the corresponding
conditional measurement is specified by the POVM {Hθ|x〉〈x|Hθ} with x ranging
over {0, 1}n. Here, H is the Hadamard matrix, and Hθ|x〉 is a short hand for
Hθ1 |x1〉 ⊗ · · · ⊗Hθn |xn〉 ∈ HA = (C2)⊗n, where {|0〉, |1〉} is the computational
basis of the qubit system C2.

5 This means that the system X is actually measured (in the fixed basis {|x〉}x∈X ).

6



Trace Distance. We capture the distance between two states ρ, σ ∈ D(H)
in terms of their trace distance δ(ρ, σ) := 1

2‖ρ− σ‖1, where ‖K‖1 := tr
(√
K†K

)
is the trace norm of an arbitrary operator K. If the states ρA and ρA′ are clear
from context, we may write δ(A,A′) instead of δ(ρA, ρA′). Also, for any cq-state
ρXE in D(X ⊗HE), we write δ(X,UX |E) as a short hand for δ(ρXE, µX ⊗ ρE).
Obviously, δ(X,UX |E) captures how far away X is from uniformly random on
X when given the quantum system E.

It is well known that the trace distance is monotone under CPTP maps, and
it is easy to see that if two cq-states ρXE, σXE ∈ D(X ⊗HE) coincide on their
classical subsystems, meaning that ρX = σX , then δ(ρXE, σXE) decomposes into
δ(ρXE, σXE) =

∑
x PX(x) δ(ρxE, σ

x
E).

2.2 The Guessing Probability

An important concept in the technical analysis of our scheme(s) is the following
notion of guessing probability, which is strongly related to the (conditional) min-
entropy as introduced by Renner [17], but turns out to be more convenient to
work with for our purpose. Let ρXE ∈ D(X ⊗HE) be a cq-state.

Definition 1. The guessing probability of X given E is

Guess(X|E) := max
M

P [M(E)=X] ,

where the maximum is over all measurements M : D(HE) → D(X ) of E with
outcome in X .6

Note that if Λ is an event, then Guess(X|E, Λ) is naturally defined by means of
applying the above to the “conditional state” ρXE|Λ ∈ D(X ⊗HE).

We will make use of the following elementary properties of the guessing prob-
ability. In all the statements, it is understood that ρXE ∈ D(X⊗HE), respectively
ρXZE ∈ D(X ⊗ Z ⊗HE) in Property 2.

Property 1. Guess(X|Q(E)) ≤ Guess(X|E) for any CPTP map Q acting on E.

Property 2. Guess(X|ZE) =
∑
z PZ(z) Guess(X|E, Z=z).

Property 3. Guess(X|E, Λ) ≤ Guess(X|E)/P [Λ] for any event Λ.

Note that Property 2 implies that Guess(X|E, Λ) ≤ Guess(X|1ΛE)/P [Λ], but
the statement of Property 3 is stronger since Guess(X|E) ≤ Guess(X|1ΛE).

Proof (of Property 3). It holds that7 P [Λ] ·ρXE|Λ ≤ ρXE, and hence that for any
measurement M on E

P [Λ] · P [M(E)=X|Λ] ≤ P [M(E)=X] ≤ Guess(X|E) ,

which implies the claim. ut
6 By our conventions, the probability P [M(E)=X] is to be understood as P [X ′=X]

for the (purely classical) state ρXX′ = ρXM(E) = (idX ⊗M)(ρXE) ∈ D(X ⊗ X ).
7 Here and throughout, for operators K and L, the inequality K ≤ L means that
L−K is positive-semidefinite.

7



Property 4. There exists σE ∈ D(HE) so that

ρXE ≤ Guess(X|E) · IX ⊗ σE = Guess(X|E) · |X | · µX ⊗ σE .

Proof. The claim follows from Renner’s original definition of the conditional
min-entropy as

H∞(X|E) := max
σE

max
λ
{λ | ρXE ≤ 2−λ · IX ⊗ σE}

and the identity H∞(X|E) = − log Guess(X|E), as shown in [12]. ut

3 Enabling Tools

In this section, we introduce and discuss the main technical tools for the construc-
tions and analyses of our key-recycling authentication and encryption schemes.

3.1 On Guessing the Outcome of Quantum Measurements

We consider different “guessing games”, where one or two players need to guess
the outcome of a quantum measurement. The bounds are derived by means of
the techniques of [19].

Two-player guessing. Here, we consider a game where two parties, Bob and
Charlie, need to simultaneously and without communication guess the outcome
of BB84 measurements performed by Alice (on n qubits prepared by Bob and
Charlie), when given the bases that Alice chose. This is very similar to the
monogamy game introduced and studied in [19], but in the version we consider
here, the sequence of bases is not chosen from {0, 1}n but from a code C ⊂ {0, 1}n
with minimal distance d. It is useful to think of d to be much larger than log |C|,
i.e., the dimension of the code in case of a linear code. The following shows that
in case of a uniformly random choice of the bases in C, Bob and Charlie cannot
do much better than to agree on a guess for the bases and to give Alice qubits
in those bases.

Proposition 1. Let HA be a n-qubit system, and let HB and HC be arbitrary
quantum systems. Consider a state ρΘABC = µC⊗ρABC ∈ D(C⊗HA⊗HB⊗HC),
and let

ρΘXX′X′′ = NΘC→X′′ ◦ NΘB→X′ ◦Mbb84

ΘA→X
(
ρΘABC

)
where Mbb84

ΘA→X is the BB84-measurement of the system A (controlled by Θ),
and NΘB→X′ and NΘC→X′′ are arbitrary (possibly different) measurements of
the respective systems B and C, both controlled by Θ. Then, it holds that

P [X ′=X ∧X ′′=X] ≤ 1

|C|
+

1

2d/2
.
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Proof. The proof uses the techniques from [19]. By Naimark’s theorem, we may
assume without loss of generality that the conditional measurements N θ

B→X′ and
N θ

C→X′′ are specified by families {P θx}x and {Qθx}x of projections. Then, defining
for every θ ∈ C the projection Πθ =

∑
xH

θ|x〉〈x|Hθ ⊗ P θx ⊗Qθx, we see that

P [X ′=X ∧X ′′=X] ≤ 1

|C|

∥∥∥∥∑
θ

Πθ

∥∥∥∥ ≤ 1

|C|
∑
δ

max
θ

∥∥ΠθΠθ⊕δ∥∥ ,

where ‖ · ‖ refers to the standard operator norm, and the second inequality is by
Lemma 2.2 in [19]. For any θ, θ′ ∈ C, bounding Πθ and Πθ′ by

Πθ ≤ Γ θ :=
∑
x

Hθ|x〉〈x|Hθ ⊗ P θx ⊗ I

and
Πθ′ ≤ ∆θ′ :=

∑
x

Hθ′ |x〉〈x|Hθ′ ⊗ I⊗Qθ
′

x ,

it is shown in [19] (in the proof of Theorem 3.4) that∥∥ΠθΠθ′
∥∥ ≤ ∥∥Γ θ∆θ′

∥∥ ≤ 1

2dH(θ,θ′)/2
≤ 1

2d/2

where the last inequality holds unless θ = θ′, from which the claim follows. ut

Remark 1. If we restrict HB to be a n-qubit system too, and replace the (ar-
bitrary) measurement NΘB by a BB84 measurement Mbb84

ΘB, i.e., “Bob measures
correctly”, then we get

P [X ′=X ∧X ′′=X] ≤ 1

|C|
+

1

2d
.

Two-player guessing with quantum side information. Now, we con-
sider a version of the game where Alice’s choice for the bases is not uniformly
random, and, additionally, Bob and Charlie may hold some quantum side infor-
mation on Alice’s choice at the time when they can prepare the initial state (for
Alice, Bob and Charlie).

Corollary 1. Let HA be a n-qubit system, and let HB,HC and HE be arbitrary
quantum systems. Consider a state ρΘE ∈ D(C ⊗HE), and let

ρΘABC = QE→ABC

(
ρΘE

)
∈ D(C ⊗HA ⊗HB ⊗HC)

where QE→ABC is a CPTP map acting on E (only), and let

ρΘXX′X′′ = NΘC→X′′ ◦ NΘB→X′ ◦Mbb84

ΘA→X
(
ρΘABC

)
as in Proposition 1 above. Then, it holds that

P [X ′=X ∧X ′′=X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d/2
.
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Proof. By Proposition 1, the claim holds as P [X ′=X∧X ′′=X] ≤ 1/|C|+1/2d/2

for the special case where ρΘE is of the form ρΘE = µC ⊗ σE. Furthermore, by
Property 4 we know that an arbitrary ρΘE ∈ D(C ⊗HE) is bounded by

ρΘE ≤ Guess(Θ|E) · |C| · µC ⊗ σE .

Therefore, since the composed map

D(C ⊗HE)→ D({0, 1}), ρΘE 7→ ρΘABC 7→ ρXX′X′′ 7→ ρ1X=X′∧X=X′′

is still a CPTP map, it holds that for arbitrary ρΘE ∈ D(C ⊗HE)

P [X ′=X ∧X ′′=X] ≤ Guess(Θ|E) · |C| ·
(

1

|C|
+

1

2d/2

)
,

which proves the claim. ut
Remark 2. Similarly to the remark above, the bound relaxes to

P [X ′=X ∧X ′′=X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d
,

when “Bob measure correctly”.

Single-player guessing (with quantum side information). Corollary 1
immediately gives us control also over a slightly different game, where only one
party needs to guess Alice’s measurement outcome, but here he is not given the
bases. Indeed, any strategy here gives a strategy for the above simultaneous-
guessing game, simply by “pre-measuring” B, and having Bob and Charlie each
keep a copy of the measurement outcome.

Corollary 2. Let HA be a n-qubit system, and let HB and HE be arbitrary
quantum systems. Consider a state ρΘE ∈ D(C ⊗HE) and let

ρΘAB = QE→AB

(
ρΘE

)
∈ D(C ⊗HA ⊗HB)

where QE→AB is a CPTP map acting on E, and let

ρΘXX′′ = NB→X′′ ◦Mbb84

ΘA→X
(
ρΘAB

)
where NB→X′′ is an arbitrary measurement of B (with no access to Θ). Then, it
holds that

P [X ′′=X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d/2
.

In other words, for the state ρΘXB =Mbb84

ΘA→X(ρΘAB) we have that

Guess(X|B) ≤ Guess(Θ|E) +
Guess(Θ|E) · |C|

2d/2
.

Remark 3. If we restrict the side information E to be classical then, using slightly
different techniques, we can improve the bounds from Corollary 1 and 2 to

Guess(Θ|E) +
1

2d/2
.

Whether this improved bound also holds in case of quantum side information is
an open question.
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3.2 Hash Functions with Message-Independence and Key-Privacy

The goal of key-recycling is to be able to re-use a cryptographic key. For this to be
possible, it is necessary — actually, not necessary but sufficient — that a key stays
secure, i.e., that the primitive that uses the key does not reveal anything on the
key, or only very little. We introduce here a general notion that captures this, i.e.,
that ensures that the key stays secure as long as there is enough uncertainty in
the message the primitive is applied to — in our construction(s), this uncertainty
will then be derived from the quantum part.

Consider a keyed hash function H : K × X → Y with key space K, message
space X , and range Y. We define the following properties on such a hash function.

Definition 2. We say that H is message-independent if for a uniformly random
key K in K, the distribution of the hash value Y = H(K,x) is independent of
the message x ∈ X . And, we say that H is uniform if it is message-independent
and Y = H(K,x) is uniformly random on Y.

Thus, message-independence simply ensures that if the key is uniformly random
and independent of the message, then the hash of the message is independent
of the message too. The key-privacy property below on the other hand ensures
that for any adversary that has arbitrary but limited information on the message
and the hash value — but no direct information on the key — has (almost) no
information on the key.

Definition 3. We say that H offers ν-key-privacy if for any state ρKXY E in
D(K⊗X ⊗Y ⊗HE) with the properties that ρKX = µK⊗ ρX , Y = H(K,X) and
K ↔ XY ↔ E, it holds that

δ(K,UK|Y E) ≤ ν

2

√
Guess(X|Y E) · |Y| .

We say that H offers ideal key-privacy if it offers 1-key-privacy.

Remark 4. Note that if H is message-independent then for X,Y and E as above
in Definition 3, we have that Guess(X|Y E) = Guess(X|E).

Not so surprisingly, the joint notion of uniformity and key-privacy is closely
related to that of a strong extractor [14]. Indeed, if H is uniform and offers key-
privacy then it is a strong extractor: for ρKXE = µK⊗ρXE and Y = H(K,X), the
condition on ρKXY E in Definition 3 is satisfied, and thus we have the promised
bound on δ(ρKY E, µK⊗ρY E) = δ(ρKY E, µK⊗µY⊗ρE), where the equality is due
to uniformity. As such, [18] shows that the required bound on δ(K,UK|Y E) is the
best one can hope for. On the other hand, the following shows that from every
strong extractor we can easily construct a hash function that offers uniformity
and key-privacy.

Proposition 2. Let Ext : K × X → Y be a strong extractor, meaning that for
ρKXE = µK ⊗ ρXE ∈ D(K ⊗X ⊗HE) and for Y computed as Y = Ext(K,X) it
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holds that δ(ρKY E, µK ⊗ ρY E) ≤ ν
2

√
Guess(X|E) · |Y|. Furthermore, we assume

that the range Y forms a group. Then, the keyed hash function8

H : (K × Y)×X → Y, (k‖k′, x) 7→ Ext(k, x) + k′

with key space K × Y satisfies uniformity and ν-key-privacy.

Proof. Uniformity is clear. For key-privacy, consider a state ρKXY E with the
properties as in Definition 3. We fix an arbitrary y ∈ Y and condition on Y = y.
Conditioning on X = x as well for an arbitrary x ∈ X , the key (K,K ′) is
uniformly distributed subject to H(K,x)+K ′ = y. In other words,K is uniformly
random in K, and K ′ = y − H(K,x). Therefore, making use of the Markov-
chain property, conditioning on Y = y only, K is uniformly random in K and
independent of X and E, and K ′ = y−H(K,X). Thus, by the extractor property,
δ(ρK′KE|Y=y, µY⊗µK⊗ρE|Y=y) ≤ ν

2

√
Guess(X|E, Y =y) · |Y|. The claim follows

by averaging over y, and applying Jensen’s inequality and Property 2. ut

The following technical result will be useful.

Lemma 1. Let H : K×X → Y be a keyed hash function that satisfies message-
independence. Furthermore, let ρKXY E be a state with the properties as in Defi-
nition 3. Then

Guess(X|KY E) ≤ Guess(X|Y E) · |Y| .

Proof. Note that the Markov-chain property K ↔ XY ↔ E can be understood
in that E is obtained by acting on XY only: E = Q(XY ). For the purpose of the
argument, we extend the state ρXKY E to a state ρXKK′Y Y ′EE′ as follows. We
choose a uniformly random and independent K ′ in K, and set Y ′ = H(K ′, X)
and E′ = Q(XY ′). Note that ρXKY E coincides with ρXK′Y ′E′ . Therefore,

Guess(X|Y E) = Guess(X|Y ′E′) = Guess(X|KY ′E′) ,

where the second equality is by the independence of K. Furthermore, by Prop-
erty 3, we have that

Guess(X|KY ′E′) ≥ P [Y =Y ′] Guess(X|KY ′E′, Y =Y ′)

= P [Y =Y ′] Guess(X|KY E, Y =Y ′) .

Finally, by the message-independence of H, it holds that Y ′ is independent of
KXY E (and with the same distribution as Y ), and therefore P [Y =Y ′] ≥ 1/|Y|
and Guess(X|KY E, Y = Y ′) = Guess(X|KY E). Altogether, this gives us the
bound Guess(X|KY E) ≤ Guess(X|Y E) · |Y|, which concludes the proof. ut

Equipped with Lemma 1, we can now show the following composition results.

8 Here, and similarly in other occasions, k‖k′ is simply a synonym for the element
(k, k′) in the Cartesian product of, here, K and Y, and is mainly used to smoothen
notation and avoid expressions like

(
(k, k′), x

)
.
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Proposition 3 (Parallel Composition). Consider two keyed hash functions
H1 : K1 ×X → Y1 and H2 : K2 ×X → Y2 with the same message space X , and

H : (K1 ×K2)×X → Y1 × Y2, (k1‖k2, x) 7→
(
H1(k1, x),H2(k2, x)

)
with key space K = K1 × K2 and range Y = Y1 × Y2. If H1 and H2 are both
message-independent (or uniform) and respectively offer ν1-and ν2-key privacy,
then H is message-independent (or uniform) and offers (ν1 + ν2)-key privacy.

Proof. That message-independence/uniformity is preserved is clear. To argue
key-privacy, assume that we have ρK1K2X = ρK1 ⊗ ρK2 ⊗ ρX , Y1 = H1(K1, X)
and Y2 = H(K2, X), and K1K2 ↔ XY1Y2 ↔ E. We need to bound the distance
of K1K2 from uniform when given Y1Y1E, which we can decompose into

δ(K1K2, UK1
UK2
|Y1Y1E) ≤ δ(K1, UK1

|Y1Y2E) + δ(K2, UK2
|K1Y1Y2E) .

The above conditions on ρK1K2XY1Y2E imply that K1 ↔ XY1 ↔ K2Y2E holds,
and thus also K1 ↔ XY1 ↔ Y2E. Indeed, K1K2 ↔ XY1Y2 ↔ E implies that also
K1 ↔ XY1K2Y2 ↔ E, which together with K1 ↔ XY1 ↔ K2Y2 (which holds
by choice of K2 and Y2) implies that K1 ↔ XY1 ↔ K2Y2E. Therefore, by the
key-privacy property of H1, setting E1 = Y2E, we see that

δ(K1, UK1
|Y1Y2E) ≤ ν1

2

√
Guess(X|Y1Y2E) · |Y1| .

Similarly, K2 ↔ XY2 ↔ K1Y1E, and so by the key-privacy property of H2,
setting E2 = K1Y1E, we conclude that

δ(K2, UK2
|K1Y1Y2E) ≤ ν2

2

√
Guess(X|Y2K1Y1E) · |Y2|

≤ ν2
2

√
Guess(X|Y2Y1E) · |Y1| · |Y2| ,

which proves the claim. ut

Proposition 4 (“Sequarallel” Composition). Consider two keyed hash func-
tions H1 : K1 × X → Y1 and H2 : K2 × (X ⊗ Y1) → Y2 with message spaces as
specified, and

H : (K1 ×K2)×X → Y1 × Y2 , (k1‖k2, x) 7→
(
H1(k1, x),H2(k2, x‖H1(k1, x))

)
with key space K = K1 × K2 and range Y = Y1 × Y2. If H1 and H2 are both
message-independent (or uniform) and respectively offer ν1-and ν2-key privacy,
then H is message-independent (or uniform) and offers (ν1 + ν2)-key privacy.

Proof. The proof goes along the same lines as the proof of Proposition 3, except
that in the reasoning for the bound on δ(K2, UK2

|K1Y1E), we append Y1 to X,
with the consequence that we get a bound that is in terms of Guess(XY1|Y2Y1E),
but this obviously coincides with Guess(X|Y2Y1E), and thus we end up with the
same bound. ut
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4 Message Authentication with Key-Recycling

We first consider the problem of message authentication with key-recycling. It
turns out that — at least with our approach — this is the actual challenging prob-
lem, and extending to (authenticated) encryption is then quite easy.

4.1 The Semantics

We quickly specify the semantics of a quantum authentication code (or scheme)
with key-recycling.9

Definition 4. A quantum authentication code (with key recycling) QMAC with
message space MSG and key space KEY is made up of the following compo-
nents: (1) A CPTP map Auth that is controlled by a message msg ∈ MSG and
a key key ∈ KEY, and that acts on an empty system and outputs a quantum
authentication tag (with a fixed state space), (2) a measurement Verify that is
controlled by msg ∈ MSG and key ∈ KEY, and that acts on a quantum authen-
tication tag and outputs a decision bit d ∈ {0, 1}, and (3) a randomized function
Refresh : KEY → KEY.

We will often identify an authentication code, formalized as above, with the
obvious authenticated-message-transmission protocol πQMAC(msg), where Alice
and Bob start with a shared key key ∈ KEY, and Alice sends the message msg
along with its quantum authentication tag prepared by means of Auth to Bob
over a channel that is controlled by the adversary Eve, and, upon reception of the
(possibly modified) message and tag, Bob verifies correctness using Verify and
accordingly accepts or rejects. If he rejects, then Alice and Bob replace key by
key′ := Refresh(key).10 Note that, for any message msg ∈MSG and any strategy
for Eve on how to interfere with the communication, the protocol πQMAC(msg)
induces a CPTP map Exe[πQMAC(msg)] : D(KEY ⊗HE) → D(KEY ⊗HE′) that
describes the evolution of the shared key key and Eve’s local system as a result
of the execution of πQMAC(msg).

Our goal will be to show that, for our construction given below, and for
any behavior of Eve, the CPTP map Exe[πQMAC(msg)] maps a key about which
Eve has little information into a (possibly updated) key about which Eve still
has little information — what it means here to “have little information” needs
to be specified, but it will in particular imply that it still allows Bob to detect
a modification of the message. This then ensures re-usability of the quantum
authentication code — with the same key as long as Bob accepts the incoming
messages, and with the updated key in case he rejects.

9 Our definition is tailored to our goal that the key can be re-used unchanged in case
the message is accepted by the recipient, Bob, and only needs to be refreshed in
case he rejects. In the literature, key-recycling sometimes comes with two refresh
procedures, one for the case Bob rejects and one for the case he accepts.

10 Obviously, this requires Alice and Bob to exchange fresh randomness, i.e., the ran-
domness for executing Refresh, in a reliable and private way; how this is done is not
relevant here.
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4.2 The Scheme

Let MSG be an arbitrary non-empty finite set. We are going to construct a
quantum message authentication code QMAC with message spaceMSG. To this
end, let MAC : K×(MSG×{0, 1}n)→ T be a classical one-time message authen-
tication code with a message space MSG × {0, 1}n for some n ∈ N. We require
MAC to be secure in the standard sense, meaning a modified message will be
detected except with small probability εMAC. Additionally, we require MAC to
satisfy message-independence and ideal key-privacy, as discussed in Sect. 3.2. Ac-
tually, it is sufficient if MAC( · ,msg‖ · ), i.e., the hash function K×{0, 1}n → T ,
(k, x) 7→ MAC(k,msg‖x) obtained by fixing msg, satisfies message-independence
and ideal key-privacy for any msg ∈ MSG. Assuming that MSG consists of
bit strings of fixed size so that MSG × {0, 1}n = {0, 1}N for some N ∈ N,
the canonical message authentication codes MAC :

(
F`×N2 × F`2

)
× FN2 → F`2,

(A‖b, x) 7→ Ax+b and MAC :
(
F2N ×F`2

)
×F2N → F`2, (a‖b, x) 7→ trunc(a ·x)+b,

where trunc : F2N → F`2 is an arbitrary surjective F2-linear map, are suitable
choices; this follows directly from Proposition 2. Finally, let C ⊂ {0, 1}n be a
code with large minimal distance d.

Then, our quantum message authentication code QMAC has a key space
KEY = K×C, where for a key k‖θ ∈ K×C we refer to k as the “MAC key” and
to θ as the “basis key”, and QMAC works as described in Figure 1

QMAC.Auth(k‖θ,msg): Choose a uniformly random x ∈ {0, 1}n and output n
qubits B◦ in state Hθ|x〉 and the classical tag t = MAC(k,msg‖x).

QMAC.Verify(k‖θ,msg, t): Measure the qubits B◦ in bases θ to obtain x′ (supposed
to be x), check that t = MAC(k,msg‖x′), and output 0 or 1 accordingly.

QMAC.Refresh(k‖θ): Choose a uniformly random θ′ ∈ C and output k‖θ′.

Fig. 1. The quantum message authentication code MAC.

It is clear that as long as the MAC key k is “secure enough”, the classical
MAC takes care of an Eve that tries to modify the message msg, and it ensures
that such an attack is detected by Bob, except with small probability. What is
non-trivial to argue is that the MAC key (together with the basis key) indeed
stays “secure enough” over multiple executions of πQMAC(msg); this is what we
show below.

4.3 Analysis

We consider an execution of the authenticated-message-transmission protocol
πQMAC(msg) for a fixed message msg. Let ρKΘE ∈ D(K ⊗ C ⊗HE) be the joint
state before the execution, consisting of the MAC key K, the basis key Θ, and
Eve’s local quantum system E. The joint state Exe[πQMAC(msg)](ρKΘE) after the
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execution is given by ρKΘ′TDC ∈ D(K ⊗ C ⊗ T ⊗ {0, 1} ⊗HC), where Θ′ is the
(possibly) updated basis key, T is the classical tag, D is Bob’s decision to accept
or reject, and C is Eve’s new quantum system. Eve’s complete information after
the execution of the scheme is thus given by E′ = TDC.

Recall that TDC is obtained as follows from KΘE. Alice prepares BB84-
qubits B◦ for uniformly random bits X and with bases determined by Θ, and
she computes the tag T := MAC(K,msg‖X). Then, Eve acts on B◦E (in a way
that may depend on T ) and keeps one part, C, of the resulting state, and Bob
measures the other part, B, to obtain X ′ and checks with the (possibly modified)
tag T to decide on D.

Note that by a standard reasoning, we can think of the BB84 qubits B◦ not as
being prepared by first choosing the classical bits X and then “encoding” them
into qubits with the prescribed bases Θ, but by first preparing n EPR pairs Φ+

AB◦
and then measuring the qubits in A in the prescribed bases to obtain X, i.e.,
ρKΘXB◦E =Mbb84

ΘA→X
(
Φ+
AB◦
⊗ ρKΘE

)
.

The following captures the main security property of the scheme.

Theorem 1. If the state before the execution of πQMAC(msg) is of the form
ρKΘE = µK ⊗ ρΘE, then for any Eve the state ρKΘ′E′ = Exe[πQMAC(msg)](ρKΘE)
after the execution satisfies

Guess(Θ′|E′) ≤ Guess(Θ|E) +
1

|C|

and

δ(K,UK|Θ′E′) ≤ 2εMAC +

√
2

2

√
Guess(Θ|E)

(
1 +

|C|
2d/2

)
|T | .

This means that if before the execution of πQMAC(msg), it holds that Eve’s guess-
ing probability on Θ is small and K looks perfectly random to her (even when
given Θ), then after the execution, Eve’s guessing probability on (the possibly
refreshed) Θ′ is still small and K still looks almost perfectly random to her. As
such, we may then consider a hypothetical refreshing of K that has almost no
impact, but which brings us back to the position to apply Theorem 1 again, and
hence allows us to re-apply this “preservation of security” for the next execution,
and so on. This in particular allows us to conclude that in an arbitrary sequence
of executions, the MAC key K stays almost perfectly random for Eve, and thus
any tampering with an authenticated message will be detected by Bob except
with small probability by the security of MAC (see Sect. 4.4 for more details).

Remark 5. For simplicity, in Theorem 1 and in the remainder of this work, we
assume the message msg to be arbitrary but fixed. However, it is not hard to see
that we may also allow msg to be obtained by means of a measurement, applied
to Eve’s system E before the execution of πQMAC(msg), i.e., Eve can choose it.
The bounds of Theorem 1 then hold on average over the measured msg. This
follows directly from Property 2 for the bound the the guessing probability,
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and from a similar decomposition property for the trace distance, together with
Jensen’s inequality for the bound on the trace distance. We emphasize however,
that we do assume msg, even when provided by Eve, to be classical, i.e., we do
not consider so-called superposition attacks.

The formal proof of Theorem 1 is given below; the intuition is as follows.
For the bound on the guessing probability of the (possibly updated) basis key,
we have that in case Bob rejects and so the basis key is re-sampled from C, Eve
has obviously guessing probability 1/|C|. In case Bob accepts, the fact that Bob
accepts may increase Eve’s guessing probability. For instance, Eve may measure
one qubit in, say, the computational basis, and forward the correspondingly col-
lapsed qubit to Bob; if Bob then accepts it is more likely that this qubit had
been prepared in the computational basis by Alice, giving Eve some (new) infor-
mation on the basis key. However, the resulting increase in guessing probability
is inverse proportional to the probability that Bob actually accepts, so that this
advantage is “canceled out” by the possibility that Bob will not accept. For the
bound on the “freshness” of K (given the basis key Θ′), by key privacy it is
sufficient to argue that Eve has small guessing probability for X. In case Bob
rejects, the (refreshed) basis key is useless to her for guessing X, and so the task
of guessing X reduces to winning the game considered in Corollary 2. Similarly,
the case where Bob accepts fits into the game in Corollary 1. In both cases, we
get that the guessing probability of X essentially coincides with Guess(Θ|E).

Proof. For the first claim, we simply observe that

Guess(Θ′|TDC) =

1∑
d=0

PD(d) Guess(Θ′|TC, D=d) (by Property 2)

= PD(0)
1

|C|
+ PD(1) Guess(Θ|TC, D=1)

≤ PD(0)
1

|C|
+ Guess(Θ|TC) (by Property 3)

≤ 1

|C|
+ Guess(Θ|TB◦E) (by Property 1)

=
1

|C|
+ Guess(Θ|B◦E) (by Definition 2)

=
1

|C|
+ Guess(Θ|E) .

where the second equality holds because Θ′ is freshly chosen in case Bob rejects
and Θ′ = Θ in case he accepts, and the final equality holds because of the fact
that ρB◦ΘE = trX ◦Mbb84

ΘA→X
(
Φ+
AB◦
⊗ ρΘE

)
= trA

(
Φ+
AB◦

)
⊗ ρΘE = µB◦ ⊗ ρΘE.

For the second claim, consider D̃ and Θ̃′ as follows. D̃ is 1 if X = X ′ and Eve
has not modified the tag T nor the message msg, and D̃ is 0 otherwise (i.e., D̃ is
an “ideal version” of Bob’s decision), and Θ̃′ is freshly chosen if and only D̃ = 0.
The states of KΘ′TDC and KΘ̃′TD̃C are identical except for when D = 1 but
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X 6= X ′ or Eve has modified T or msg, which happens with probability at most
εMAC by the security of MAC, and thus the two states are εMAC-close. Therefore,
δ(K,UK|Θ′TDC) ≤ δ(K,UK|Θ̃′TD̃C) + 2εMAC, and so it suffices to analyze the
state of KΘ̃′TD̃C. Furthermore, we may assume that Eve’s state C contains the
information of whether she modified T or msg, so that D̃ can be computed from
1X=X′ when given C, and thus δ(K,UK|Θ̃′D̃TC) ≤ δ(K,UK|Θ̃′ 1X=X′D̃TC) =
δ(K,UK|Θ̃′ 1X=X′TC).

Now, since K is random and independent of XΘB◦E, T is computed as
T = MAC(K,msg|X), and Θ̃ 1X=X′C is obtained by acting on T and XΘB◦E
only (and not on K), we see that the conditions required in Definition 3 are
satisfied. Therefore, by the key-privacy of MAC, and recalling Remark 4,

δ(K,UK|TΘ̃′ 1X=X′C) ≤ 1

2

√
Guess(X|Θ̃′ 1X=X′C) |T | .

Furthermore, by Property 2, and noting that Θ̃′ is freshly chosen when X 6=X ′

and equal to Θ otherwise,

Guess(X|Θ̃′ 1X=X′C) = P [X 6=X ′] Guess(X|C, X 6=X ′)

+ P [X=X ′] Guess(X|ΘC, X=X ′) .

For the first term, we see that

P [X 6=X ′] Guess(X|C, X 6=X ′) ≤ Guess(X|C) (by Property 3)

≤ Guess(X|TB◦E) (by Property 1)

≤ Guess(X|B◦E) (by Definition 2)

≤ Guess(Θ|E)
(
1 + |C|

2d/2

)
,

where the final inequality follows from Corollary 2 by recalling that ρΘXB◦E =
Mbb84

ΘA→X
(
Φ+
AB◦
⊗ρΘE

)
. Similarly, writing X ′′ for the measurement outcome when

measuring C using an optimal measurement NΘC (controlled by Θ), we obtain

P [X=X ′] Guess(X|ΘC, X=X ′) ≤ P [X=X ′]P [X=X ′′|X=X ′]

≤ P [X=X ′ ∧X=X ′′]

≤ Guess(Θ|E)
(
1 + |C|

2d/2

)
,

where the final inequality follows from Corollary 1 by observing that, using
uniformity of MAC (Definition 2) in the second equality,

ρΘXXX′′ = NΘC→X′′ ◦Mbb84

ΘB→X′ ◦ QTB◦E→BC

(
ρΘXTB◦E

)
= NΘC→X′′ ◦Mbb84

ΘB→X ◦ QTB◦E→BC

(
ρΘXB◦E ⊗ ρT

)
= NΘC→X′′ ◦Mbb84

ΘB→X′ ◦ QTB◦E→BC ◦Mbb84

ΘA→X
(
Φ+
AB◦
⊗ ρΘE ⊗ ρT

)
= NΘC→X′′ ◦Mbb84

ΘB→X′ ◦M
bb84

ΘA→X ◦ QTB◦E→BC

(
Φ+
AB◦
⊗ ρΘE ⊗ ρT

)
= NΘC→X′′ ◦Mbb84

ΘB→X′ ◦M
bb84

ΘA→X ◦ Q′E→ABC

(
ρΘE

)
where Q′E→ABC is the CPTP map Q′E→ABC(σE) = QTB◦E→BC(Φ+

AB◦
⊗ σE ⊗ ρT ).

Collecting the terms gives the claimed bound. ut
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4.4 Re-usability of QMAC

We formally argue here that Theorem 1, which analyses a single usage of QMAC,
implies re-usability. The reason why this is not completely trivial is that after one
execution of πQMAC, the MAC key K is not perfectly secure anymore but “only”
almost-perfectly secure, so that Theorem 1 cannot be directly applied anymore
for a second execution. However, taking care of this is quite straightforward.

Formally, we have the following result regarding the re-usability of QMAC.

Proposition 5. If Alice and Bob start off with a uniformly random key, then
for a sequence πQMAC(msg1), πQMAC(msg2), . . . of sequential executions of protocol
πQMAC, and for any strategy for Eve and any i ∈ N, the probability εi that Eve
modifies msgi in the execution of πQMAC(msgi) yet Bob accepts is bounded by

εi ≤ (2i− 1) · εMAC +

√
2

2

∑
j<i

√
j

|C|

(
1 +

|C|
2d/2

)
|T | .

Proof. In case i = 1, the statement reduces to εi ≤ εMAC, which holds by con-
struction of QMAC. To argue the general case, let ρK1Θ1E1 , ρK2Θ2E2 , . . . describe
the evolution of the MAC key and the basis key and Eve’s information on them,
given that we start with a perfect key ρK0Θ0E0

= µK⊗µC⊗ρE0
. Formally, ρKiΘiEi

is inductively defined as ρKiΘiEi = Exe[πQMAC(msgi)](ρKi−1Θi−1Ei−1
). For the

sake of the argument, we also consider ρ̃K1Θ1E1 , ρ̃K2Θ2E2 , . . . obtained by means
of setting ρ̃K0Θ0E0 = ρK0Θ0E0 and ρ̃KiΘiEi = Exe[πQMAC(msgi)](µK ⊗ ρ̃Θi−1Ei−1),
i.e., the evolution of the keys and Eve’s information in a hypothetical setting
where the MAC key is refreshed before every new execution. For these latter
states ρ̃KiΘiEi , we can inductively apply Theorem 1 and conclude that

Guess(Θi|Ei) ≤
i+ 1

|C|
and

δ(ρ̃KiΘiEi , µK ⊗ ρ̃ΘiEi) ≤ δi := 2εMAC +

√
2

2

√
i

|C|

(
1 +

|C|
2d/2

)
|T |

for any i ∈ N. But now, for the original states ρK1Θ1E1 , ρK2Θ2E2 , . . ., from the
triangle inequality we obtain that

δ(ρKiΘiEi , µK ⊗ ρ̃ΘiEi) ≤ δ(ρKiΘiEi , ρ̃KiΘiEi) + δ(ρ̃KiΘiEi , µK ⊗ ρ̃ΘiEi)

≤ δ(ρKi−1Θi−1Ei−1
, µK ⊗ ρ̃Θi−1Ei−1

) + δi

≤
∑
j≤i

δj ,

where the last inequality is by induction (where the base case i = 0 is trivially
satisfied). It now follows by basic properties of the trace distance that we have
εi+1 ≤ εMAC +

∑
j≤i δj . This proves the claim. ut
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4.5 Choosing the Parameters

Let λ ∈ N be the security parameter. Consider a MAC with εMAC = 2−λ and
|T | = 2λ. This can for instance be achieved with the constructions suggested in
Sect. 4.2. Also, consider a code C with |C| = 23λ and d = 6λ, so that |C|/2d/2 = 1.
The description of the basis key θ thus requires 3λ bits, and, by Singleton bound,
it is necessary that n ≥ 9λ− 1. Then, the bound in Proposition 5 becomes

εi+1 ≤ (2i+ 1) · 2−λ +
∑
j≤i

√
2

2

√
j

23λ

(
1 +

23λ

23λ

)
2λ =

(
2i+ 1 +

∑
j≤i

√
j
)

2−λ .

Hence, the error probability increases at most as
(
i
√
i + 2i + 1

)
2−λ with the

number i of executions.

5 Extensions and Variations

We show how to modify our scheme QMAC as to offer encryption as well, i.e., to
produce an authenticated encryption of msg, and how to deal with noise in the
quantum communication; we start with the latter since this is more cumbersome.
At the end of the section, we show how to tweak our schemes so as to be able
to authenticate and/or encrypt quantum messages as well, and we discuss some
variations.

5.1 Dealing with Noise

In order to deal with noise in the quantum communication, we introduce the
following primitive. We consider a keyed hash function SS : L × {0, 1}n → S
that has the property that given the key `, the secure sketch s = SS(`, x) of
the message x, and a “noisy version” x′ of x, i.e., such that dH(x, x′) ≤ ϕ · n
for some given noise parameter ϕ < 1

2 , the original message x can be recovered
except with probability εSS. Additionally, we want SS to satisfy the message-
independence and ideal key-privacy properties from Definitions 2 and 3. Such
constructions exist for small enough ϕ > 0, as discussed in Appendix B, based
on techniques by Dodis and Smith [8].

Then, the key for our noise-tolerant quantum message authentication code
QMAC∗ consists of a (initially) uniformly random MAC key k ∈ K for MAC, an
(initially) uniformly random secure-sketch key ` ∈ L for SS, and an (initially)
random and independent basis key θ, chosen from the code C ⊂ {0, 1}n, and the
scheme works as described in Figure 2.

Theorem 2. If the state before the execution of πQMAC∗(msg) is of the form
ρKΘE = µK⊗ρΘE, then for any Eve the state ρKΘ′E′ = Exe[πQMAC∗(msg)](ρKΘE)
after the execution satisfies

Guess(Θ′|E′) ≤ Guess(Θ|E) +
1

|C|
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and

δ(KL,UK×L|Θ′E′) ≤ 2εMAC+SS +

√
Guess(Θ|E)

(
2+
|C|

2d/2
+
|C| · 2h(ϕ)n

2d

)
|T ||S|

where εMAC+SS = εMAC + εSS.

QMAC∗.Auth(k‖`‖θ,msg): Choose a uniformly random x ∈ {0, 1}n and output n
qubits B◦ in state Hθ|x〉 together with the secure sketch s = SS(`, x) and the
tag t = MAC(k,msg‖x‖s).

QMAC∗.Verify(k‖`‖θ,msg, t): Measure the qubits B◦ in bases θ to obtain x′, recover
(what is supposed to be) x using the secure sketch s, and check the tag t. If
this check fails or dH(x, x′) > ϕ · n then output 0, else 1.

QMAC∗.Refresh(k‖`‖θ): Choose uniformly random θ′ ∈ C and output k‖`‖θ′.

Fig. 2. The noise-tolerant quantum message authentication code MAC∗.

Proof. The proof of the first statement, i.e., the bound on Guess(Θ′|E′) is exactly
like in the proof of Theorem 1, with the only exception that in the one expression
where the tag T appears (i.e. in the expression obtained by using Property 1),
now S appears as well (along with T ); but like T , it disappears again in the next
step due to message-independence.

For the bound on δ(KL,UK×L|Θ′E′) we follow closely the proof of Theorem 1
but with the following modifications.

1. The key K is replaced by the key pair (K,L), and the tag T by the tag-
secure-sketch pair (T, S), and we observe that we can understand (T, S)
to be the hash of the input X under key (K,L) with respect to a hash
function that satisfies message-independent and (almost) key-privacy. In-
deed, this composed hash function can be understood as being obtained by
means of Proposition 4. As such, whenever we argue by means of message-
independence (Definition 2) or key-privacy (Definition 3) in the proof of
Theorem 1, we can still do so, except that we need to adjust the bound on
the uniformity of the key to the new — and now composite — hash function.

2. The auxiliary random variable D̃, and correspondingly Θ̃′, is defined in a
slightly different way: D̃ is 1 if X ≈ϕ X ′ and Eve has not modified the tag
T , the secure-sketch S, nor the message msg. The “real” state with D and
Θ′ is then (εMAC + εSS)-close to the modified one with D̃ and Θ̃′ instead.
Correspondingly, the decomposition of the distance to be bounded is then
done with respect to the indicated random variable 1X≈ϕX′ instead of 1X=X′ .
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3. When bounding the probability P [X ≈ϕX ′∧ X=X ′′], we refer to the game
analyzed in Corollary 3 in Appendix A, which applies to the situation here
where some slack is given for Bob’s guess.

The claimed bound is then obtained by adjusting terms according to the above
changes: update the bounds obtained by applying Definition 3 to the updated
bound

√
Guess(X| · · · ) |T | |S|, obtained by means of Proposition 4, and inserting

the 2h(ϕ)n blow-up when using Corollary 3 instead of Corollary 1, but making
use of the observation in Remark 6. ut

In essence, compared to the case with no noise, we have an additional loss due
to the |S| term, whereas we can neglect the term with 2h(ϕ)n for small enough ϕ.
To compensate for this additional loss, we need to have ς = log |S| additional
bits of entropy in Θ, i.e., we need to choose C with |C| = 23λ+ς and d = 6λ+ 2ς.
By Singleton bound, this requires n ≥ 9λ+3ς−1, and thus puts a bound ς < n/3
on the size of the secure sketch, and thus limits the noise parameter ϕ.11

5.2 Adding Encryption

Adding encryption now works pretty straightforwardly. Concretely, our quantum
encryption scheme with key recycling QENC∗ is obtained by means of the follow-
ing modifications to QMAC∗. Alice and Bob extract additional randomness from
x using an extractor that offers message-independence and key-privacy, and use
the extracted randomness as one-time-pad key to en-/decrypt msg. Finally, the
resulting ciphertext c is authenticated along with x and s; this is in order to
offer authenticity as well and can be omitted if privacy is the only concern.

Security can be proven along the same lines as Theorem 1, respectively The-
orem 2 for the noise-tolerant version, and Proposition 5: we simply observe by
means of Proposition 3 and 4 that the composition of computing the triple c,
s and t = MAC(k, x‖c‖s) from x constitutes a keyed hash function that offers
message-independence and key-privacy, and then we can argue exactly as above
to show that the (possibly refreshed) key stays secure over many executions.
Also, given that the key is secure before an execution, we can control the min-
entropy in X as in the proof of Theorem 2 and argue almost-perfect security of
the extracted one-time-pad key, implying privacy of the communicated message.

In order to accommodate for the additional entropy that is necessary to
extract this one-time-pad key, which is reflected in the adjusted range of the
composed keyed hash function, we now have to choose C with |C| = 23λ+ς+m

and d = 6λ+ 2ς+ 2m, where m = log |MSG|; this requires n ≥ 9λ+ 3ς+ 3m− 1
by Singleton bound.

11 We recall that, when using a δ-biased family of codes to construct the secure sketch
SS, as discussed in the Appendix B, then ς does not correspond exactly to the size
of the syndrome given by the code, but is determined by the parameter δ, and is
actually somewhat larger than the size of the syndrome.
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5.3 Optimality of the Key Recycling

Our aim was, like in [5, 6], to minimize the number of fresh random bits needed
for the key refreshing. In our constructions, where the key is refreshed simply
by choosing a new basis key θ, this number is obviously given by the number of
bits needed to represent θ, i.e., in the above encryption scheme QENC∗, it is

log |C| = 3λ+ ς +m .

This is close to optimal for large messages and assuming almost no noise, so
that m� λ, ς. Indeed, assuming that Eve knows the encrypted message, i.e., we
consider a known-plaintext attack, it is not hard to see that for any scheme that
offers (almost) perfect privacy of the message, by simply keeping everything
that is communicated from Alice to Bob, in particular by keeping all qubits
that Alice communicates (which will most likely trigger Bob to reject), Eve can
always learn (almost) m bits of Shannon information on the key. As such, it
is obviously necessary that the key is updated with (almost) m fresh bits of
randomness in case Bob rejects, since otherwise Eve will soon have accumulated
too much information on the key.

Note that [5, 6] offers a rigorously proven bound (of roughlym) on the number
of fresh bits necessary for key refreshing. However, their notion of key refreshing
is stronger than what we require: they require that the refreshed key is close to
random and independent of Eve, whereas we merely require that the refreshed
key is “secure enough” as to ensure security of the primitive, i.e., authenticity
in QMAC or QMAC∗, and privacy (and authenticity) in QENC∗. Indeed, in our
construction we do not require that the basis key is close to random, only that
it is hard to guess. However, the above informal argument shows that the bound
still applies.

Similarly, one can argue that in any message authentication scheme with error
probability 2−λ, by keeping everything Eve can obtain λ bits of information on
the key. Thus, in case of almost no noise, our scheme QMAC∗ is optimal up to
the factor 3.

In our constructions, the number of fresh random bits needed for the key
refreshing increases with larger noise. In particular in QMAC∗, ς will soon be the
dominating term in case we increase the noise level. We point out that it is not
clear whether such a dependency is necessary, as we briefly mention in Sect. 6.

5.4 Supporting Quantum Messages

The approach in Sect. 5.2 of extracting a (one-time pad) key also gives us the
means to authenticate and/or encrypt quantum messages: we simply use the
extracted key as quantum-one-time-pad key [1], or as key for a quantum message
authentication code [4]. However, when considering arbitrary quantum messages,
honest users anyway need a quantum computer, so one might just as well use
the scheme by Damg̊ard et al. to communicate a secret key and use this key for a
quantum-one-time-pad or for quantum message authentication, or resort to [10,
16], which additionally offer security against superposition attacks.
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5.5 Variations

We briefly mention a few simple variations of our schemes. The first variation is
as follows. In QMAC, instead of choosing x uniformly at random and computing
the tag t as t = MAC(k,msg‖x), we can consider a fixed tag t◦ ∈ T , and choose
x uniformly at random subject to MAC(k,msg‖x) = t◦. Since t◦ is fixed, it does
not have to be sent along. In case the classical MAC, as a keyed hash function, is
of the form as in Proposition 2, meaning that the tag is one-time-pad encrypted
(which in particular holds for the canonical examples suggested in Sect. 4.2),
then Theorem 1 and Proposition 5 still hold. Indeed, if MAC is of this form
then the concrete choice of t◦ is irrelevant for security: if Theorem 1 would
fail for one particular choice of t◦ then it would fail for any choice, and thus
also for a randomly chosen tag, which would then contradict Theorem 1 for the
original QMAC. Similarly, in QMAC∗ and QENC∗ we can fix the tag t and the
secure sketch s (and ciphertext c), and choose x subject to the corresponding
restrictions.

A second variation is to choose the basis key θ not as a code word, but
uniformly random from {0, 1}n. As a consequence, the bounds on the games
analyzed in Sect. 3.1 change — indeed, the game analyzed in Proposition 1 then
becomes the monogamy-of-entanglement game considered and analyzed in [19] —
and therefore we get different bounds in Theorem 1, but conceptually everything
should still work out. Our goal was to minimize the number of fresh random bits
needed for the key refreshing, which corresponds to the number of bits necessary
to describe θ; this allows us to compare our work with [5, 6] and show that our
encryption scheme performs (almost) as good as theirs in this respect. And with
this goal in mind, it makes sense to choose θ as a codeword: it gives the same
guessing probability for x but asks for less entropy in θ. Choosing θ uniformly
random from {0, 1}n seems to be the preferred choice for minimizing the quantum
communication instead, which would be a very valid objective too.

As an interesting side remark, we observe that with the above variations, our
constructions can be understood as following the design principle of the scheme
originally proposed by Bennett et al. of encrypting and adding redundancy to
the message, and encoding the result into BB84 qubits.

Finally, a last variation we mention is to use the six-state encoding instead of
the BB84 encoding. Since the three bases of the six-state encoding have the same
so-called maximal overlap, the bounds in Sect. 3.1 carry over unchanged, but we
get more freedom in choosing the code C in {0, 1, 2}n so that fewer qubits need
to be communicated for the same amount of entropy in x. Also, when choosing
the bases uniformly at random in {0, 1, 2}n, as in the variation above, we get a
slightly larger entropy for x when using the six-state encoding.

6 Conclusion, and Open Problems

We reconsider one of the very first problems that was posed in the context of
quantum cryptography, even before QKD, and we give the first solution that
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offers a rigorous security proof and does not require any sophisticated quantum
computing capabilities from the honest users. However, our solution is not the
end of the story yet. An intriguing open problem is whether it is possible to do
the error correction in a more straightforward way, by just sending the syndrome
of x with respect to a fixed suitable code, rather than relying on the techniques
from [8]. In return, the scheme would be simpler, it could take care of more
noise — Dodis and Smith are not explicit about the amount of noise their codes
can correct but it appears to be rather low — and, potentially, the number of
fresh random bits needed for key refreshing might not grow with the amount of
noise. Annoyingly, it looks like our scheme should still be secure when doing the
error correction in the straightforward way, but our proof technique does not
work anymore, and there seems to be no direct fix.

From a practical perspective, it would be interesting to see to what extent it
is possible to optimize the quantum communication rather than the key refresh-
ing, e.g., by using BB84 qubits with fully random and independent bases, and
whether is it possible to beat QKD in terms of quantum communication.
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APPENDIX

A Yet Another (Version of the) Guessing Game

We consider a variant of the guessing game from Section 3.1 where Bob and
Charlie need to guess Alice’s measurement outcome. In the variation considered
here, we give some slack to Bob in that it is good enough if his guess is close
enough (in Hamming distance) to Alice’s measurement outcome, and Charlie
is given some (deterministic) classical side information on Alice’s measurement
outcome before he has to announce his guess.12 We show that, if the minimal
distance d of the code C is large enough, this does not help Bob and Charlie
significantly. This is in line with the intuition that, for large enough d, the
optimal strategy for Bob and Charlie is to pre-guess Alice’s choice of bases.

Proposition 6. Let HA be a n-qubit system, and let HB and HC be arbitrary
quantum systems. Also, let 0 ≤ ϕ ≤ 1

2 be a parameter and f : {0, 1}n → Y a
function. Consider a state ρΘABC = µC ⊗ ρABC ∈ D(C ⊗HA ⊗HB ⊗HC), and let

ρΘXX′X′′ = NΘf(X)C→X′′ ◦ NΘB→X′ ◦Mbb84

ΘA→X
(
ρΘABC

)
12 Taking care of such side information, given to Charlie, on Alice’s measurement out-

come is not needed for our application, but we get it almost for free.
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where NΘB→X′ is an arbitrary measurement of system B controlled by Θ, and
NΘf(X)C→X′′ is an arbitrary measurement of system C controlled by Θ and f(X).

Then, it holds that

P [X ′≈εX ∧X ′′=X] ≤ 1

|C|
+

2h(ϕ)n · |Y|
2d/2

,

where h is the binary entropy function.

Proof. Here, we can write

P [X ′≈εX ∧X ′′=X] =
1

|C|

∥∥∥∥∑
θ

Π̃θ

∥∥∥∥ ≤ 1

|C|
∑
δ

max
θ

∥∥Π̃θΠ̃θ⊕δ∥∥
for projectors

Π̃θ =
∑
x

Hθ|x〉〈x|Hθ ⊗
( ∑
e∈Bnϕ

P θx⊕e

)
⊗Qθ,f(x)x ,

where Bnϕ ⊂ {0, 1}n denotes the set of stings with Hamming weight at most ϕn.

For any θ 6= θ′ ∈ C, we can upper bound Π̃θ and Π̃θ′ by

Π̃θ ≤ Γ̃ θ :=
∑
x

Hθ|x〉〈x|Hθ ⊗
( ∑
e∈Bnϕ

P θx⊕e

)
⊗ I =

∑
e∈Bnϕ

Γ θe

and

Π̃θ′ ≤ ∆̃θ′ :=
∑
x

Hθ′ |x〉〈x|Hθ′ ⊗ I⊗
(∑
y∈Y

Qθ
′,y
x

)
=
∑
y∈Y

∆θ′

y

respectively, where Γ θe and ∆θ′

y are like Γ θ and ∆θ′ , as defined in the proof of

Proposition 1, for certain concrete choices of the POVM’s {P θx}x and {Qθ′x }x
that depend on e and y, respectively. As such, we get that

∥∥Π̃θΠ̃θ′
∥∥ ≤ ∥∥Γ̃ θ∆̃θ′

∥∥ ≤∑
e,y

∥∥Γ θe∆θ′

y

∥∥ ≤ |Bnϕ| · |Y|
2d/2

≤ 2h(ϕ)n · |Y|
2d/2

.

Since we still have that
∥∥Π̃θΠ̃θ

∥∥ =
∥∥Π̃θ

∥∥ = 1, the claim follows. ut

By means of the techniques from Section 3.1, we can extend the result to the
case where Bob and Charlie have a-priori quantum side information on Alice’s
choice of bases.

Corollary 3. Let HA be a n-qubit system, and let HB,HC and HE be arbitrary
quantum systems. Also, let 0 ≤ ϕ ≤ 1

2 be a parameter and f : {0, 1}n → Y a
function. Consider a state ρΘE ∈ D(C ⊗HE), and let

ρΘABC = QE→ABC

(
ρΘE

)
∈ D(C ⊗HA ⊗HB ⊗HC)
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where QE→ABC is a CPTP map acting on E, and let

ρΘXX′X′′ = NΘf(X)C→X′′ ◦ NΘB→X′ ◦Mbb84

ΘA→X
(
ρΘABC

)
as in Proposition 6 above. Then, it holds that

P [X ′≈εX ∧X ′′=X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C| · 2h(ϕ)n · |Y|

2d/2
.

Remark 6. In line with the remarks in Section 3.1, if Bob “measures correctly”
but is still given some slack, and, say, Charlie is given no side information on
Alice’s outcome, the bound relaxes to

P [X ′≈εX ∧X ′′=X] ≤ Guess(Θ|E) +
Guess(Θ|E) · |C| · 2h(ϕ)n

2d
.

B On the Existence of Suitable Secure Sketches

In [8, Lemma 5], Dodis and Smith show that for any constant 0 < λ < 1,
there exists an explicitly constructible family of binary linear codes {Ci}i∈I in
{0, 1}n with dimension k that efficiently correct a constant fraction of errors and
have square bias δ2 ≤ 2−λn. Their Lemma 4 then shows that the keyed hash
function Ext : I × {0, 1}n → SYN = {0, 1}n−k, (i, x) 7→ syni(x) is a strong
extractor, where syni(x) is the syndrome with respect to the code Ci. More
precisely, the generalization of their result to quantum side information by Fehr
and Schaffner [9] shows that if ρIXE = µI ⊗ ρXE ∈ D(I ⊗ X ⊗HE) then

δ(ρExt(I,X)IE, µSYN ⊗ ρI ⊗ ρE) ≤ 1

2

√
Guess(X|E) δ2 2n .

It follows from Proposition 2 that the secure sketch

SS : L × {0, 1}n → SYN , (i‖b, x) 7→ syni(x) + b

where L := I × SYN , offers uniformity and ν-key-privacy with parameter ν =
δ2n/2/

√
|SYN | = δ2k.

Dodis and Smith are not explicit about the size n − k of the syndrome in
their construction, but looking at the details, we see that n − k ≤ log(δ2 2n).
As such, by artificially extending the range SYN = {0, 1}n−k of SS to a set
S = {0, 1}ς of bit strings of size ς := log(δ2 2n), and re-defining SS to map
(i‖b, x) to syni(x) + b padded with sufficiently many 0’s, we get that the secure
sketch SS : L×{0, 1}n → S is message-independent and offers ideal key-privacy.13

13 Alternatively, we could simply stick to SS : L×{0, 1}n → SYN but carry along the
non-ideal parameter ν; however, we feel that this additional parameter would make
things more cumbersome — but of course would lead to the same end result.
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