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Abstract. The worst-case hardness of finding short vectors in ideals
of cyclotomic number fields (Ideal-SVP) is a central matter in lattice
based cryptography. Assuming the worst-case hardness of Ideal-SVP al-
lows to prove the Ring-LWE and Ring-SIS assumptions, and therefore
to prove the security of numerous cryptographic schemes and protocols
— including key-exchange, digital signatures, public-key encryption and
fully-homomorphic encryption.
A series of recent works has shown that Principal Ideal-SVP is not always
as hard as finding short vectors in general lattices, and some schemes were
broken using quantum algorithms — the Soliloquy encryption scheme,
Smart-Vercauteren fully homomorphic encryption scheme from PKC
2010, and Gentry-Garg-Halevi cryptographic multilinear-maps from Eu-
rocrypt 2013.
Those broken schemes were using a special class of principal ideals, but
these works also showed how to solve SVP for principal ideals in the
worst-case in quantum polynomial time for an approximation factor of
exp(Õ(

√
n)). This exposed an unexpected hardness gap between general

lattices and some structured ones, and called into question the hardness
of various problems over structured lattices, such as Ideal-SVP and Ring-
LWE.
In this work, we generalize the previous result to general ideals. Precisely,
we show how to solve the close principal multiple problem (CPM) by
exploiting the classical theorem that the class-group is annihilated by
the (Galois-module action of) the so-called Stickelberger ideal. Under
some plausible number-theoretical hypothesis, our approach provides a
close principal multiple in quantum polynomial time. Combined with
the previous results, this solves Ideal-SVP in the worst case in quantum
polynomial time for an approximation factor of exp(Õ(

√
n)).

Although it does not seem that the security of Ring-LWE based cryp-
tosystems is directly affected, we contribute novel ideas to the cryptanal-
ysis of schemes based on structured lattices. Moreover, our result shows
a deepening of the gap between general lattices and structured ones.

1 Introduction

The problem of finding the shortest vector of a Euclidean lattice (the shortest
vector problem, or SVP) is a central hard problem in complexity theory. Ap-
proximated versions of this problem (approx-SVP) have become the theoretical



foundation for many cryptographic constructions thanks to the average-case to
worst-case reductions of Ajtai [Ajt99] — a classical reduction from approx-SVP
to the Short Integer Solution (SIS) problem — and Regev [Reg05] — a quantum
reduction from approx-SVP to Learning with Errors (LWE).

For efficiency reasons, it is tempting to rely on structured lattices, in partic-
ular lattices arising as ideals or modules over certain rings, the earliest example
being the NTRUencrypt4 proposal from Hoffstein et al. [HPS98]. Later on,
variations on these foundations were also considered.

Precisely, the Ring-SIS [Mic02,LM06,PR06] and Ring-LWE [SSTX09,LPR10]
problems were introduced, and shown to reduce to worst-case instances of Ideal-
SVP, a specialization of SVP to ideals viewed as lattices. Both problems Ring-
SIS and Ring-LWE have shown very versatile problems for building efficient
cryptographic schemes upon.

The typical choices of rings for Ring-SIS, Ring-LWE and Ideal-SVP are the
ring of integers of a cyclotomic number field of conductor m, that is K = Q(ωm),
of degree n = ϕ(m), where ωm is a complex primitive m-th root of unity. This
choice further ensures the hardness of the decisional version of Ring-LWE under
the same worst-case Ideal-SVP hardness assumption [LPR10].

Attack on principal ideals. For some time, it seemed plausible that the
structured versions of lattice problems should be just as hard to solve as the
unstructured ones: only some (almost) linear-time advantages were known. This
was challenged by a claim of Campbell et al. [CGS14]: a quantum polynomial-
time attack against their schemes Soliloquy. The attack also applies to the
fully-homomorphic encryption scheme of [SV10] and the cryptographic multilin-
ear maps candidates [GGH13,LSS14], as they all share a common key generation
procedure, describe below.

For the secret key, choose an integral element g ∈ OK with small distortion,
i.e. a g ∈ OK such that

maxσ |σ(g)|
minσ |σ(g)| ≤ poly(n) (1)

where σ ranges over the n complex embeddings K 7→ C. A corresponding public
key consists of the ideal I = (g), described by a “bad” Z-basis (e.g. a Z-basis in
Hermite normal form).

The attack consists of two steps, sketched in [CGS14]. First, using a quantum
computer, it should be possible to solve the Principal Ideal Problem (PIP): given
I ⊂ OK find h ∈ OK such that I = (h). Second, a (classical) close-vector
algorithm in the log-unit lattice LogO×K should allow to recover the secret key5
g from h. Both steps are claimed to be polynomial time.

While the analysis of the quantum step was unclear6, such a result seemed
plausible considering the recent breakthrough on the Hidden Subgroup Problem
4 Proposal which is not supported by a worst-case hardness argument, but a variant
is [SS11].

5 up to a root of unity.
6 and even challenged [BS16, Sec. 6].
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over Rn by Eisentrager et al. [EHKS14] including efficient quantum unit-group
computation. And indeed Biasse and Song [BS16] generalized [EHKS14] to S-
unit-group computation, allowing in particular to solve PIP [BS16, Thm. 1.3].

The claimed correctness of the short generator recovery step also raised ques-
tions: unless a particularly orthogonal basis of the log-unit lattice LogO×K is
known, this step should take exponential time. It was already noticed [GGH13,
Full version, pp. 43] that the log-unit lattice could be efficiently decoded up to
a radius of n−O(log logn) thanks to the Gentry-Szydlo algorithm [GS02], but this
is far from sufficient. Yet, the claim that it can be done in polynomial time was
quickly supported by convincing numerical experiments [Sch15]. And indeed, by
analyzing the geometry of cyclotomic units, Cramer et al. [CDPR16, Thm 4.1]
proved that the decoding-radius given by a basis of such units is in fact much
better.

A second result of Cramer et al. [CDPR16, Thm 6.3] analyses how good of an
approximation of the shortest vector is obtained in the worst-case, i.e. without
condition (1). Using a variation on the algorithm of [CGS14], they prove that
from any generator h of I, one can efficiently find a generator g of euclidean
length (NI)1/n · exp(Õ(

√
n)). Combined with [BS16], this solves in quantum

polynomial time the Short Vector Problem over principal ideals in the worst-
case for an approximation factor γ = exp(Õ(

√
n)).

Claim 1 ([BS16, Thm 1.3] combined with [CDPR16, Thm 6.3]) There ex-
ists a quantum polynomial time algorithm PrincipalIdealSVP(a), that given
an ideal of OK for K a cyclotomic number field of prime power conductor, re-
turns an generator v ∈ a of Euclidean norm ‖v‖ ≤ (Na)1/n · exp(Õ(

√
n)).

In particular, v is a solution to Ideal-SVP for an approximation factor γ =
‖v‖/λ1(a) = exp(Õ(

√
n)) where λ1(a) denotes the length of the shortest vector

of a.

It is also shown [CDPR16, Lem. 6.2] that this result is tight up to a polylog(n)
factor in the exponent: the shortest generator is typically larger than the shortest
element by a factor exp(Õ(

√
n)).

Impact and limitatioms of the attack on principal ideals. Whereas some
cryptosystems were broken by this quantum attack, the current limitations of
this approach to tackle more standard problems as Ring-LWE are three-fold.

(i) First, it is restricted to principal ideals, while Ring-SIS and Ring-LWE rely
on worst-case hardness of SVP over general ideals.

(ii) Second, the approximation factor γ = exp(Õ(
√
n)) in the worst-case is

asymptotically too large to affect any actual Ring-LWE based schemes even
for advanced cryptosystems such as the state of the art fully homomorphic
encryption schemes (see [BV11,DM15]).

(iii) Third, Ring-LWE is known to be at least as hard as Ideal-SVP but not
known to be equivalent.
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Worst-case SVP on arbitrary lattices
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In the general case, the best known algo-
rithms (BKZ [Sch87] and Slide [GN08]) run
in time exp(Θ̃(nt)) for an approximation fac-
tor exp(Θ̃(na)), where t + a = 1.

Worst-case SVP on principal ideal lattices
over Q(ωm)
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For principal ideals of cyclotomic field (of
prime-power conductor), the aforementioned
results give a quantum polynomial runtime
(i.e., t = 0) for any a ≥ 1/2.

Fig. 1. Best known (quantum) Time–Approximation factor tradeoffs to solve approx-
SVP in arbitrary lattices (on the left) and in principal ideal lattices (on the right), in
the worst case. The approximation factors of (Ideal)-SVP used to build cryptography
upon are typically between polynomial poly(n) and quasi-polynomial exp(polylog(n)).

But it does show an asymptotic gap between the search of mildly short vectors
in general lattices and in certain structured lattices (see Figure 1), and calls for
a more thorough study of the hardness assumption over structured lattices. This
work addresses the first of them.

1.1 Contributions

This work provides strong evidence that the general case of Ideal-SVP is not
harder than the principal case for similar approximation factors. As a conse-
quence, the approximation factors reachable in quantum polynomial time ap-
pear to be significantly smaller in arbitrary ideals of cyclotomic fields of prime-
power conductor than known for general lattices, dropping from exp(Θ̃(n)) to
exp(Θ̃(

√
n)).

Main Result (Under GRH, Assumptions 1 and 2) There exists a quan-
tum polynomial time algorithm IdealSVP(a), that given an ideal of OK for K
a cyclotomic number field of prime power conductor, returns an element v ∈ a
of Euclidean norm ‖v‖ ≤ (Na)1/n · exp(Õ(

√
n)).

In other words, Ideal-SVP is solvable in quantum polynomial time in cyclo-
tomic number fields for an approximation factor γ = exp(Õ(

√
n)).

The strategy consists in reducing the problem over general ideals to that over
principal ideals, for cyclotomic fields of prime-power conductor m. We show that
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under some number-theoretic assumptions, it is possible to solve the close princi-
pal multiple (CPM) problem in quantum polynomial time for an a good enough
approximation factor. More precisely, the CPM problem consists in finding a
principal ideal c ⊂ a for an arbitrary ideal a, such that the algebraic norm of
c is not much larger than the norm of a, say up to a factor exp(Õ(n1+c)). We
will argue that one can reach c = 1/2, yet, any c < 1 will provide a better
time-approximation factor tradeoff than the generic algorithms LLL and BKZ.

Our main tool to solve CPM is the classical theorem that the class-group
is annihilated by the Galois-module action of the so-called Stickelberger ideal:
it provides explicit class relations between an ideal and its Galois conjugates.
An important fact is that this Stickelberger ideal has many short elements and
that these can be explicitly constructed (see for example [Sch10]). This leads to
a quantum polynomial time algorithm to solve CPM for a factor exp(Õ(n1+c)),
where the constant c depends on how many Galois orbits of prime ideals are used
to generate the (minus part of the) class group. It remains to apply the short
generator recovery to c to find a short vector of a, approximating the shortest
vector by a factor exp(Õ(nmax(1/2,c))).

We follow the notations of Figure 1. If the exponent c can be made strictly
smaller than 1, this gives a non-trivial result compared to generic lattice al-
gorithms (see [Sch87,GN08]): we get t = 0 for any a ≥ max(1/2, c), and in
particular a + t < 1, against a + t = 1 for generic algorithms. If c can be made
as small as 1/2, then the asymptotic tradeoffs for Ideal-SVP are as good as the
tradeoffs for Principal-Ideal-SVP.

Concluding formally on which value of c can be achieved is not straightfor-
ward, as it relies on the structure of the class group ClK as a Z[G]-module (see
Section 2.3). Based on computations of the class group structure of Schoof [Sch98]
and a heuristic argument, we strongly believe it is plausible that c = 1/2 is reach-
able at least for a dense family of conductors m, if not all. This leads to the main
result stated above.

1.2 Impact, open questions and recommendations
To the best of our knowledge, this new result does not immediately lead to an
attack on any proposed scheme, since most of them are based on Ring-LWE:
obstacles (ii) and (iii) remain. Each of this obstacle leaves a crucial open crypt-
analytic questions.
– The first question is whether the γ = exp(Õ(

√
n)) approximation factors can

be improved, potentially increasing the running time. One could for example
consider many CPM solutions rather than just one, and hope that one of
them leads to a much shorter vector.

– The second is whether an oracle for Ideal-SVP (an approx-SVP oracle for
modules of rank 1) can be helpful to solve Ring-LWE, which can be sum-
marized as an “unusually-Short Vector Problem” over a module of rank 3.
Note that the natural approach of using LLL generalized to other rings as
done by Napias [LLL82,Nap96] fails since only the ring of integers of a few
cyclotomic fields of small conductor are Euclidean [Len75].
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Despite those two serious obstacles to attack Ring-LWE based schemes by
the algebraic approach developed in [CGS14,BS16,CDPR16] and in this paper,
it seems a reasonable precaution to start considering weaker structured lattice
assumptions, such as Module-LWE [LS15] (i.e., an “unusually-Short Vector Prob-
lem” in a module of larger rank over a smaller ring), which provides an interme-
diate problem between ring-LWE and general LWE.

It is also possible to consider other rings, as done in [BCLvV16]. Yet, the
latter proposal surprisingly relies on the seemingly stronger NTRU assumption
(“unusually-Short Vector Problem” over modules of rank 2). In the current state
of affairs [KF16], there seems to be an asymptotic hardness gap between NTRU
and Ring-LWE, whatever the ring7, and down to quite small polynomial ap-
proximation factors. Should the concrete security claims of [BCLvV16] not be
directly affected, the same reasonable precaution principle should favor weaker
assumptions, involving modules of a larger rank.

2 Overview

2.1 Notations and reminders.

Throughout this paper, let m be a prime power, ωm ∈ C be a complex primitive
m-th root of unity, and K = Q(ωm) be the cyclotomic number field of conductor
m. It is a number field of degree n = ϕ(m) = Θ(m). Let G denote its Galois
group over Q and τ ∈ G denotes the complex conjugation. We recall that the
discriminant ∆K of K asymptotically satisfies log |∆K | = O(n logn).

Ideals as lattices. The field K is endowed with a canonical Hermitian vector
space structure via its Minkowsky embedding. Concretely, its inner product is
defined via the trace map Tr : K → Q by 〈a, b〉 = Tr(aτ(b)), and the associated
Euclidean norm is denoted ‖ · ‖ : a 7→ 〈a, a〉 = Tr(aτ(a)) .

The ring of integers of K is denoted OK and in the cyclotomic case is simply
given by OK = Z[ωm]. Any ideal h of OK can be viewed as a Euclidean lattice
via the above inner-product. The algebraic norm of an ideal h is written Nh.
The volume of h as a lattice relates to its algebraic norm by Vol(h) =

√
|∆K |Nh.

The length λ1(h) of the shortest vector of h is determined by its algebraic norm
up to a polynomial factor:

1
poly(n)N(h)1/n ≤ λ1(h) ≤ poly(n)N(h)1/n.

The right inequality is an application of Minkowsky’s second theorem, whereas
the left one follows from the fact that the ideal vOK generated by the shortest
vector v of h is a multiple (a sub-ideal) of h, and that Vol(vOK) ≤ ‖v‖n.
7 This actually seems to hold even without any commutative ring structure, i.e., when
comparing “matrix-NTRU” to regular LWE.
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Class group. The class group ClK = IK/PK of K is the quotient of the
(abelian) multiplicative group of fractional ideals IK by the subgroup of frac-
tional principal ideals. We denote [h] ∈ ClK the class of an ideal h. The trivial
class [OK ] is the class of principal ideals. Given two ideals h and f, we write h ∼ f
if they have the same class. The class group is written multiplicatively.

The class number hK = |ClK | is the order of the class group. Loosely speak-
ing, the class group measures the lack of principality of the ring OK . In partic-
ular, the class group is trivial (hK = 1) if and only if OK is a principal ideal
domain. This holds only for finitely many conductors m ≥ 1 and, more precisely,
we know that log hK = Θ(n logm) [Was12, Thm 4.20].

2.2 Overview

It has been shown [CGS14,BS16,CDPR16] (under reasonable assumptions) that
given an arbitrary principal ideal a ⊂ OK , one can recover in quantum polyno-
mial time an element g ∈ a (in fact a generator of a, i.e. such that a = gOK)
such that ‖g‖ ≤ (Na)1/n ·exp(Õ(n1/2)). Our goal is to reduce the case of general
ideals to the case of principal ideals.

The close principal multiple problem (CPM) To do so, a folklore approach
is to search for a reasonably close multiple c = ab of a that is principal; in other
words, one searches for a small integral ideal b such that b ∼ a−1. If such an
ideal b with norm less than exp(Õ(n1+c)) for some constant c > 0 is found, this
implies, by the aforementioned results, that one can find a generator g of c such
that

‖g‖ ≤ (Nc)1/n · exp
(
Õ
(
n1/2

))
≤ (Na)1/n · (Nb)1/n · exp

(
Õ
(
n1/2

))
≤ (Na)1/n · exp

(
Õ
(
nmax(1/2,c)

))
.

Because g ∈ c ⊂ a, one has found a short vector of a, larger than the shortest
vector of a by a sub-exponential approximation factor exp(Õ(nmax(1/2,c))). This
is asymptotically as good as the principal case when c = 1/2, and better than
LLL for any c < 1.

CPM as a close vector problem. Before searching for a solution to the CPM
problem, let us discuss wether a exp(Õ(n1+c))-close principal multiple exists in
general. A positive answer follows from the results of [JW15, Cor. 6.5]8 setting
a prime factor basis B = {p | Np ≤ n4+o(1)}, for any class C ∈ ClK , there
exists a non-negative small solution e ∈ ZB

≥0 to the class equation [
∏

pep ] = C,

8 The earlier result of [JMV09, Cor.1.3] is not sufficient as it does not keep track of
the dependence on the degree of the number fields, left hidden in the constants.
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of `1-norm ‖e‖1 ≤ O(n1+o(1)). This proves, assuming GHR, the existence of a
solution b =

∏
pep to the CPM problem as small as exp(Õ(n1+c)) for c = o(1).

The previous argument is based on the analysis of the expander properties
of certain Caley graphs on the class group. For our purpose, existence is not
enough, as we wish to efficiently find a close principal multiple. We instead
write the class group using lattices. If the factor basis B generates the whole
class group, then one may rewrite ClK ' ZB/Λ where Λ is the lattice of class
relations: Λ = {e ∈ ZB|[

∏
pep ] = [OK ]}. Otherly said, Λ ⊂ ZB is the kernel of

the surjection µ : ZB � ClK . In fact, it will be enough to consider any full-rank
sublattice Γ ⊂ Λ of class relations, i.e. any subgroup Γ ⊂ Λ of finite index.

The CPM problem can now be rephrased as a close vector problem: given a
class C = [a]−1 ∈ ClK , one first use the Biasse-Song quantum algorithm [BS16]
to compute a representative of that class α ∈ ZB in base B (see Proposition 2),
that is an α such that µ(α) = C. Then one reduces this representation, by
searching for a lattice vector β ∈ Γ close to α. Note that µ(α− β) = µ(α) = C.
This provides a solution9 b =

∏
pαp−βp , of norm at most B‖α−β‖1 , where B is

a bound such that Np ≤ B for every p ∈ B. It is therefore sufficient to find an
appropriate factor basis together with a good basis of the lattice of relations Γ
to attack this problem. The condition over Γ to be of full-rank is necessary to
have any guarantee on the length of the reduced representative α− β.

The Stickelberger ideal: class relations for free. For this discussion, let us
assume for now that the class group can be generated by a single ideal of small
norm and its conjugates: B = {pσ = σ(p)|σ ∈ G} and Np = poly(n).

Stickelberger’s theorem will provide explicit class relations between any ideal
h and its conjugates. More precisely, consider the group ring Z[G], which natu-
rally acts on OK-ideals as follows:

hs =
∏
σ∈G

hsσ·σ =
∏
σ∈G

σ(h)sσ where s =
∑
σ∈G

sσ · σ ∈ Z[G].

Stickelberger gave an explicit construction of a Z[G]-ideal S ⊂ Z[G] that annihi-
lates the class group, i.e. hs ∼ OK (i.e., hs is principal) for any ideal h ⊂ OK and
any element s ∈ S. Forgetting the multiplicative structure of Z[G] directly gives
a lattice of class relations µ(S) ⊂ ZB by the canonical morphism of Z-modules
κ : Z[G]→ ZB, sending σ to the canonical vector 1pσ .

A technical issue is that the Stickelberger ideal is not of full rank in Z[G]
as a Z-module, so needs to be extended10 in order to serve as the lattice of
relations Γ . This can be resolved by working only with the minus part Cl−K of
the class group, i.e., the relative class group of K over the maximal real subfield
K+. More formally, Cl−K is the kernel of the morphism ClK → ClK+ induced
9 One notes that this solution is not integral as desired, yet getting rid of negative
exponents will be easy, at least in the relative class group Cl−K .

10 if a lattice is not of full rank, no close-vector algorithm can guarantee any distance
bound, as any fundamental domain is unbounded.
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by the relative norm map NK/K+ : h 7→ hhτ . This subgroup Cl−K ⊂ ClK is
annihilated by the augmented Stickelberger ideal S′ = S+ (1 + τ)Z[G]. For this
discussion, let us just assume that ClK+ is trivial, so that the whole class group
ClK = Cl−K is annihilated by the augmented Stickelberger ideal S′.

The geometry of the Stickelberger ideal. An important fact is that this
ideal has many short elements and that these can be explicitly constructed —
this remark is certainly not new, at least for prime conductors [Sch10]. Under
our simplifying assumption that B = {pσ | σ ∈ G} generates ClK , and the
additional assumption that the plus part of the class group ClK+ is trivial, this
approach will allow to solve the close multiple problem within a norm bound

exp
(
Õ
(
n3/2

))
.

Sufficient conditions. In the result sketched above, we made two simplifying
assumptions. We now sketch how those assumptions can be relaxed, and provide
evidences for the relaxed assumptions. Those assumptions and their supporting
evidences will be detailed in Section 2.3.

Triviality of ClK+ . One assumption was that the plus part ClK+ of the class
group is trivial. In fact, we can rather easily handle a non-trivial plus-part as
long as h+

K = |ClK+ | = poly(n), using rapid-mixing properties of some Cayley
graphs on ClK+ . And since h+

K is the class number of a totally real number
field, it is actually expected to be small. This assumption is already present
in [CGS14,CDPR16], and is supported by numerical evidences ([Was12, p. 420,
Table 4], computed by Schoof [Sch89]), and by arguments based on the Cohen-
Lenstra heuristic [BPR04].

Knowledge of a Z[G]-generator of Cl−K . The other assumption was that we know
of a factor basis of Cl−K of the form B = {pσ = σ(p) | σ ∈ G} for a single ideal
p of small norm Np = poly(n). Otherly said, we know of a small norm ideal
p ⊆ OK such that [p] is a Z[G]-generator of Cl−K .

This assumption can also be relaxed. We may allow a few primes and their
conjugates in the factor basis. Assuming one knows a factor basis B = {pσi |
σ ∈ G, i = 1, . . . , d} composed of d Galois orbits, (with Npi ≤ poly(n)) that
generates Cl−K , our approach leads to solving the close principal multiple problem
within a norm bound

exp
(
Õ
(
d · n3/2

))
.

This leads to solving approximate Ideal-SVP with a better approximation factor
than pure lattice reduction for any class of conductors m ∈ Z whenever one can
build a factor basis of size d = Õ(na) for an a < 1/2.

Therefore, the crux of the matter is about how small of a factor basis B can
be built11. The structure of the class group Cl−K remains quite elusive, but it
11 Note that, as a computational problem, this task is non-uniform. That is, it must be

ran once for each conductor m of interest, but does not need to be re-run for each
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appears that it admits a very small minimum number of generators as a Z[G]-
module. Schoof [Sch98] computed that for all prime conductors m ≤ 509, Cl−K
is Z[G]-cyclic (i.e., it is generated by a single element as a Z[G]-module). This
property is sufficient to argue that one can efficiently find a small generating
set and reach c = 1/2, under the heuristic that classes of small random ideals
behave similarly to uniformly random classes. Even if the minimal number of
generators is not always 1 but still small, say O(nε) for some ε > 0, this heuristic
allows to reach c = 1/2 + ε.

2.3 Assumptions

Our main result is conditionned on two assumptions concerning the asymptotic
structure of the class group, sketched above and stated below. Of course, if those
statement were to not hold for all prime power conductors m, our result remains
meaningful if both assumptions simultaneously hold for a common infinite class
of conductors, such asM` = {m = `e | e ≥ 0} for a fixed prime `. We also note
that the second assumption can be weakened from d = polylog(n) to d = nε for
any ε < 1/2 to reach a non trivial approximation factor γ = exp(Õ(n1/2+ε)).

The real class number. The first assumption concerns the size h+
K of the class

group of the real subfield K+, and is already used in [CGS14,CDPR16]. For any
integer m, let h+(m) be the class number of the maximal totally real subfield of
the cyclotomic field of conductor m.

Assumption 1 For prime powers m, it holds that h+(m) ≤ poly(n).

The literature on h+
K provides strong theoretical and computational evidence

that it is indeed small enough. First, the Buhler, Pomerance, Robertson [BPR04]
formulate and argue in favor of the following conjecture, based on Cohen-Lenstra
heuristics.

Conjecture 1 (Buhler, Pomerance, Robertson [BPR04]) For all but finitely
many pairs (`, e), where ` is a prime and e is a positive integer, we have h+(`e+1) =
h+(`e).

A stronger version for the case ` = 2 was formulated by Weber.

Conjecture 2 (Weber’s class number problem) For any e, h+(2e) = 1.

A direct consequence of Conjecture 1 is that for fixed ` and increasing e,
h+(`e) is O(1), implying that Assumption 1 holds over the classM`.

But even for increasing primes `, h+(`) itself is also small: Schoof [Sch03]
computed all the values of h+(`) for ` < 10, 000 (correct under heuristics of
type Cohen-Lenstra, and Miller proved in [Mil15] its correctness under GRH at

CPM instance in OK . A proof of existence of such a factor basis would already have
a consequence in a complexity theoretic perspective. We however heuristically argue
in Section 2.3 that a good basis can actually be found efficiently.
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least for the primes ` ≤ 241). According to this table, for 75.3% of the primes
` < 10, 000 we have h+(`) = 1 (matching Schoof’s prediction of 71.3% derived
from the Cohen-Lenstra heuristics). All the non-trivial values remain very small,
as h+(`) ≤ ` for 99.75% of the primes.

Constructing small factor bases of Cl−
K . This assumption is arguably new,

and can be read as a strengthened version of a Theorem of Bach [Bac90, Theorem
4] and its generalizations from [JMV09] and [JW15, Cor. 6.5].

Assumption 2 There are integers d ≤ polylog(n) and B ≤ poly(n) such that
the following holds. Choose uniformly at random d prime ideals p1, . . . , pd among
the finitely many ideals p satisfying Np ≤ B and [p] ∈ Cl−K . Then, the factor
basis B = {pσi | σ ∈ G, i = 1 . . . d} generates Cl−K with probability at least 1/2.

To argue for this assumption, we prove (Proposition 1) that if Cl−K can be
generated by r ideal classes, then r · polylog(n) many uniformly random classes
in Cl−K will generate it.

Proposition 1. Let K be a cyclotomic field of conductor m, with Galois group
G and relative class group Cl−K . Let r be the minimal number of Z[G]-generators
of Cl−K . Let α ≥ 0 be a parameter, and s be any integer such that

s ≥ r(log2 log2(h−K) + α)

(note that log2 log2(h−K) ∼ log2(n)). Let g1, . . . , gs be s independent uniform
elements of Cl−K . The probability that {g1, . . . , gs} generates Cl−K as a Z[G]-
module is at least exp

(
− 3

2α
)

= 1−O(2−α).

The proof is deferred to Appendix A.
To justify Assumption 2, we first argue that r is admittedly as small as

polylog(n). For the case m = 2e, this can be argued by just looking at the value
of h−(2e) computed up to e = 9 in [Was12, Table 3]. These values are square-
free, so Cl−K is Z-cyclic and therefore Z[G]-cyclic; in other words, r = 1. The case
of prime conductors was also studied by Schoof [Sch98]: he proved that Cl−K is
Z[G]-cyclic for every prime conductor m ≤ 509; again, r = 1.

While it is unclear that this cyclicity should be the typical behavior asymp-
totically, it seems reasonable to assume that r remains as small as polylog(n),
at least for a dense class of prime power conductors.

Once it is admitted that r ≤ polylog(n), Assumption 2 simply assumes that
Proposition 1 remains true when imposing that the random classes g1 . . . gs are
chosen as the classes of random ideals of small norm, i.e. gi = [pi] where Npi ≤
poly(n). This restriction on the norms seems reasonable considering that it has
been proven that prime ideals of norm poly(n) are sufficient to generate Cl−K ,
assuming GRH and Assumption 1 (see [JW15, Cor. 6.5]).
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3 Quantum algorithms for class groups

Searching for a principal multiple of the ideal a in OK will require to perform
computations in the class group in an efficient way. Classically, problems related
to class group computations remain difficult, and the best known classical al-
gorithms run in sub-exponential time (for example, see [BF14,BEF+17]). Yet,
building on the recent advances on quantum algorithms for the Hidden Sub-
group Problem in large dimensions [EHKS14], Biasse and Song [BS16] intro-
duced a quantum algorithm to perform S-unit group computations. It implies
class group computations, and solution to the principal ideal problem (PIP) in
quantum polynomial time.

The Biasse-Song [BS16] algorithm for S-unit group computation also allows
to solve the class group discrete logarithm problem: given a basis B of ideals
generating a subgroup of the class group ClK containing the class of a, express
the class of a as a product of ideals in B. Below, we give a formal statement and
in the Appendix B, we provide a proof for completeness.12

Proposition 2 ([BS16]). Let B be a set of prime ideals generating a sub-
group H of ClK . There exists a quantum algorithm ClDLB which, when given
as input any ideal a in OK such that [a] ∈ H, outputs a vector y ∈ ZB such
that

∏
pyp ∼ a, and runs in polynomial time in n = deg(K), maxp∈B log(Np),

log(Na), and |B|.

4 Close multiple in the relative class group

Let K+ = Q(ωm + ω−1
m ) denote the maximal real subfield of K, and ClK+ the

class group of K+. The relative norm map NK/K+ : ClK → ClK+ on ideal
classes (which sends the class of a to the class of aaτ , where τ is the complex
conjugation) is a surjection, and its kernel is the relative class group Cl−K . In
particular, it induces the isomorphism ClK+ ∼= ClK/Cl−K .

The core of the method to find a close principal multiple of an ideal a works
within the relative class group Cl−K ⊂ ClK . Therefore, as a first step, we need to
“send” the ideal a ∈ ClK into this subgroup. More precisely, we want an integral
ideal b of small norm such that ab ∈ Cl−K ; the rest of the method then works
with ab. Let hK = |ClK | be the class number of K, and h−K = |Cl−K | its relative
class number. The difficulty of this step is directly related to the index of Cl−K
inside ClK , which is the real class number h+

K = |ClK+ | of K+, and is expected
to be very small.

12 In fact, Proposition 2 is a corollary of [BS16, Theorem 1.1]. Even though it is not
stated explicitly in that paper, it must be attributed to that paper nevertheless.
Indeed, the implication is straightforward and its authors have already sketched it in
public talks. Our purpose here is merely to include technical details for completeness.
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4.1 Random walks to the relative class group.
For any x > 0, consider the set Sx of ideals in OK of prime norm at most x, and
let Sx be the multiset of its image in ClK . Let Gx denote the induced Cayley
(multi)graph Cay(ClK , Sx). From [JW15, Cor. 6.5] (under GRH), for any ε > 0
there is a constant C and a bound

B = O
(
(n log∆K)2+ε) = O

(
(n2 logn)2+ε)

such that any random walk in GB of length at least C log(hK)/ log log(∆K), for
any starting point, lands in the subgroup Cl−K with probability at least 1/(2h+

K).
A random walk of length ` = dC log(hK)/ log log(∆K)e = Õ(n) is a sequence

p1, ..., p` of ideals chosen independently, uniformly at random in SB , and their
product b =

∏
pi has a norm bounded by

Nb =
∏̀
i=1

Npi ≤ B` = exp(polylog(n) · Õ(log hK)) = exp(Õ(n)),

If [a] is the starting point of the random walk in the graph, the endpoint [ab]
falls in Cl−K with probability at least 1/(2h+

K), and therefore an ideal b such
that [ab] ∈ Cl−K can be found in probabilistic polynomial time in h+

K . Note that
the PIP algorithm of Biasse and Song [BS16] allows to test the membership
[ab] ∈ Cl−K , simply by testing the principality of NK/K+(ab) as an ideal of O+

K .
The procedure is summarized as Algorithm 1, and the effiency is stated below.

Under GRH and Assumption 1, this procedure runs in polynomial time.
Lemma 1 (Under GRH). Algorithm 1 (WalkToCl−(a)) runs in expected
time O(h+

K) · poly(n, logNa) and is correct.

Algorithm 1 WalkToCl−(a): random walk to Cl−K
Require: An ideal a in OK
Ensure: An integral ideal b such that [ab] ∈ Cl−K and Nb ≤ exp(Õ(n))
1: ` = Õ(n); B = poly(n)
2: repeat
3: for all i = 1 . . . ` do
4: Choose pi uniformly among the prime ideal of norm less than B
5: end for
6: Set b =

∏
pi

7: until NK/K+ (ab) is principal (using the PIP algorithm of [BS16])
8: b←

∏d

i=1 pi
9: return b

5 Short relations in Cl−
K via the Stickelberger ideal

Consider any ideal f of OK such that [f] ∈ Cl−K , and its orbit under the action of
the Galois group G, denoted F = G(f). Let R be the group ring Z[G]. It projects
to ZF, via the map sending σ to 1fσ .
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We now show the construction of an explicit full-rank lattice of class relations
in ZF with an explicit set of short generators. We proceed by augmenting the
Stickelberger ideal. This allows to reduce the representation of a given class
expressed in basis F, as shown in Subsection 5.3.

Recall that the Galois group G is canonically isomorphic to (Z/mZ)∗ via
a 7→ σa = ζm 7→ ζam. The norms ‖ · ‖ and ‖ · ‖1 denote the usuals `2 (Euclidean)
and `1 norms over Rn, and are defined over Z[G] via the natural isomorphism
Z[G] ∼=Z Zn.

The fractional part of a rational x ∈ Q is denoted {x}, it is defined as the
unique rational in the interval [0, 1) such that {x} = x mod Z; equivalently,
{x} = x− bxc.

5.1 The (augmented) Stickelberger ideal

Definition 1 (The Stickelberger ideal). The Stickelberger element θ ∈ Q[G]
is defined as

θ =
∑

a∈(Z/mZ)∗

{ a
m

}
σ−1
a .

The Stickelberger ideal is defined as S = R∩θR. We will refer to the Stickelberger
lattice when S is considered as a Z-module.

This ideal S ⊂ R will provide some class relations in ZF, thanks to the
following theorem.

Theorem 1 (Stickelberger’s theorem [Was12, Thm. 6.10]). The Stickel-
berger ideal annihilates the ideal class group of K. In other words, for any ideal
h of OK and any s ∈ S, the ideal hs is principal.

We cannot directly use S ⊂ R as our lattice of class relations since it does
not have full rank in R as a Z-module (precisely its Z-rank is n/2 + 1 when
m ≥ 2). Indeed, if the lattice is not full rank, there can be no guarentee of how
short of a representant will be obtained by reducing modulo the lattice. To solve
this issue, we will augment the Stickelberger ideal to a full-rank ideal which still
annihilates the minus part Cl−K of the class group.

Definition 2. The augmented Stickelberger ideal S′ is defined as

S′ = S + (1 + τ)R. (2)

We will refer to the augmented Stickelberger lattice when S′ is considered as a
Z-module.

Lemma 2. The augmented Stickelberger ideal S′ annihilates Cl−K . In other words,
for any ideal h of OK such that [h] ∈ Cl−K and any s ∈ S, the ideal hs is principal.
Moreover, S′ ⊂ R has full-rank n as a Z-module.

14



Proof. For the annihilation property it suffices to show that both S and (1+τ)R
annihilate Cl−K . By Stickelberger’s theorem S annihilates ClK so it in particular
annihilates the subgroup Cl−K ⊂ ClK . The ideal (1 + τ)R also annihilates Cl−K
since h1+τ = hh̄ = NK/K+(h). We conclude from the fact that Cl−K is exactly
the kernel of the norm map NK/K+ : ClK → Cl+K .

For the rank, consider the ideal S− = S∩ (1− τ)R. A theorem from Iwasawa
(originally published in [Sin80] but reformulated more conveniently in [Was12,
Thm. 6.19]) states that S− is full rank in (1−τ)R. Noting that 2R ⊂ (1−τ)R+
(1+τ)R, we conclude that S−+(1+τ)R has full rank in 2R, and so does S′. ut

5.2 Short generating vectors of the augmented Stickelberger lattice

In the following, the elements of (Z/mZ)∗ are canonically identified with the
positive integers 0 < a1 < a2 < · · · < an < m such that each ai is coprime to
m. The elements of G are indexed as (σa1 , . . . , σan). Define the extra element
an+1 = m+ a1, and note that a2 ≤ 3 and that ai+1 − ai ≤ 2 for any i.

Lemma 3. The Stickelberger lattice is generated by the vectors vi = (ai− σai)θ
for i ∈ {2, . . . , n+ 1}.

Proof. This is almost [Was12, Lem. 6.9]. There, S is considered as an ideal in R,
whereas we need these elements to generate S as a Z-module. Let L be the
Z-module generated by the vi’s. First, [Was12, Lem. 6.9] immediately implies
that vi ∈ S and thereby L ⊆ S. Now, let

(∑n+1
i=2 xiσai

)
θ be an arbitrary

element of S, with ai ∈ Z. One can prove as in [Was12, Lem. 6.9] that m divides∑n+1
i=2 xiai ∈ Z. Since m = (m + 1) − σm+1, mθ is in L, and we deduce that(∑n+1
i=2 xiai

)
θ is also in L. Therefore,(

n+1∑
i=2

xiσai

)
θ =

(
n+1∑
i=2

xi(σai − ai)
)
θ +

(
n+1∑
i=2

xiai

)
θ ∈ L.

This proves that S ⊆ L, hence L = S. ut

We are now ready to construct our set of short generators for S′. Let w2 = v2
and wi+1 = vi+1 − vi for i ∈ {2, . . . , n}, and let

W = {w2, . . . , wn+1} ∪ {(1 + τ)σ, σ ∈ G}.

Lemma 4. The set S is a set of short generators of S′. More precisely,

1. W generates the augmented Stickelberger lattice S′,
2. For any i ∈ {3 . . . n+ 1}, wi =

∑
b∈(Z/mZ)∗ εi,b · σ

−1
b , with εi,j ∈ {0, 1, 2},

3. For any w ∈W , we have ‖w‖ ≤ max(2
√
n,
√

10).

The second item essentially generalizes [Sch10, Proposition 9.4] from prime con-
ductors to prime-power conductors.
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Proof. We prove each item individually.

1. First note that {w2, . . . , wn+1} generates S: this is a direct consequence of
Lemma 3 and the construction of W . By definition of R = Z[G], the set
{(1 + τ)σ, σ ∈ G} generates (1 + τ)R. One can conclude from the definition
of S′ = S + (1 + τ)R.

2. We follow the computation in the proof of [Was12, Lemma 6.9]:

vi = (ai − σai)θ =
∑

b∈(Z/mZ)∗

(
ai

{
b

m

}
−
{
aib

m

})
σ−1
b

=
∑

b∈(Z/mZ)∗

⌊
ai

{
b

m

}⌋
σ−1
b

using the identity x{y} − {xy} = bx{y}c for any integer x and real number
y, since this difference is an integer and the term {xy} is in the range [0, 1).
It remains to rewrite wi =

∑
b∈(Z/mZ)∗ εi,bσ

−1
b , where

εi,b =
⌊
ai+1

{
b

m

}⌋
−
⌊
ai

{
b

m

}⌋
≤ ai+1 − ai ≤ 2.

3. The property follows from the previous item for any i > 2. For i = 2, we
have w2 = v2 = a2 − σa2 , and therefore ‖w2‖ =

√
a2

2 + 1 ≤
√

32 + 1 =
√

10.
Finally, elements w ∈W of the form (1 + τ)σ have norm ‖w‖ =

√
2 ≤
√

10.
ut

5.3 Reducing a class representative in an R-cycle of Cl−
K

We now show how to exploit the previously constructed set W of short relations
to reduce class representations. More precisely, for any large α ∈ R we will find
a short β ∈ R such that Cβ = Cα, for any class C ∈ Cl−K . We shall rely on the
following close vector algorithm.

Proposition 3 (Close vector algorithm). Let Γ ⊂ Rk be a lattice, and let
W be a set generating Γ . There exists a (classical) polynomial time algorithm
CV, that when given any y ∈ Γ⊗R as input, outputs a vector x = CV(y,W ) ∈ Γ
such that ‖x− y‖1 ≤ k

2 ·maxw∈W ‖w‖.

Proof. Let first B ⊂W be a basis of a full-rank sublattice Γ ′ ⊂ Γ (this is easily
built in polynomial time). Let B̃ denote the Gram-Schmidt orthogonalization of
B. Let g = maxb∈B̃ ‖b̃‖ ≤ maxb∈B ‖b‖ ≤ maxw∈W ‖w‖. Applying the Nearest
Plane algorithm leads to x ∈ Γ such that x − y belongs to the fundamental
parallelepiped {B̃z, z ∈ [−1/2, 1/2]}. We then have

‖x− y‖2
2 ≤

1
4
∑
‖b̃i‖2.

In particular, ‖x− y‖2 ≤
√
k · g/2 and one concludes ‖x− y‖1 ≤ kg/2. ut
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Theorem 2. Assume n ≥ 3. There is an algorithm Reduce, that given α ∈ R,
finds in polynomial time in n and log(||α||), an element β = Reduce(α) ∈ R
such that ||β||1 ≤ n3/2, and Cα = Cβ for any C ∈ Cl−K .

Proof. LetW be the basis for the augmented Stickelberger ideal S′ as in Lemma 4.
From Lemma 2, it has full rank in R. So the close vector algorithm from Propo-
sition 3 can be applied to find an element γ = CV(α,W ) ∈ S′ such that
||α−γ||1 ≤ n

2 ·maxw∈W ‖w‖ ≤ n3/2. Let β = α−γ. For any C ∈ Cl−K , Lemma 2
implies that Cγ = 0 and therefore Cα = Cβ . ut

6 Close principal multiple within the relative class group

We now show how to solve the CPM problem for ideals sitting in Cl−K , given a
factor basis B of Cl−K . The CPM approximation factor will depend on the size
of the factor basis B.

Suppose the ideal a is in the relative class group Cl−K . We are looking for
an integral ideal b in OK of small norm such that ab is principal. Let B =
{pσi | σ ∈ G, i = 1, . . . , d} be a set generating Cl−K , composed of d Galois orbits,
such that Npi ≤ poly(n) for all i. To state the algorithm and its correctness, no
assumption is made on the factor basis B. In the final section 7, we will employ
Assumption 2 to provide a factor basis with d = polylog(n) to this algorithm.

Algorithm 2 ClosePrincipalMultiple−(a,B): close principal multiple in
the relative class group
Require: An ideal a in OK such that [a] ∈ Cl−K , a factor basis B = {pσi |i = 1 . . . d, σ ∈

G} generating Cl−K , such that Npi ≤ poly(n) for all i.
Ensure: An (integral) ideal b in OK such that ab ∼ OK and Nb = exp

(
Õ
(
dn3/2))

1: y← ClDLB(a)
2: for i = 1 to d do
3: αi ←

∑
σ∈Gi

y(pσ
i

)σ ∈ Z[G]
4: βi ← Reduce(αi)
5: (γ+

i , γ
−
i )← the pair of elements in Z[G] with only positive coefficients, such that

γ+
i − γ

−
i = −βi

6: bi ← p
γ+
i

+τγ−
i

i

7: end for
8: b←

∏d

i=1 bi
9: return b

Theorem 3. Algorithm 2, ClosePrincipalMultiple−, runs in quantum poly-
nomial time in n = deg(K), d and log(Na), and is correct.

Proof. Let a,B be proper inputs, that is, a is an ideal of OK such that [a] ∈ Cl−K ,
and B is a factor basis B = {pσi | i = 1 . . . d, σ ∈ G} generating Cl−K , such that
Npi ≤ poly(n) for all i.
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The running time follows immediately from Proposition 2 and Theorem 2.
Let us now prove the correctness. We have

φ(y) =
∏
p∈B

pyp =
d∏
i=1

∏
p∈Bi

pyp =
d∏
i=1

∏
σ∈Gi

(pσi )y(pσ
i

) =
d∏
i=1

pαii .

Observe that for each i, bi ∼ p−βii , since p−1
i ∼ pτi . From Theorem 2, we obtain

pαii bi ∼ OK , which implies that φ(y)b ∼
∏d
i=1 p

αi
i bi ∼ OK . From Proposition 2,

we have φ(y) ∼ a, and therefore ab ∼ OK .
Now, Theorem 2 ensures that ||β||1 ≤ n3/2. So ||γ+

i ||1 + ||γ−i ||1 is bounded
by n3/2 and we obtain that Nbi ≤ (Npi)n

3/2 . Then,

Nb =
d∏
i=1

Nbi ≤
(

max
i=1...d

Npi

)dn3/2

= exp
(
Õ
(
dn3/2)) ,

where the last inequality uses the fact that each Npi is polynomially bounded
in n. ut

7 Main result

We now have all the ingredients to demonstrate our main result:

Main Result (Under GRH, Assumption 1 and 2) Assuming simultaneously
the Generalized Riemann Hypothesis, Assumption 1, and Assumption 2, there
exists a quantum polynomial time algorithm IdealSVP(a), that given an ideal
of OK for K a cyclotomic number field of prime power conductor, returns an
element v ∈ a of Euclidean norm ‖v‖ ≤ (Na)1/n · exp(Õ(

√
n)).

Algorithm 3 IdealSVP(a): finding mildly short vectors in an ideal
Require: An ideal a in OK
Ensure: An element v ∈ a of norm ‖v‖ ≤ (Na)1/n exp(Õ(

√
n))

1: d = polylog(n); B = poly(n)
2: Set M = {p|Np ≤ B, [p] ∈ Cl−K}
3: Choose p1, . . . , pd uniformly at random in M
4: Set B = {pσi |i ∈ {1 . . . d}, σ ∈ G}
5: b′ = WalkToCl−(a)
6: b = ClosePrincipalMultiple−(ab′,B)
7: v = PrincipalIdealSVP(abb′)
8: return v

Proof. The algorithm is given as Algorithm 3. Efficiency and correctness follow
from the previous statements and assumptions:
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– Step 2 is quantum polynomial time since membership in Cl−K can be tested
by applying the Biasse-Song PIP algorithm [BS16, Thm 1.3] to NK/K+(ab).

– By Assumption 2, Steps 3 and 4 produce a factor basis B generating Cl−K .
Both steps can trivially be performed in polynomial time.

– By Lemma 1, GRH and Assumption 1, Step 5 is quantum polynomial time,
and produces an integral ideal b′ such thatNb′ ≤ exp(Õ(n)) and [ab′] ∈ Cl−K .

– By Theorem 3, Step 6 produces (in quantum polynomial time) an integral
ideal b such that

Nb ≤ exp(Õ(dn3/2)) = exp(Õ(n3/2))

and such that abb′ is principal.
– By Claim 1 ([CGS14,BS16,CDPR16]), Step 7 produces in quantum polyno-

mial time a vector v ∈ abb′ of length ‖v‖ ≤ (Nabb′)1/n · exp(Õ(
√
n)).

Because b and b′ are integral, abb′ ⊂ a, and v ∈ a. Finally,

‖v‖ ≤ (Na)1/n(Nb)1/n(Nb′)1/n · exp(Õ(
√
n))

≤ (Na)1/n · exp(Õ(
√
n)).

ut
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A Proof of Proposition 1

In this appendix, we provide the proof of Proposition 1 (restated below, used to
support Assumption 2).

Proposition 1 Let K be a cyclotomic field of conductor m, with Galois group
G and relative class group Cl−K . Let r be the minimal number of Z[G]-generators
of Cl−K . Let α ≥ 0 be a parameter, and s be any integer such that

s ≥ r(log2 log2(h−K) + α)

(note that log2 log2(h−K) ∼ log2(n)). Let g1, . . . , gs be s independent uniform
elements of Cl−K . The probability that {g1, . . . , gs} generates Cl−K as a Z[G]-
module is at least exp

(
− 3

2α
)

= 1−O(2−α).

In other words, a set of Θ(r log(n)) random ideal classes in Cl−K will generate
this Z[G]-module with very good probability. Let us first establish a few lemmas.

Lemma 5. Let O be a Dedekind domain, and h ⊂ O be an integral ideal. Let
g1, . . . , gs be s independent uniform elements from O/h. Then, the probability
that the set {g1, . . . , gs} generates O/h as an O-module is

Pr [Og1 + · · ·+Ogs = O/h] ≥
(
1− 2−s

)log2 Nh
. (3)

Proof. Let h = pα1
1 · · · p

αj
j be the prime factorization of h. By application of the

Chinese Remainder Theorem, (3) is equivalent to {g1 mod pαii , . . . , gs mod pαii }
generatingO/pαii for all i. In particular, it is enough that for all i ∈ {0 . . . j} there
exists a k such that the ideal gkO is coprime with pαii , or equivalently coprime
with pi. For a fixed i, this occurs with probability 1− (Npi)−s ≥ 1− 2−s. Also
note that those events are indepedents, so the probability of (3) is larger than
(1 − 2−s)j . We conclude noting that j, the number of distinct prime factors of
h, is at most log2 Nh. ut

Lemma 6. Let O be a Dedekind domain, and M be a finite O-module of cardi-
nality h and let r be the minimal number of O-generators of M . Let g1, . . . , gs
be s independent uniform elements from M . Then, the probability that the set
{g1, . . . , gs} generates M as an O-module is

Pr [Og1 + · · ·+Ogs = M ] ≥
(

1− 2−bs/rc
)log2 h

.

Proof. SinceM is a torsion module over a Dedekind domain, there exist r ideals
h1, . . . , hr such that M =

⊕r
i=1O/hi; in particular, log2 h =

∑r
i=1 log2 Nhi.

Consider the s′ firsts random elements g1 . . . gs′ where s′ = bs/rc, and their
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projections g′1 . . . g′s′ on the first component O/h1. By Lemma 5, {g′1 . . . g′s′}
generates O/h1 with probability at least (1− 2−s′)log2 Nh1 .

Suppose that {g′1 . . . g′s′} indeed generates O/h1. Let M1 = Og1 + · · ·+Ogs′ .
To conclude by induction, it suffices to note that M/M1 is generated by (at
most) r − 1 elements. ut

Theorem 4. Let H be a cyclic group, and M a finite, Z[H]-module of cardinal-
ity h, and r be the minimal number of Z[H]-generators of M . Let g1, . . . , gs be
s independent uniform elements of M . The probability that the set {g1, . . . , gs}
generates M as a Z[H]-module is

Pr [Z[H] · g1 + · · ·+ Z[H] · gs = M ] ≥
(

1− 2−bs/rc
)log2 h

.

Proof. Let t be the order of H. Observe that we have the decomposition

Z[H] ∼= Z[X]/(Xt − 1) ∼=
⊕
d|t

Z[X]/(Φd(X)) ∼=
⊕
d|t

Z[ωd].

For each d | t, define ed ∈ Z[H] the idempotent which projects to the unit
of Z[ωd] and to zero in all other components of the above direct sum. This is
a system of fundamental idempotents of Z[H], and it induces a decomposition
Z[H] =

⊕
d|t edZ[H], where edZ[H] ∼= Z[ωd]. In the following edZ[H] and Z[ωd]

are canonically identified. In particular, we have that M =
⊕

d|t edM , and edM
may be viewed as Z[ωd]-module.

First, note that log2 h =
∑
d|t log2 hd, where hd is the cardinality of edM .

Second, each edM is generated over Z[ωd] by at most r elements. Noting Z[ωd]
is a Dedekind domain, we apply Lemma 6, over each component and conclude

Pr [Z[H] · g1 + · · ·+ Z[H] · gs = M ] =
∏
d|t

Pr [Z[ωd] · g1 + · · ·+ Z[ωd] · gs = edM ]

≥
∏
d|t

(
1− 2−bs/rc

)log2 hd

=
(

1− 2−bs/rc
)log2 h

.

ut

Proof of Proposition 1. Note that G is trivial if and only if K = Q, in which
case ClK is trivial, and so is the proposition. Otherwise, observe that G splits
as Z/2Z ×H where H is a cyclic group, and the component Z/2Z corresponds
to the complex conjugation τ . Note that for any x ∈ Cl−K , the orbits Z[G]x and
Z[H]x coincide since τ ∈ G acts like −1 ∈ Z[H] on Cl−K . Therefore r is the
minimal number of Z[H]-generators of Cl−K . We obtain from Theorem 4 that
the probability that {g1, . . . , gs} generates Cl−K as a Z[H]-module is at least
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(1− 2−bs/rc)log2 h
−
K . For any 0 < x ≤ 1/2, we have ln(1− x) > −(3/2)x. We get(

1− 2−bs/rc
)log2 h

−
K = exp

(
log2 h

−
K ln

(
1− 2−bs/rc

))
≥ exp

(
−3

2 log2(h−K)2−bs/rc
)
.

With s ≥ r(log2 log2(h−K) + α), we get bs/rc ≥ log2 log2(h−K) + α− 1 and(
1− 2−bs/rc

)log2 h
−
K ≥ exp

(
− 3

2α

)
.

ut

B Proof of Proposition 2

Given the Theorem 1.1 of [BS16] the proof of this corollary is standard, and
known as the linear-algebra step of index calculus methods.

The prime factorization a = qa1
1 . . . qakk can be obtained in polynomial time

in n, log(∆K) and log(Na), by Shor’s algorithm [Sho97,EH10]. Let C = B ∪
{q1 . . . , qk}, and one can assume without loss of generality that this union is
disjoint. Let r = n1+n2−1, where n1 is the number of real embeddings ofK, and
n2 is the number of pairs of complex embeddings. Consider the homomorphism

ψ : ZB × Zk −→ ClK : ((ep)p∈B, (f1, . . . , fk)) 7−→

∏
p∈B

pep

 · [ d∏
i=1

qfii

]
.

As described in [BS16, Section 4], solving the C-unit problem provides a
generating set of size c = r+ |B|+k for the kernel L of ψ. From [BS16, Theorem
1.1] such a generating set {vi}ci=1 can be found by a quantum algorithm in time
polynomial in n, maxp∈C{log(Np)}, log(dK) and |C| = O(|B| + log(Na)). For
each i, write vi = ((wi,p)p∈B, (vi,1, . . . , vi,k)). Since [a] ∈ H and B generates H,
the system of equations {

∑c
j=1 xjvj,i = ai}ki=1 has a solution x ∈ Zc which can

be computed in polynomial time. We obtain

0 = ψ

(
c∑
i=1

xivi

)
=

∏
p∈B

p

∑
j
xjwj,p

·[ d∏
i=1

q

∑
j
xjvj,i

i

]
=

∏
p∈B

p

∑
j
xjwj,p

·[a].

Then, the output of ClDLB is y =
(
−
∑
j xjwj,p

)
p∈B

. ut
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