
A kilobit hidden SNFS discrete logarithm
computation

Joshua Fried1, Pierrick Gaudry2, Nadia Heninger1, Emmanuel Thomé2

1 University of Pennsylvania
2 INRIA, CNRS, Université de Lorraine

Abstract. We perform a special number field sieve discrete logarithm
computation in a 1024-bit prime field. To our knowledge, this is the
first kilobit-sized discrete logarithm computation ever reported for prime
fields. This computation took a little over two months of calendar time
on an academic cluster using the open-source CADO-NFS software.
Our chosen prime p looks random, and p−1 has a 160-bit prime factor, in
line with recommended parameters for the Digital Signature Algorithm.
However, our p has been trapdoored in such a way that the special num-
ber field sieve can be used to compute discrete logarithms in F∗p, yet
detecting that p has this trapdoor seems out of reach. Twenty-five years
ago, there was considerable controversy around the possibility of back-
doored parameters for DSA. Our computations show that trapdoored
primes are entirely feasible with current computing technology. We also
describe special number field sieve discrete log computations carried out
for multiple conspicuously weak primes found in use in the wild.
As can be expected from a trapdoor mechanism which we say is hard
to detect, our research did not reveal any trapdoored prime in wide use.
The only way for a user to defend against a hypothetical trapdoor of this
kind is to require verifiably random primes.

1 Introduction

In the early 1990’s, NIST published draft standards for what later became the
Digital Signature Algorithm (DSA) [40]. DSA is now widely used. At the time,
many members of the cryptographic community voiced concerns about the pro-
posal. Among these concerns were that the standard encouraged the use of a
global common prime modulus p [45], and that a malicious party could specially
craft a trapdoored prime so that signatures would be easier to forge for the
trapdoor owner [31]. This latter charge was the subject of a remarkable panel at
Eurocrypt 1992 [15,1]. Most of the panelists agreed that it appeared to be diffi-
cult to construct an undetectably trapdoored modulus, and that such trapdoors
appeared unlikely. To protect against possible trapdoored primes, the Digital
Signature Standard suggests that primes for DSA be chosen in a “verifiably ran-
dom” way, with a published seed value [49]. Yet DSA primes used in the wild
today are seldom published with the seed.

Concerns about cryptographic backdoors have a long history (for instance,
it has been formalized as “kleptography” in the 90’s [54]) and regained promi-
nence in recent years since the disclosure of NSA documents leaked by Edward
Snowden. A set of leaked documents published in September 2013 by the NY
Times [43], The Guardian [4], and ProPublica [30] describe an NSA “SIGINT
Enabling Project” that included among its goals to “Influence policies, stan-
dards, and specification for commercial public key technologies”. The newspaper
articles describe documents making specific reference to a backdoor in the Dual
EC random number generator, which had been standardized by both NIST and
ANSI. NIST responded by withdrawing its recommendation for the Dual EC
DRBG, writing “This algorithm includes default elliptic curve points for three
elliptic curves, the provenance of which were not described. Security researchers
have highlighted the importance of generating these elliptic curve points in a
trustworthy way. This issue was identified during the development process, and
the concern was initially addressed by including specifications for generating
different points than the default values that were provided. However, recent
community commentary has called into question the trustworthiness of these
default elliptic curve points” [38]. There is evidence that the ability to back-
door the Dual EC algorithm has been exploited in the wild: Juniper Networks
had implemented Dual EC in NetScreen VPN routers, but had used it with
custom-generated parameters. In December 2015 Juniper published a security
advisory [25] announcing that an attacker had made unauthorized modifications
to the source code for these products to substitute a different curve point in the
Dual EC implementation [10].

In this paper, we demonstrate that constructing and exploiting trapdoored
primes for Diffie-Hellman and DSA is feasible for 1024-bit keys with modern aca-
demic computing resources. Current estimates for 1024-bit discrete log in general
suggest that such computations are likely within range for an adversary who can
afford hundreds of millions of dollars of special-purpose hardware [2]. In contrast,
we were able to perform a discrete log computation on a specially trapdoored
prime in two months on an academic cluster. While the Dual EC algorithm
appears to have only rarely been used in practice [9], finite-field Diffie-Hellman
and DSA are cornerstones of public-key cryptography. We neither show nor claim
that trapdoored primes are currently in use. However, the near-universal failure
of implementers to use verifiable prime generation practices means that use of
weak primes would be undetectable in practice and unlikely to raise eyebrows.

The special number field sieve trapdoor

The Number Field Sieve (NFS), still very much in its infancy at the beginning of
the 1990’s, was originally proposed as an integer factoring algorithm [32]. Gordon
adapted the algorithm to compute discrete logarithms in prime fields [22]. Both
for the integer factoring and the discrete logarithm variants, several theoretical
and computational obstacles had to be overcome before the NFS was practical
to use for large scale computations. For the past twenty years, the NFS has been
routinely used in record computations, and the underlying algorithms have been

2

thoroughly improved. The NFS is now a versatile algorithm which can handle
an arbitrary prime p, and compute discrete logarithms in F∗p in asymptotic time
Lp(1/3, (64/9)

1/3)1+o(1), using the usual L-notation (see §3.2).
Current computational records for the number field sieve include a 768-bit

factorization of an RSA modulus, completed in December 2009 by Kleinjung et
al. [27] and a 768-bit discrete log for a safe prime, completed in June 2016 by
Kleinjung et al. [28].

Very early on in the development of NFS, it was observed that the algorithm
was particularly efficient for inputs of a special form. Some composite integers
are particularly amenable to being factored by NFS, and primes of a special form
allow easier computation of discrete logarithms. This relatively rare set of inputs
defines the Special Number Field Sieve (SNFS). It is straightforward to start with
parameters that give a good running time for the NFS—more precisely, a pair of
irreducible integer polynomials meeting certain degree and size constraints—and
derive an integer to be factored, or a prime modulus for a discrete logarithm.
In general, moving in the other direction, from a computational target to SNFS
parameters, is known to be possible only in rare cases (e.g. the Cunningham
project). The complexity of SNFS is Lp(1/3, (32/9)1/3)1+o(1), much less than its
general counterpart. A 1039-bit SNFS factorization was completed in 2007 by
Aoki et al. [3].

In 1992, Gordon [21] suggested several methods that are still the best known
for trapdooring primes to give the best running time for the SNFS, without
the trapdoored SNFS property being conspicuous3. Most of his analysis remains
valid, but there has been significant improvement in the NFS algorithm in the
past 25 years. In the early days, an NFS computation had to face issues of dealing
with class groups and explicit units. That meant much less flexibility in creating
the trapdoor, to the point that it was indeed difficult to conceal it. It is now well
understood that these concerns were artificial and can be worked around [46],
much to the benefit of the trapdoor designer. Gordon’s analysis and much of
the discussion of trapdoored DSA primes in 1992 focused on 512-bit primes, the
suggested parameter sizes for NIST’s DSS draft at the time. However, 25 years
later, 1024-bit targets are of greater cryptanalytic interest.

We update the state of the art in crafting trapdoored 1024-bit primes for
which practical computation of discrete logarithms is possible, and demonstrate
that exploitation is practical by performing a 1024-bit SNFS discrete log com-
putation.

We begin by reviewing in Section 2 the origin of primes found in multiple
practical cryptographic contexts. Section 3 recalls a brief background on the
Number Field Sieve. In Section 4, we reevaluate Gordon’s work on trapdooring
primes for SNFS given the modern understanding of the algorithm, and explain
for a given target size which polynomial pair yields the fastest running time.
This answers a practical question for the problem at hand—how to optimally

3 In 1991, another method was suggested by Lenstra in [31], and played a role in
triggering the Eurocrypt panel [15]. Gordon’s trap design is more general.

3

select trapdoor parameters to simplify computations with the prime—and is also
of wider interest for NFS-related computations.

We then run a full 1024-bit experiment to show that trapdoored primes are
indeed a practical threat, and perform a full 1024-bit SNFS discrete log compu-
tation for our trapdoored prime. We describe our computation in Section 5. We
show how various adaptations to the block Wiedemann algorithm are essential
to minimizing its running time, compared to previous computations of the same
kind. We detail the descent procedure, and the various challenges which must be
overcome so as to complete individual logs in a short time. We also provide an
extensive appendix giving details on the analysis of individual logarithm com-
putation in Appendix A, as this portion of the computation is not well detailed
in the literature.

Finally, we evaluate the impact of our results in Section 6. Our computation
required roughly a factor of 10 less resources than the recent 768-bit GNFS
discrete log announced by Kleinjung et al. However, we have found a number
of primes amenable to non-hidden SNFS DLP computations in use in the wild.
We describe additional SNFS computations we performed on these primes in
Section 6.2.

2 Modern security practices for discrete log
cryptosystems

Verifiable prime generation. It is legitimate to wonder whether one should worry
about trapdoored primes at all. Good cryptographic practice recommends that
publicly agreed parameters must be “verifiably random”. For example, appendix
A.1.1.2 of the FIPS 186 standard [40] proposes a method to generate DSA
primes p and q from a random seed and a hash function, and suggests that one
should publish that seed alongside with p and q. The publication of this seed
is marked optional. Primes of this type are widely used for a variety of cryp-
tographic primitives; for example NIST SP 800-56A specifies that finite-field
parameters for key exchange should be generated using FIPS 186 [41, §5.5.1.1].

While it is true that some standardized cryptographic data includes “verifi-
able randomness”4 or rigidity derived from “nothing up my sleeve” numbers, it is
noteworthy that this is not always the case. For example, both France and China
standardized elliptic curves for public use without providing any sort of justifi-
cation for the chosen parameters [8, §3.1]. RFC 5114 [33] specifies a number of
groups for use with Diffie-Hellman, and states that the parameters were drawn
from NIST test data, but neither the NIST test data [39] nor RFC 5114 itself
contain the seeds used to generate the finite field parameters. In a similar vein,
the origin of the default 2048-bit prime in the Helios voting system used in the
most recent IACR Board of Directors Election in 2015 is undocumented. Most
users would have to go out of their way to generate verifiable primes: the default

4 This still leaves the question of whether the seed is honest, see e.g. [47,8]. We do not
address this concern here.

4

behavior of OpenSSL does not print out seeds when generating Diffie-Hellman
or DSA parameter sets. However, some implementations do provide seeds. Java’s
sun.security.provider package specifies hard-coded 512-, 768-, and 1024-bit
groups together with the FIPS 186 seeds used to generate them.

Standardized and hard-coded primes. It is also legitimate to wonder whether one
should be concerned about widespread reuse of primes. For modern computers,
prime generation is much less computationally burdensome than in the 1990s,
and any user worried about a backdoor could easily generate their own group
parameters. However, even today, many applications use standardized or hard-
coded primes for Diffie-Hellman and DSA. We illustrate this by several examples.

In the TLS protocol, the server specifies the group parameters that the client
and server use for Diffie-Hellman key exchange. Adrian et al. [2] observed in 2015
that 37% of the Alexa Top 1 Million web sites supported a single 1024-bit group
for Diffie-Hellman key exchange. The group parameters were hard-coded into
Apache 2.2, without any specified seed for verification. They also observed that
in May 2015, 56% of HTTPS hosts selected one of the 10 most common 1024-
bit groups when negotiating ephemeral Diffie-Hellman key exchange. Among 13
million recorded TLS handshakes negotiating ephemeral Diffie-Hellman key ex-
change, only 68,000 distinct prime moduli were used. The TLS 1.3 draft restricts
finite-field Diffie-Hellman to a set of five groups modulo safe primes ranging in
size from 2048 to 8196 bits derived from the nothing-up-my-sleeve number e [19].

In the IKE protocol for IPsec, the initiator and responder negotiate a group
for Diffie-Hellman key exchange from a set list of pre-defined groups; Adrian et al.
observed that 66% of IKE responder hosts preferred the 1024-bit Oakley Group 2
over other choices. The Oakley groups specify a collection of primes derived from
a “nothing-up-my-sleeve” number, the binary expansion of π, and have been built
into standards, including IKE and SSH, for decades [42]. The additional finite-
field Diffie-Hellman groups specified in RFC 5114 are widely used in practice:
Internet-wide scans from September 2016 found that over 900,000 (2.25%) of
TLS hosts on port 443 chose these groups [16]. Scans from February 2016 of
IKE hosts on port 500 revealed that 340,000 (13%) supported the RFC 5114
finite-field Diffie-Hellman parameters [53].

RFC 4253 specifies two groups that must be supported for SSH Diffie-Hellman
key exchange: Oakley Group 2 (which is referred to as SSH group 1) and Oakley
Group 14, a 2048-bit prime. SSH group 1 key exchange was disabled by default
in OpenSSH version 7.0, released in August 2015 [18]. Optionally, SSH clients
and servers may negotiate a different group using the group exchange hand-
shake. However, OpenSSH chooses the group negotiated during this exchange
from a pre-generated list that is generally shipped with the software package.
The /etc/ssh/moduli file on an Ubuntu 16.04 machine in our cluster contained
267 entries in size between 1535 and 8191 bits. The 40 to 50 primes at each size
appear to have been generated by listing successive primes from a fixed start-
ing point, and differ only in the least significant handful of bits. We examined
data from a full IPv4 SSH scan performed in October 2015 [53] that offered
Diffie-Hellman group exchange only, and found 11,658 primes in use from 10.9

5

million responses, many of which could be clustered into groups differing only
in a handful of least significant bits.

The SSH protocol also allows servers to use long term DSA keys to authen-
ticate themselves to clients. We conducted a scan of a random 1% portion of
the IPv4 space for hosts running SSH servers on port 22 with DSA host keys in
September 2016, and found that most hosts seemed to generate unique primes
for their DSA public keys. The scan yielded 27,380 unique DSA host keys from
32,111 host servers, of which only 557 shared a prime with another key. DSA
host key authentication was also disabled by default in OpenSSH 7.0 [18].

1024-bit primes in modern cryptographic deployments. It is well understood
that 1024-bit factorization and discrete log computations are within the range
of government-level adversaries [2], but such computations are widely believed by
practitioners to be only within the range of such adversaries, and thus that these
key sizes are still safe for use in many cases. While NIST has recommended a
minimum prime size of 2048 bits since 2010 [6], 1024-bit primes remain extremely
common in practice. Some of this is due to implementation and compatibility
issues. For example, versions of Java prior to Java 8, released in 2014, did not
support Diffie-Hellman or DSA group sizes larger than 1024 bits. DNSSEC limits
DSA keys to a maximum size of 1024-bit keys [29], and stated, in 2012, that with
respect to RSA keys, “To date, despite huge efforts, no one has broken a regular
1024-bit key; . . . it is estimated that most zones can safely use 1024-bit keys
for at least the next ten years.” SSL Labs SSL Pulse estimated in September
2016 that 22% of the 200,000 most popular HTTPS web sites performed a key
exchange with 1024-bit strength [50].

3 The Number Field Sieve for discrete logarithms

3.1 The NFS setting

We briefly recall the Number Field Sieve (NFS) algorithm for computing dis-
crete logarithms in finite fields. This background is classical and can be found
in a variety of references. NFS appeared first as an algorithm for factoring inte-
gers [32], and has been adapted to the computation of discrete logarithms over
several works [22,23].

Let Fp be a prime field, let γ ∈ F∗p be an element of prime order q | p − 1.
We wish to solve discrete logarithms in 〈γ〉. The basic outline of the NFS-DL
algorithm is as follows:

Polynomial selection. Select irreducible integer polynomials f and g, sharing
a common root m modulo p. Both polynomials define number fields, which
we denote by Q(α) and Q(β).

Sieving. Find many pairs a, b such that the two integers (called norms – albeit
improperly if f or g are not monic) Res(f(x), a− bx) and Res(g(x), a− bx)
factor completely into primes below a chosen smoothness bound B.

6

Filtering. Form multiplicative combinations of the (a, b) pairs to reduce the
number of prime ideals appearing in the corresponding ideal factorizations.

Compute maps. Compute q-adic characters (known as Schirokauer maps [46]).
This yields a relation matrix which can be written as (M‖S), with M the
block with ideal valuations, and S the block with Schirokauer maps.

Linear algebra. Solve the linear system (M‖S)x = 0, which gives virtual log-
arithms.

Individual logarithm. Given a target value z ∈ 〈γ〉, derive its logarithm as a
linear combination of a subset of the virtual logarithms.

3.2 Complexity analysis

NFS complexity analysis involves the usual L-notation, defined as

Lp(e, c) = exp(c(log p)e(log log p)1−e). (1)

This notation interpolates between polynomial (e = 0) and exponential (e = 1)
complexities. It adapts well to working with smoothness probabilities. In this
formula and elsewhere in the paper, we use the log notation for the natural
logarithm. In the few places where we have formulae that involve bit sizes, we
always use log2 for the logarithm in base 2.

The polynomials f and g have a crucial impact on the size of the integers
Res(f(x), a − bx) and Res(g(x), a − bx), and therefore on the probability that
these integers factor into primes below B (in other words, are B-smooth).

Variant deg f ‖f‖ deg g ‖g‖ complexity
exponent

General NFS (base-m) d p1/(d+1) 1 p1/(d+1) (64/9)1/3

General NFS (Joux-Lercier) d′ + 1 O(1) d′ p1/(d
′+1) (64/9)1/3

Special NFS (for example) d O(1) 1 p1/(d+1) (32/9)1/3

Table 1. Polynomial selection choices for NFS variants.

The analysis of the NFS depends on the prime p. When no assumptions
are made on p, we have the so-called general number field sieve (GNFS). It
is possible to perform polynomial selection so that (deg f, deg g) is (1, d) (by
choosingm ≈ N1/d and writing p in “base-m”, or similar), or (d′+1, d′) (the Joux-
Lercier method [23]). The degrees d and d′ in each case are integer parameters, for
which an educated guess is provided by their asymptotic optimum, namely d =

(3log p/log log p)
1/3, and d′ = d/2. Both approaches lead to an overall complexity

Lp(1/3, (64/9)
1/3)1+o(1) for a discrete logarithm computation, as indicated in

Table 1, where ‖f‖ denotes the maximum absolute value of the coefficients of f .
In contrast, some prime numbers are such that there exist exceptionally small

polynomial pairs (f, g) sharing a common root modulo p. This makes a consider-
able difference in the efficiency of the algorithm, to the point that the exponent

7

in the complexity drops from (64/9)1/3 to (32/9)1/3—a difference which is also
considerable in practice. In most previously considered cases, this special struc-
ture is clear from the number itself. For the SNFS factorization performed by
Aoki et al. for the composite integer 21039 − 1, they chose f(x) = 2x6 − 1 and
g(x) = x− 2173 [3].

4 Heidi hides her polynomials

Early on in the development of NFS, Gordon [21] suggested that one could craft
primes so that SNFS polynomials exist, but may not be apparent to the casual
observer. Heidi, a mischievous designer for a crypto standard, would select a pair
of SNFS polynomials to her liking first, and publish only their resultant p (if it is
prime) afterwards. The hidden trapdoor then consists in the pair of polynomials
which Heidi used to generate p, and that she can use to considerably ease the
computation of discrete logarithms in Fp.

Twenty-five years later, we reconsider the best-case scenario for Heidi: given
a target size, what type of polynomial pair will give the fastest running time for
a discrete logarithm computation? For the current state of the art in algorithmic
development and computation power, is there a parameter setting for which the
computations are simultaneously within reach, Heidi can efficiently generate a
trapdoored prime, and defeat attempts at unveiling it?

4.1 Best form for SNFS polynomials

The Special Number Field Sieve has been mostly used in the context of integer
factorization, in particular for numbers from the Cunningham Project. In that
case the integers are given, and typically the only way to find SNFS polynomials
for these numbers is to take one linear polynomial with large coefficients and
a polynomial of larger degree, with tiny coefficients. In our situation, the con-
struction can go the opposite way: we are free to choose first the form of the
polynomials, hoping that their resultant will be a prime number. We thus have
more freedom in the construction of our polynomial pair.

Let n be the number of bits of the SNFS prime p we will construct. We
consider first the case where we have two polynomials f and g that are non-
skewed, i.e. all the coefficients of each polynomial have roughly the same size.
We denote df and dg their respective degrees, and ‖f‖ and ‖g‖ the respective
maximum absolute values of their coefficients. Since the resultant must be almost
equal to p, we have

df log2 ‖g‖+ dg log2 ‖f‖ ≈ n. (2)

Let A be a bound on the a and b integers we are going to consider during relation
collection. Then the product of the norms that have to be tested for smoothness
can be approximated by ‖f‖ ‖g‖Adf+dg . We will try to make its size as small as
possible, so we want to minimize

log2 ‖f‖+ log2 ‖g‖+ (df + dg) log2A. (3)

8

Of course, the value taken by A will also depend on the size of the norms. If
this size is larger than expected, then the probability of finding a relation is too
small and the sieving range corresponding to A will not allow the creation of
enough relations. But assuming A is fixed is enough to compare various types
of polynomial constructions: if one of them gives larger norms, then for this
construction, the value of A should be larger, leading to even larger norms. In
other words, the optimal value is unchanged whether we consider A fixed or let
it depend on df and dg.

The best asymmetric construction is the classical SNFS. We first an-
alyze the case where df and dg are distinct. Let us assume df > dg. We first
remark that subject to constraint (2), Expression (3) is minimized by taking
‖f‖ as small as possible (i.e. log2 ‖f‖ = 0) and log2 ‖g‖ = n/df . This yields an
optimal norm size equal to n/df + (df + dg) log2A. It follows that given df , we
should choose dg to be minimal, which leads us precisely to the classical case, the
example construction listed in the third row of Table 1. The optimal df yields
an optimal norm size equal to 2

√
n log2A.

An all-balanced construction. In many situations, the optimal value is ob-
tained by balancing each quantity as much as possible. Unfortunately, this is
suboptimal in our case. If df = dg, Expression (3) becomes n/df + 2df log2A.
Choosing the best possible value for df , we obtain 2

√
2n log2A. This is much

worse than in the classical construction and in fact, pushing the analysis to its
end would lead to a GNFS complexity with a (64/9)1/3 exponent.

More general constructions. Unfortunately, it seems to be impossible to
combine the SNFS construction with Coppersmith’s multiple number field strat-
egy [12,35,11] and obtain a complexity with an exponent smaller than (32/9)1/3.
Any linear combination of f and g will lead to a polynomial having both high
degree and large coefficients, which must be avoided to achieve SNFS complexity.

In principle, one could also perform an analysis allowing skewed polynomi-
als, where the ratio between two consecutive coefficients is roughly a constant
different from 1. This general analysis would require still more parameters than
the one we did, so we skip the details, since we did not find a situation where
this could lead to a good asymptotic complexity.

4.2 Hiding the special form

The conclusion of the previous discussion is that the best form for a pair of
SNFS polynomials is still the same as the one considered by Gordon more than
20 years ago. His discussion about how to hide them is still valid. We recall it
here for completeness.

The goal is to find a prime p, and possibly a factor q of p − 1, together
with an SNFS pair of polynomials, such that from the knowledge of p (and

9

q) it is harder to guess the SNFS pair of polynomials than to run a discrete
logarithm computation with the general NFS algorithm, or using Pollard Rho
in the subgroup of order q.

We enumerate requirements on the construction below.

The polynomial f must be chosen within a large enough set. If f is
known, then its roots modulo p can be computed. With the Extended Euclidean
Algorithm, it can be efficiently checked whether one of them is equal to a small
rational number modulo p. If this is the case, then the numerator and the de-
nominator are (up to sign) the coefficients of g. Therefore, if f has been chosen
among a small set, an exhaustive search over the roots modulo p of all these
polynomials will reveal the hidden SNFS pair of polynomials. Thus we must
choose f from a large enough set so that this exhaustive search takes at least as
much time as a direct discrete logarithm computation.

The two coefficients of g must be large. If g is a monic polynomial g =
x − g0, then, since p = f(g0), the most significant bits of p depend only on g0
and the leading coefficient fd of f . In that case, recovering the hidden SNFS
polynomials reduces to an exhaustive search on the leading coefficient of f : we
can use the LLL algorithm to minimize the other coefficients of f by writing a
multiple of p as a sum of powers of g0. Examining the least significant bits of p
shows that having a polynomial g with a constant term equal to 1 is equally bad.
More generally, having one of the coefficients of g belonging to a small set also
leads to a faster exhaustive search than if both are large. In the following, we
will therefore always consider linear polynomials g for which the two coefficients
have similar sizes; compared to using a monic g, this has only a marginal impact
on the effectiveness of the SNFS efficiency in our context.

Attempts to unveil the trapdoor Heidi does not want her trapdoor to be
unveiled, as she would not be able to plausibly deny wrongdoing. It is therefore
highly important that Heidi convinces herself that the criteria above are sufficient
for the trapdoor to be well hidden. We tried to improve on the method mentioned
above that adapts to monic g. In particular, we tried to take advantage of the
possibility that the leading coefficient of f might be divisible by small primes.
This did not lead to a better method.

4.3 Adapting the prime to the hider’s needs

Algorithm to build a DSA-like prime. In Algorithm 1, we recall the method
of Gordon to construct hidden SNFS parameters in a DSA setting. The general
idea is to start from the polynomial f and the prime q, then derive a polynomial
g such that q divides the resultant of f and g minus 1, and only at the end
check if this resultant is a prime p. This avoids the costly factoring of p− 1 that
would be needed to check whether there is a factor of appropriate size to play

10

the role of q. Our version is slightly more general than Gordon’s, since we allow
signed coefficients for the polynomials. As a consequence, we do not ensure the
sign of the resultant, so that the condition q | p − 1 can fail. This explains the
additional check in Step 8. The size of the coefficients of f are also adjusted
so that an exhaustive search on all the polynomials will take more or less the
same time as the Pollard Rho algorithm in the subgroup of order q, namely 2sq/2

where sq is the bit-length of q.
In Step 6, it is implicitly assumed that 2sq is smaller than 2sp/d/‖f‖, that

is sq < sp/d − sq/2(d + 1). This condition will be further discussed in the next
subsection. We note however that if it fails to hold by only a few bits, it is possible
to run the algorithm and hope that the root r produced at Step 5 will be small
enough. We can expect that r will behave like a uniformly random element
modulo q, so that the probability that this event occurs can be estimated.

Input : The bit-sizes sp and sq for p and q; the degree d of f .
Output: HSNFS parameters f , g, p, q.

1 Pick a random irreducible polynomial f , with ‖f‖ ≈ 2sq/2(d+1);
2 Pick a random prime q of sq bits;
3 Pick a random integer g0 ≈ 2sp/d/‖f‖;
4 Consider the polynomial G1(g1) = Resx(f(x), g1x+ g0)− 1 of degree d in g1;
5 Pick a root r of G1 modulo q; if none exists go back to Step 1;
6 Add a random multiple of q to r to get an integer g1 of size ≈ 2sp/d/‖f‖;
7 Let p = |Resx(f(x), g1x+ g0)|;
8 If p has not exactly sp bits or if p is not prime or if q does not divide p− 1, then

go back to Step 1;
9 Return f , g, p, q.

Algorithm 1: Gordon’s hidden SNFS construction algorithm

Selecting good f-polynomials. In Algorithm 1, in the case of failure at Step 5
or Step 8, we could restart only at Step 2, in order to keep using the same f -
polynomial for a while. More generally, the polynomial f could be given as input
of the algorithm, opening the opportunity for the hider to use a polynomial f
with nice algebraic properties that accelerate the NFS algorithm. The so-called
Murphy-α value [37, §3.2] has a measurable influence on the probability of the
norms to be smooth. A norm of s bits is expected to have a smoothness proba-
bility similar to the one of a random integer of s+ α

log 2 bits. A negative α-value
is therefore helping the relation collection.

Experimentally, for an irreducible polynomial of fixed degree over Z with
coefficients uniformly distributed in an interval, the α-value follows a centered
normal law with standard deviation around 0.94 (measured empirically for degree
6). From this, it is possible to estimate the expected minimum α-value after
trying N polynomials: we get αmin ∼ −0.94

√
2 logN .

11

In a set of 280 candidates for the f -polynomial, we can therefore expect to
find one with an α-value around −10. But it is a priori very hard to find this
polynomial, and if it were easy, then it would not be a good idea for the hider
to choose it, because then it would not be hidden anymore. A compromise is
for the hider to try a small proportion of the candidates and keep the one with
the best α. Since checking the α-value of a polynomial is not really faster than
checking its roots modulo p, the attacker gains no advantage by knowing that f
has a smaller value than average. For instance, after trying 220 polynomials, one
can expect to find an f that has an α-value of −5 which gives a nice speed-up
for the NFS without compromising the hidden property.

Apart from the α-value, another well-known feature of polynomials that in-
fluences the smoothness properties is the number of real roots: more real roots
translates into finding relations more easily. We did not take this into account
in our proof of concept experiments, but this could certainly also be used as a
criterion to select f .

4.4 Size considerations

Algorithm 1 does not work if the size sq of the subgroup order q is too large
compared to the size of the coefficients of the g-polynomials that are optimal for
the size of p. The condition is

sq < sp/d− sq/2(d+ 1),

where d is the optimal degree of the f -polynomial for running SNFS on a prime
of sp bits. We can plug in the asymptotic formula for d in terms of sp: it is
proportional to (sp/ log(sp))

1/3, leading to a condition of the form

sq < c(sp)
2/3(log(sp))

1/3 = log(Lp(2/3, c)),

for a constant c. Now, sq will be chosen so that the running time of Pollard
Rho in the subgroup of order q matches the running time of the NFS algorithm
modulo p. The former grows like 2sq/2, while the latter grows like Lp(1/3, c′) ≈
2s

1/3
p . Therefore, asymptotically, it makes sense to have sq close to proportional

to s1/3p , and the condition for Algorithm 1 to work is easily satisfied.
Back in 1992, when Gordon studied the question, the complexity analysis of

the Number Field Sieve was not as well understood, and the available computing
power was far less than today. At that time, sq = 160 and sp = 512 were the
proposed parameter sizes for DSA, leading to difficulties satisfying the condition
of Algorithm 1 unless a suboptimal d was chosen. Nowadays, popular DSA pa-
rameters are sp = 1024 and sq = 160, leaving much room for the condition to
hold, and it is possible to choose d = 6, which is optimal for our NFS implemen-
tation. Therefore, the relevant parameters for today are beyond the point where
Gordon’s algorithm would need to be run with suboptimal parameters.

12

4.5 Reassessing the hiding problem

The prudent conclusions of cryptographers in the 1990’s was that it might be
difficult to put a useful and hard to detect trapdoor in a DSA prime. For example
in [15], Lenstra concludes that “this kind of trap can be detected”, based on the
trap design from [31]. It is true that whether for Lenstra’s trap method in [31],
or Gordon’s trap in Algorithm 1, f had to be chosen within a too-small set given
the state of the art with NFS back in 1992. This stance is also found in reference
books from the time, such as the Handbook of Applied Cryptography by Menezes,
van Oorschot, and Vanstone [36, note §8.4] which remain influential today.

This is no longer true. It is now clearly possible to hide an SNFS pair of
polynomials for a DSA prime p of 1024 bits with a 160-bit subgroup. It remains
to show that this SNFS computation is indeed feasible, even with moderate
academic computing resources.

5 Computation of a 1024-bit SNFS DLP

In addition to the computational details, we describe the algorithmic improve-
ments and parameter choices that played a key role in the computation.

sieving linear algebra individual log
sequence generator solution

cores ≈3000 2056 576 2056 500–352
CPU time (1 core) 240 years 123 years 13 years 9 years 10 days

calendar time 1 month 1 month 80 minutes

Table 2. Our 1024-bit hidden SNFS discrete log computation took around two months
of calendar time to complete. We used a variety of resources for sieving, so the total
number of cores in use varied over time.

5.1 Selecting a target

We ran Algorithm 1 to find a hidden SNFS prime p of 1024 bits such that Fp
has a subgroup of prime order q of 160 bits. For these parameters, a polynomial
f of degree d = 6 is the most appropriate. After a small search among the
polynomials with (signed) coefficients of up to 11 bits, we selected

f = 1155x6 + 1090x5 + 440x4 + 531x3 − 348x2 − 223x− 1385,

for which the α-value is about −5.0. The set of all polynomials with this degree
that satisfy the coefficient bound is a bit larger than 280, which is the expected
cost of Pollard Rho modulo q. We note that the cost of testing a polynomial f

13

(a root finding modulo p and the rational reconstruction of these roots) is much
higher than one step of Pollard Rho (one multiplication modulo p), so this is a
conservative setting.

We then ran the rest of Algorithm 1 exactly as it is described. The resulting
public parameters are

p = 163323987240443679101402070093049155030989439806917519173580070791569
227728932850358498862854399351423733697660534800194492724828721314980
248259450358792069235991826588944200440687094136669506349093691768902
440555341493237296555254247379422702221515929837629813600812082006124
038089463610239236157651252180491

q = 1120320311183071261988433674300182306029096710473 ,

and the trapdoor polynomial pair is

f = 1155x6 + 1090x5 + 440x4 + 531x3 − 348x2 − 223x− 1385
g = 567162312818120432489991568785626986771201829237408x
−663612177378148694314176730818181556491705934826717 .

This computation took 12 core-hours, mostly spent in selecting a polynomial
f with a good α-value. No effort was made to optimize this step.

5.2 Choosing parameters for the sieving step

The sieving step (also known as relation collection) consists of finding many
(a, b)-pairs such that the two norms Res(f(x), a− bx) and Res(g(x), a− bx) are
simultaneously smooth.

We use the special-q sieving strategy, where we concentrate the search in the
positions where we know in advance that one of the two norms will be divisible
by a large prime: the special q. For the general number field sieve, it is always the
case that one norm is much larger than the other, so it makes sense to choose the
special q on the corresponding side. In our case, the norms have almost the same
size (about 200 bits each), so there is no obvious choice. Therefore, we decided
to sieve with special q’s on both sides. As a consequence, the largest special q
that we had to consider were 1 or 2 bits smaller than if we had allowed special
q’s to be only on one side; the norms were accordingly a bit smaller.

The general strategy used for a given special q is classical: among a vast
quantity of candidates, we mark those that are divisible by primes up to a given
sieving bound using a sieve à la Eratosthenes; then the most promising candidates
are further scrutinized using the ECM method, trying to extract primes up to
the smoothness bound B. The criterion for selecting those promising candidates
is best expressed as the number of times the smoothness bound is allowed for
the remaining part of the norms once the sieved primes have been removed. This
is usually referred to as the number of large primes allowed on a given side.

For the 1024-bit computation, we used the following parameters. On the
rational side, we sieved all the prime special q in the 150M–1.50G range (that
is, with 1.5 · 108 < q < 1.5 · 109), and on the algebraic side, we sieved special-q

14

prime ideals in the range 150M–1.56G. The difference between the two is due to
the fact that we used two different clusters for this step, and when we stopped
sieving, one was slightly ahead of the other.

For each special q, the number of (a, b)-pairs considered was about 231. This
number includes the pairs where both a and b are even, but almost no time is
spent on those, since they cannot yield a valid relation.

All primes on both sides up to 150M were extracted using sieving, and the
remaining primes up to the smoothness bound B = 231 were extracted using
ECM. On the side where the special q was placed, we allowed 2 large primes,
while 3 large primes were allowed on the other side.

This relation collection step can be parallelized almost infinitely with no
overhead since each special q is handled completely separately from the others.
We used a variety of computational resources for the sieving, and in general
took advantage of hyperthreading and in addition oversubscribed our virtual
cores with multiple threads. Aggregating reported CPU time for virtual cores
over all of the machine types we used, we spent 5.08 · 109 CPU seconds, or 161
CPU years sieving the rational side, and 5.03 · 109 CPU seconds, or 159 CPU
years sieving the algebraic side. In order to obtain a more systematic estimate
of the CPU effort dedicated to sieving without these confounding factors, we
ran sampling experiments on a machine with 2 Intel Xeon E5-2650 processors
running at 2.00 Ghz with 16 physical cores in total. From these samples, we
estimate that sieving would have taken 15 years on this machine, or 240 core-
years. We spent about one month of calendar time on sieving.

The total number of collected relations was 520M relations: 274M from the
rational side and 246M from the algebraic side. Among them, 249M were unique,
involving 201M distinct prime ideals. After filtering these relations, we obtained
a matrix with 28M rows and columns, with 200 non-zero entries per row on
average.

Before entering the linear algebra step, we calculated the dense block of “Schi-
rokauer maps”, which are q-adic characters introduced by Schirokauer in [46].
These consist, for each matrix row, in 3 full-size integers modulo q (the number
3 is here the unit rank of the number field defined by our polynomial f).

5.3 Linear algebra

The linear algebra problem to be solved can be viewed in several ways. One is to
consider a square matrix of size N×N , whose left-hand sideM of size N×(N−r)
is the matrix produced by the filtering task, while the right block S of size N ×r
is made of dense Schirokauer maps. Recent work [24] has coined the term “nearly
sparse” for such matrices. We seek a non-trivial element of the right nullspace
of the square matrix (M‖S).5 This approach has the drawback that an iterative
5 The integer factorization case, in contrast, has q = 2, and requires an element of the
left nullspace. The latter fact allows for a two-stage algorithm selecting first many
solutions to xM = 0, which can then be recombined to satisfy x(M‖S) = 0. No such
approach works for the right nullspace.

15

linear algebra algorithm based on the matrix (M‖S) is hampered by the weight
of the block S, which contributes to each matrix-times-vector product.

Shirokauer maps serve as initialization vectors An alternative method,
originally proposed by Coppersmith [13, §8] alongside the introduction of the
block Wiedemann algorithm, is to use this algorithm to constructively write
a zero element in the sum of the column spaces of M and S. In this case,
the iterative algorithm is run on the square matrix M0 = (M‖0), which is of
considerably lower weight than (M‖S). More precisely, the block Wiedemann
algorithm, with two blocking factors which are integers m and n, achieves this
by proceeding through the following steps. The blocking factor n is chosen so
that n ≥ r, and we let D(t) be the diagonal n × n matrix with coefficients t (r
times) and 1 (n− r times).

Initialization. Pick blocks of projection vectors x ∈ FN×mq and starting vectors
y ∈ FN×nq . The block x is typically chosen of very low weight, while we set
y = (S‖R), with R a random block in FN×(n−r)q .

Sequence. Compute the sequence of matrices ai = txM i
0y, for 0 ≤ i < L, with

L = dN/me+ dN/ne+ dm/n+ n/me.
Linear generator. Let A(t) =

∑
i ait

i. Let A′(t) = A(t)D(t) div t. Compute
an n×n matrix of polynomials F (t) such that A′(t)F (t) is a matrix of poly-
nomials of degree less than degF , plus terms of degree above L (see [13,52]).
We typically have degF ≈ N/n.

Solution. Consider one column of degree d of F (t). Write the corresponding
column of D(t)F (t) as ctd+1 + f0t

d + · · · + fd with c, fi ∈ Fn×1q . With high
probability, we have c 6= 0 and w = (S‖0)c +M0

∑
i≥0M

i
0yfi = 0. Rewrite

that as Mu+ Sv = 0, where u and v are:

u = first N − r coefficients of
∑
i≥0

M i
0yfi,

v = first r coefficients of c

This readily provides a solution to the problem.

Solving the linear system with (1 + o(1))N SpMVs The most expensive
steps above are the sequence and solution steps. The dominating operation is
the sparse matrix-times-vector operation (SpMV), which multiplies M0 by a
column vector in FN×1q . It is easy to see that the sequence step can be run as n
independent computations, each requiring L SpMV operations (therefore nL =
(1 + n/m)N in total): matrices ai are computed piecewise, column by column.
Once all these computations are completed, the fragments of the matrices ai
need to be collated to a single place in order to run the linear generator step.

It is tempting to regard the solution step in a directly similar way (as was
done, e.g., in the context of the recent 768-bit DLP computation [28]). However,
as was pointed out very early on by Kaltofen [26, Step C3, p. 785, and corollary

16

to Theorem 7] yet seems to have been overlooked since, one should proceed
differently. Assume that some of the vectors M i

0y from the sequence step have
been kept as regular checkpoints (an obvious choice isMKj

0 y for some well chosen
checkpoint period K). For an arbitrary j, we compute

∑i=K−1
i=0 M i

0M
Kj
0 yfKj+i

with a Horner evaluation scheme which costs K SpMV operations only. These
expressions together add up to u, and can be computed independently (using
as many independent tasks as K allows). This adds up to degF ≈ N/n SpMV
operations.

In total, this evaluation strategy yields a cost of (1 + n/m + 1/n)N SpMV
operations (see [26, Theorem 7]), which can be freely parallelized n-fold for the
sequence step, and possibly much more for the solution step. It is important
to note that as blocking factors m and n grow with m � n, this brings the
total cost close to N SpMV operations, a count which to our knowledge beats
all other exact sparse linear algebra algorithms. The only limiting point to that
is the linear generator step, whose cost depends roughly linearly on (m + n).
Thanks to the use of asymptotically fast algorithms [7,52,20], this step takes
comparatively little time.

Linear algebra for 1024-bit SNFS DLP The matrix M0 had 28 million
rows and columns, and 200 non-zero coefficients per row on average. We used
the linear algebra code in CADO-NFS [51]. We chose blocking factors m = 24,
n = 12. Consequently, a total of 44 million SpMV operations were needed. We ran
these in two computing facilities in the respective research labs of the authors,
with a roughly even split. For the sequence step, each of the 12 independent
computations used between 4 and 8 nodes, each with up to 44 physical cores. The
nodes we used were interconnected with various fabrics, including Mellanox 56
Gbps Infiniband FDR and 40 Gbps Cisco UCS Interconnects. The total time for
the sequence step was about 123 core-years. The linear generator step was run on
36 nodes, and cost 13 core-years. The solution step was split in 48 = degF=2400000

K=50000
independent tasks. Each used a fairly small number of nodes (typically one or
two), which allowed us to minimize the communication cost induced by the
parallelization. Despite this, each iteration was 33% more expensive than the
ones for the sequence step, because of the extra cost of the term MKj

0 yfKj+i
which is to be added at each step. The total time for the solution step was 9
core-years, which brings the total linear algebra cost for this computation below
150 core-years. In total we spent about one month of calendar time on linear
algebra. Table 4 in Appendix B gives more details of the iteration times for the
different machine architectures present in our clusters.

After this step and propagating the knowledge to relations that were elimi-
nated during the filtering step we obtained the logarithm of 198M elements, or
94.5% of the prime ideals less than 231.

5.4 Individual logarithms

In our scenario where a malicious party has generated a trapdoored prime with
a goal of breaking many discrete logarithms in the corresponding group, it is

17

interesting to give details on the individual logarithm step, which is often just
quickly mentioned as an “easy” step (with the notable exception of [2] where it
is at the heart of the attack).

From now on, we denote by z the element of the group G for which we
want the discrete logarithm (modulo q). The database of discrete logarithms
computed thus far is with respect to an a priori unknown generator. In order to
obtain the logarithm of z with respect to a generator specified by the protocol
being attacked, it is typical that two individual logarithm queries are necessary.
This aspect will not be discussed further.

The individual logarithm step can itself be decomposed in two sub-steps:

Initialization Find an exponent e such that z′ = ze ≡ u/v mod p, where u
and v are Binit-smooth numbers of size about half of the size of p. Note
that Binit has to be much larger than B to get a reasonable smoothness
probability.

Descent For every factor of u or v that is larger than the smoothness bound,
treat it as a special-q to rewrite its discrete logarithm in terms of smaller
elements, and continue recursively until it is rewritten in terms of elements
of known logarithm.

We emphasize that the Initialization step does not use the polynomials se-
lected for the NFS computation, and therefore, it does not take advantage of
the SNFS nature of the prime p. For the Descent step, on the other hand, this
makes heavy use of the polynomials, and here knowing the hidden polynomials
corresponding to p helps significantly.

Asymptotic complexities In terms of asymptotic complexity, the Initializa-
tion step is more costly than the Descent step, and in a theoretical analysis,
the bound Binit is chosen in order to minimize the expected time of the Initial-
ization step only. The early-abort analysis of Barbulescu [5, Chapter 4] gives
Bi = Lp(2/3, 0.811), for a running time of Lp(1/3, 1.232).

For the Descent step, the complexity analysis can be found in two different
flavours in the literature: either we use polynomials of degree 1 (the polynomial
a − bx corresponding to an (a, b)-pair) like in [48], or polynomials of possibly
higher degrees, depending on where we are in the descent tree similarly to [17].

Using higher degree polynomials, we get a complexity of Lp(1/3, 0.763), where
the last steps of the descent are the most costly. Sticking with polynomials of de-
gree 1, the first steps become more difficult and the complexity is Lp(1/3, 1.117).
Both are lower than the complexity of the Initialization step.

We give further details on the complexity analysis of individual logarithms
in Appendix A.

Practical approach This theoretical behaviour gives only a vague indication
of the situation for our practical setting. For the initialization step, we follow the
general idea of Joux-Lercier [23]. For a random integer e, we compute z′ ≡ ze

mod p, and take two consecutive values in the extended Euclidean algorithm to

18

compute u0, v0, u1, v1 of size about √p such that z′ ≡ u0

v0
≡ u1

v1
mod p. We

then look for two integers a and b such that u = au0 + bu1 and v = av0 + bv1
are both smooth. Since this is an unlikely event, and testing for smoothness is
very costly, we do a 3-step filtering strategy.

First, we sieve on the set of small (a, b)-pairs, to detect pairs for which the
corresponding u and v are divisible by many small primes. For this, we re-use
the sieving code that helps collecting relations. After this first step, we keep only
(a, b)-pairs for which the remaining unfactored part is less than a given threshold
on each side.

Then, many ECM factorizations are run on each remaining cofactor; this
is tuned so that we expect most of the prime factors up to a given bit size to
be extracted. After this step, we again keep only the candidates for which the
remaining unfactored parts are smaller than another threshold. The cofactors of
the surviving pairs are then fully factored using MPQS.

At each stage, if a prime factor larger than the smoothness bound B is found,
we naturally abort the computation.

This practical strategy keeps the general spirit of filters used in the theoretical
analysis of Barbulescu which relies only on ECM, but we found that combined
with sieving and MPQS, it is much faster.

Parameters for the 1024-bit SNFS computation For the 1024-bit com-
putation, we used a bound Binit = 135 bits for this Initialization step. After
applying the Joux-Lercier trick, we first sieved to extract primes up to 231, and
we kept candidates for which the unfactored parts are both less than 365 bits.
Then we used GMP-ECM with 600 curves and B1 = 500, 000, hoping to remove
most of the prime factors of 100 bits and less. After this second step, we kept
only the candidates for which the unfactored parts are both less than 260 bits.

For the Descent step, we used only polynomials of degree 1. Polynomials of
degree 2 do not seem to yield smaller norms even for the largest 135-bit primes
to be descended. The depth of the recursion was rarely more than 7. A typical
example of a sequence of degrees encountered while following the tree from the
top to a leave is

135→ 90→ 65→ 42→ 33→ 31,

but this is of course different if the ideals along the path are on the rational or
the algebraic side.

Both the Initialization and the Descent steps can be heavily parallelized.
The expected CPU-time for computing an individual logarithm is a few days
on a typical core, distributed more or less equally between the two steps. Using
parallelization, we managed to get a result in 80 minutes of wall-clock time:
the initialization took around 20 minutes parallelized across 500 cores, and the
descent took 60 minutes parallelized across 352 cores. (We used 44 cores for each
large special q to be descended.)

As an example, we computed the discrete logarithm of

z = dπ10307e = 3141592653 · · · 7245871,

19

taking 2 as a generator. More precisely, we are talking about their images in
the subfield of order q obtained by raising 2 and z to the power (p − 1)/q. We
obtained:

log z/ log 2 ≡ 409559101360774669359443808489645704082239513256 mod q,

which can be easily checked to be the correct answer.

6 Discussion

6.1 Comparison with GNFS DLP for various sizes

The recently reported GNFS 768-bit discrete logarithm computation [28] took
about 5000 core-years. It is tempting to directly compare this number to the
400 core-years that we spent in our experiments. As a rule of thumb, one would
expect the 768-bit GNFS to be about a factor of 10 more difficult than a 1024-
bit SNFS computation, and this appears to hold in the numbers we report.
However, we note that first, the software used in both experiments are different
(the CADO-NFS sieving implementation is slower than Kleinjung’s), and second,
the GNFS-768 computation was done with a safe prime, while we used a DSA
prime, thus saving a factor of 6 in the linear algebra running time.

It is possible to get another hint for the comparison by considering the typical
sizes of the norms in both contexts. For GNFS-768, they appear to be roughly
20 bits larger (in total) than for SNFS-1024. Taking all correcting factors into
account, like the α-values, the (un-)balance of the norms, and the special-q, this
translates to roughly a factor of 8 in the smoothness probability, thus more or
less confirming the ratio of running times observed in practice.

Asymptotically, the difference of complexities between GNFS and SNFS
(namely the factor 21/3 in the exponent) means that we would expect to ob-
tain similar running times when SNFS is run on an input that is twice the
size of the one given to GNFS. However, key sizes relevant to current practice
and practical experiments are still too small for these asymptotic bounds to be
accurate.

To get concrete estimates for these smaller key sizes, we can compare the size
of the norms and estimate that an 1152-bit SNFS computation would correspond
to the same amount of time as a GNFS-768. For an SNFS of 2048 bits, the
equivalent would be around a GNFS of 1340 bits. And finally, for an SNFS of
4096 bits, the equivalent would be around a GNFS of 2500 bits. Of course, for
such large sizes these are more educated guesses than precise estimates.

6.2 Non-hidden SNFS primes in real use

We have found multiple implementations using non-hidden SNFS primes in the
real world. 150 hosts used the 512-bit prime 2512−38117 for export-grade Diffie-
Hellman key exchange in a full IPv4 HTTPS scan performed by Adrian et al. [2]

20

in March 2015. Performing the full NFS discrete log computation for this prime
took about 215 minutes on 1288 cores, with 8 minutes spent on the sieving stage,
145 minutes spent on linear algebra, and the remaining time spent filtering rela-
tions and reconstructing logarithms. In September 2016, 134 hosts were observed
still using this prime.

We also found 170 hosts using the 1024-bit prime 21024 − 1093337 for non-
export TLS Diffie-Hellman key exchange in scans performed by Adrian et al. In
September 2016, 106 hosts were still using this prime. We estimate that per-
forming a SNFS-DL computation for this prime would require about 3 times the
amount of effort for the sieving step as the 1024-bit SNFS computation that we
performed. This difference is mostly due to the α-value of the f -polynomial that
can not easily be made small. The linear algebra step will suffer at the very least
a 7-fold slowdown. Indeed, since this prime is safe, the linear algebra must be
performed modulo (p − 1)/2, which is more expensive than the 160-bit linear
algebra we used for a DSA prime in our computation. Furthermore, since the
smoothness probabilities are worse, we expect also the matrix to be a bit larger,
and the linear algebra step cost to grow accordingly.

The LibTomCrypt library [14], which is widely distributed and provides pub-
lic domain implementations of a number of cryptographic algorithms, includes
several hard-coded choices for Diffie-Hellman groups ranging in size from 768 to
4096 bits. Each of the primes has a special form amenable to the SNFS. The
768-bit strength (actually a 784-bit prime) is 2784−228+1027679. We performed
a SNFS discrete log for this prime. On around a thousand cores, we spent 10
calendar days sieving and 13 calendar days on linear algebra. The justification
for the special-form primes appears to be the diminished radix form suggested
by Lim and Lee [34], which they suggest for decreasing the cost of modular re-
duction. We examined the TLS and SSH scan datasets collected by Adrian et
al. [2] and did not find these primes in use for either protocol.

We also carried out a perfunctory search for poorly hidden SNFS primes
among public key datasets, based on the rather straightforward strategy in §4.2,
hoping for monic g, and f such that 2 ≤ d ≤ 9 and |fd| ≤ 1024. We carried
out this search for the 11,658 distinct SSH group exchange primes, 68,126 dis-
tinct TLS ephemeral Diffie-Hellman primes, and 2,038,232 distinct El Gamal
and DSA primes from a dump of the PGP public key database. This search
rediscovered the special-form TLS primes described above, but did not find any
other poorly hidden primes susceptible to SNFS. We cannot rule out the exis-
tence of trapdoored primes using this method, but if hidden SNFS primes are
in use the designers must have followed Gordon’s advice.

6.3 Lessons

It is well known among the cryptographic community that 1024-bit primes are
insufficient for cryptosystems based on the hardness of discrete logarithms. Such
primes should have been removed from use years ago. NIST recommended tran-
sitioning away from 1024-bit key sizes for DSA, RSA, and Diffie-Hellman in

21

2010 [6]. Unfortunately, such key sizes remain in wide use in practice. Our re-
sults are yet another reminder of the risk, and we show this dramatically in the
case of primes which lack verifiable randomness. The discrete logarithm com-
putation for our backdoored prime was only feasible because of the 1024-bit
size.

The asymptotic running time estimates suggest that a SNFS-based trapdoor
for a 2048-bit key would be roughly equivalent to a GNFS computation for a
1340-bit key. We estimate that such a computation is about 16 million times
harder than the 1024-bit computation that we performed, or about 6.4 · 109
core-years. Such a computation is likely still out of range of even the most so-
phisticated adversaries in the near future, but is well below the security guaran-
tees that a 2048-bit key should provide. Since 2048-bit keys are likely to remain
in wide usage for many years, standardized primes should be published together
with their seeds.

In the 1990s, key sizes of interest were largely limited to 512 or 1024 bits,
for which a SNFS computation was already known to be feasible in the near
future. Both from this perspective, and from our more modern one, dismissing
the risk of trapdoored primes in real usage appears to have been a mistake, as
the apparent difficulties encountered by the trapdoor designer in 1992 turn out
to be easily circumvented. A more conservative design decision for FIPS 186
would have required mandatory seed publication instead of making it optional.
As a result, there are opaque, standardized 1024-bit and 2048-bit primes in wide
use today that cannot be properly verified.

Acknowledgements

We are grateful to Paul Zimmermann for numerous discussions all along this
work. Rafi Rubin performed invaluable system administration for the University
of Pennsylvania cluster. Shaanan Cohney and Luke Valenta contributed to siev-
ing for the 784-bit SNFS-DL computation. Part of the experiments presented in
this paper were carried out using the Grid’5000 testbed, supported by a scientific
interest group hosted by Inria and including CNRS, RENATER and several Uni-
versities as well as other organizations. We are grateful to Cisco for donating the
Cisco UCS hardware that makes up most of the University of Pennsylvania clus-
ter. Ian Goldberg donated time on the CrySP RIPPLE Facility at the University
of Waterloo and Daniel J. Bernstein donated time on the Saber cluster at TU
Eindhoven for the 784-bit SNFS-DL computation. This work was supported by
the U.S. National Science foundation under grants CNS-1513671, CNS-1505799,
and CNS-1408734, and a gift from Cisco.

References

1. — (author redacted). Eurocrypt ’92 reviewed. Cryptolog, March 1994. https:
//www.nsa.gov/news-features/declassified-documents/cryptologs/.

22

https://www.nsa.gov/news-features/declassified-documents/cryptologs/
https://www.nsa.gov/news-features/declassified-documents/cryptologs/

2. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Z.
Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-Hellman
fails in practice. In I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15: 22nd
Conference on Computer and Communications Security, pages 5–17, Denver, CO,
USA, Oct. 12–16, 2015. ACM Press.

3. K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik. A kilobit Special
Number Field Sieve factorization. In K. Kurosawa, editor, Advances in Cryptology
– ASIACRYPT 2007, pages 1–12. Springer Berlin Heidelberg, 2007.

4. J. Ball, J. Borger, and G. Greenwald. Revealed: how US and UK spy agencies defeat
internet privacy and security. The Guardian, Sep. 5 2013. Online: https://www.
theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security.

5. R. Barbulescu. Algorithmes de logarithmes discrets dans les corps finis. PhD thesis,
Université de Lorraine, France, 2013.

6. E. Barker and A. Roginsky. Transitions: Recommendation for transitioning the use
of cryptographic algorithms and key lengths. Technical report, National Institute of
Standards and Technology, 2011. http://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-131a.pdf.

7. B. Beckerman and G. Labahn. A uniform approach for the fast computation of
matrix-type Padé approximants. SIAM J. Matrix Anal. Appl., 15(3):804–823, Jul.
1994.

8. D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, E. Lambooij, T. Lange,
R. Niederhagen, and C. van Vredendaal. How to manipulate curve standards:
A white paper for the black hat. In L. Chen and S. Matsuo, editors, Security
Standardisation Research - Second International Conference, SSR 2015, volume
9497 of Lecture Notes in Comput. Sci., pages 109–139. Springer, 2015.

9. S. Checkoway, M. Fredrikson, R. Niederhagen, A. Everspaugh, M. Green, T. Lange,
T. Ristenpart, D. J. Bernstein, J. Maskiewicz, and H. Shacham. On the practical
exploitability of Dual EC in TLS implementations. In K. Fu, editor, Proceedings
of USENIX Security 2014, pages 319–35. USENIX, Aug. 2014.

10. S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney, M. Green,
N. Heninger, R.-P. Weinmann, E. Rescorla, and H. Shacham. A systematic analy-
sis of the juniper dual EC incident. In E. R. Weippl, S. Katzenbeisser, C. Kruegel,
A. C. Myers, and S. Halevi, editors, ACM CCS 16: 23rd Conference on Computer
and Communications Security, pages 468–479, Vienna, Austria, Oct. 24–28, 2016.
ACM Press.

11. A. Commeine and I. Semaev. An algorithm to solve the discrete logarithm problem
with the number field sieve. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
editors, PKC 2006, volume 3958 of Lecture Notes in Comput. Sci., pages 174–190.
Springer, Heidelberg, 2006.

12. D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6(3):169–180, 1993.

13. D. Coppersmith. Solving linear equations over GF(2) via block Wiedemann algo-
rithm. Math. Comp., 62(205):333–350, Jan. 1994.

14. T. S. Denis. LibTomCrypt. http://www.libtom.net/.
15. Y. Desmedt, P. Landrock, A. K. Lenstra, K. S. McCurley, A. M. Odlyzko, R. A.

Rueppel, and M. E. Smid. The Eurocrypt ’92 controversial issue: Trapdoor primes
and moduli (panel). In R. A. Rueppel, editor, EUROCRYPT’92, volume 658 of
Lecture Notes in Comput. Sci., pages 194–199. Springer, Heidelberg, May 1993.

23

https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-131a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-131a.pdf
http://www.libtom.net/

16. Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search
engine backed by internet-wide scanning. In I. Ray, N. Li, and C. Kruegel:, editors,
ACM CCS 15: 22nd Conference on Computer and Communications Security, pages
542–553, Denver, CO, USA, Oct. 12–16, 2015. ACM Press.

17. A. Enge, P. Gaudry, and E. Thomé. An L(1/3) discrete logarithm algorithm for
low degree curves. Journal of Cryptology, 24(1):24–41, Jan. 2011.

18. M. Friedl, N. Provos, T. de Raadt, K. Steves, D. Miller, D. Tucker, J. McIntyre,
T. Rice, and B. Lindstrom. Announce: OpenSSH 7.0 released, august 2015. http:
//www.openssh.com/txt/release-7.0.

19. D. K. Gillmor. Negotiated FFDHE for TLS, august 2016. https://datatracker.
ietf.org/doc/rfc7919/.

20. P. Giorgi and R. Lebreton. Online order basis algorithm and its impact on the
block Wiedemann algorithm. In ISSAC ’14, pages 202–209. ACM, 2014.

21. D. M. Gordon. Designing and detecting trapdoors for discrete log cryptosystems.
In E. F. Brickell, editor, CRYPTO’92, volume 740 of Lecture Notes in Comput.
Sci., pages 66–75. Springer, Heidelberg, Aug. 16–20, 1993.

22. D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM
J. Discrete Math., 6(1):124–138, Feb. 1993.

23. A. Joux and R. Lercier. Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math.
Comp., 72(242):953–967, Apr. 2003.

24. A. Joux and C. Pierrot. Nearly sparse linear algebra and application to discrete
logarithms computations. In A. Canteaut, G. Effinger, S. Huczynska, D. Panario,
and L. Storme, editors, Contemporary Developments in Finite Fields and Applica-
tions, pages 119–144. World Scientific Publishing Company, 2016.

25. Juniper Networks. 2015-12 Out of Cycle Security Bulletin: ScreenOS: Multiple
Security issues with ScreenOS (CVE-2015-7755, CVE-2015-7756), Dec. 2015.

26. E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel
solution of sparse linear systems. Math. Comp., 64(210):777–806, Apr. 1995.

27. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. J. J. te Riele, A. Timofeev, and
P. Zimmermann. Factorization of a 768-bit RSA modulus. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of Lecture Notes in Comput. Sci., pages 333–350.
Springer, Heidelberg, Aug. 15–19, 2010.

28. T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke. Discrete
logarithms in GF(p) — 768 bits. E-mail on the NMBRTHRY mailing list, June
16, 2016.

29. O. M. Kolkman, W. M. Mekking, and R. M. Gieben. DNSSEC Operational Prac-
tices, Version 2. RFC 6781, Internet Society, December 2012.

30. J. Larson, N. Perlroth, and S. Shane. Revealed: The NSA’s se-
cret campaign to crack, undermine internet security. ProPub-
lica, Sep. 5 2013. Online: https://www.propublica.org/article/
the-nsas-secret-campaign-to-crack-undermine-internet-encryption.

31. A. K. Lenstra. Constructing trapdoor primes for the proposed DSS. Technical
report, 1991. https://infoscience.epfl.ch/record/164559.

32. A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Math. Springer–Verlag, 1993.

33. M. Lepinski and S. Kent. Additional Diffie-Hellman groups for use with IETF
standards, 2010. http://ietf.org/rfc/rfc5114.txt.

34. C. H. Lim and P. J. Lee. Generating efficient primes for discrete log cryptosystems,
2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.8261.

24

http://www.openssh.com/txt/release-7.0
http://www.openssh.com/txt/release-7.0
https://datatracker.ietf.org/doc/rfc7919/
https://datatracker.ietf.org/doc/rfc7919/
https://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
https://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
https://infoscience.epfl.ch/record/164559
http://ietf.org/rfc/rfc5114.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.8261

35. D. V. Matyukhin. On asymptotic complexity of computing discrete logarithms
over GF (p). Discrete Mathematics and Applications, 13(1):27–50, 2003.

36. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

37. B. A. Murphy. Polynomial selection for the number field sieve integer factorisation
algorithm. Phd thesis, Australian National University, 1999.

38. National Institute of Standards and Technology. Supplemental ITL bulletin for
september 2013:NIST opens draft special publication 800-90A, recommendation for
random number generation using deterministic random bit generators, for review
and comment. http://csrc.nist.gov/publications/nistbul/itlbul2013_09_
supplemental.pdf.

39. National Institute of Standards and Technology. Examples for NIST 800–56A,
2006. http://csrc.nist.gov/groups/ST/toolkit/documents/KS_FFC_Prime.
pdf.

40. National Institute of Standards and Technology. Digital signature standard (DSS,
FIPS-186-4), 2013. Fourth revision.

41. National Institute of Standards and Technology. Recommendation for pair-wise
key establishment schemes using discrete logarithm cryptography, SP 800-56A,
2013. Second revision.

42. H. Orman. The Oakley key determination protocol. RFC 2412, Nov. 1998.
43. N. Perlroth, J. Larson, and S. Shane. N.S.A. able to foil basic safeguards of privacy

on Web. The New York Times, Sep. 5 2013. Online: http://www.nytimes.com/
2013/09/06/us/nsa-foils-much-internet-encryption.html.

44. C. Pomerance. Analysis and comparison of some integer factoring algorithms. In
J. Lenstra, H. W. and R. Tijdeman, editors, Computational methods in number
theory, volume 154 of Mathematical Center Tracts, pages 89–140. Mathematisch
Centrum, Amsterdam, 1982.

45. R. Rivest, M. Hellman, J. C. Anderson, and J. W. Lyons. Responses to NIST’s
proposal. CACM, 35(7):41–54, 1992.

46. O. Schirokauer. Discrete logarithms and local units. Philos. Trans. Roy. Soc.
London Ser. A, 345(1676):409–423, 1993.

47. M. Scott. Re: NIST announces set of Elliptic Curves. sci.crypt news-
group posting dated 1999/06/17, https://groups.google.com/forum/message/
raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ.

48. I. A. Semaev. Special prime numbers and discrete logs in finite prime fields. Math.
Comp., 71(237):363–377, 2002.

49. M. E. Smid and D. K. Branstad. Response to comments of the NIST proposed
digital signature standard. In E. F. Brickell, editor, CRYPTO’92, volume 740 of
Lecture Notes in Comput. Sci., pages 76–88. Springer, Heidelberg, Aug. 16–20,
1993.

50. SSL Labs. SSL pulse. https://www.trustworthyinternet.org/ssl-pulse/.
51. The CADO-NFS Development Team. CADO-NFS, An Implementation of the

Number Field Sieve Algorithm, 2016. Development version (prior to release 2.3),
available at http://cado-nfs.gforge.inria.fr/.

52. E. Thomé. Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. J. Symbolic Comput., 33(5):757–
775, Jul. 2002.

53. L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried, M. Hastings, J. A. Halderman,
and N. Heninger. The most dangerous groups in the world: Exploiting DSA groups
for Diffie-Hellman, 2016.

25

http://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
http://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/KS_FFC_Prime.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/KS_FFC_Prime.pdf
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
https://www.trustworthyinternet.org/ssl-pulse/
http://cado-nfs.gforge.inria.fr/

54. A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we
trust capstone? In N. Koblitz, editor, CRYPTO’96, volume 1109 of Lecture Notes
in Comput. Sci., pages 89–103. Springer, Heidelberg, Aug. 18–22, 1996.

A Complexity analysis of individual logarithms

The complexity analysis of individual logarithms is not well detailed in the liter-
ature, in particular in the SNFS case. For convenience we summarize the results
in this appendix. As usual in the NFS context, the claimed complexities are not
rigorously proven and rely on heuristics.

The notation is the same as in the main body of the paper: p is a prime
and we have to compute the discrete logarithm of an element z in a prime order
subgroup of F∗p. We are given f and g a pair of polynomials that have been used
for an NFS computation so that the (virtual) logarithms of all the ideals of norm
less than a bound B should have been pre-computed. The bound B, the degrees
of f and g, and the sizes of their coefficients depend on the General vs Special
NFS variant.

We recall the classical corollary of the Canfield-Erdős-Pomerance theorem
that expresses smoothness probabilities in terms of the L-notation:

Theorem 1. Let a, b, u, v be real numbers such that a > b > 0 and u, v > 0. As
x→∞, the proportion of integers below Lx(a, u) that are Lx(b, v)-smooth is

Lx

(
a− b, u

v
(a− b) + o(1)

)−1
.

A.1 Initialization of the descent

This step consists of first “smoothing” z in order to bootstrap the subsequent
descent step. We choose a random integer e, compute the element z′ ≡ ze mod p,
and test it for smoothness. Many elements are tested until one is found to be
Binit-smooth. The best known algorithm for smoothness testing is the ECM
algorithm: it extracts (with high probability) all primes up to a bound K in
time LK(1/2,

√
2 + o(1)). The dependence in the size of the integer from which

we extract primes is polynomial, so we omit it: in our context this type of factor
ends up being hidden in the o(1) in the exponents.

From this estimate, one can derive that if we want to allow a running time
in Lp(1/3, ·), then Binit can only be as large as Lp(2/3, ·); otherwise, testing
the smoothness would be too costly. At the same time, the probability that z′
is Binit-smooth drives the number of attempts and puts additional constraints.
It is remarkable that it also imposes a smoothness bound Binit in Lp(2/3, ·)
to get an Lp(1/3, ·) number of attempts. Following Commeine-Semaev [11], if
we set Binit = Lp(2/3, c), one can show that the expected running time for
the basic algorithm for the initialization step is in Lp(1/3, 1

3c + 2
√
c/3 + o(1)),

which is minimal for c = 1/ 3
√
3, yielding a complexity of Lp(1/3, 3

√
3 + o(1)) ≈

Lp(1/3, 1.442).

26

Inspired by the early abort strategy that Pomerance [44] had developed in
the context of the quadratic sieve, Barbulescu [5] has shown that this complexity
can be reduced. The idea is to start the smoothness test with a bound smaller
than the target Binit smoothness bound: this allows one to extract the smallest
factors. Then, we make a decision based on the size of the remaining unfactored
part: if it is too large, the probability that this will yield a Binit-smooth number
is too small and we start again with another random exponent e. In other words,
instead of testing immediately for Binit-smoothness, we first run a filter, with
cheaper ECM parameters, that allows us to select promising candidates for which
the full test is run. Analyzing this technique and optimizing all the involved
parameters is not a simple task; according to [5], we obtain a final complexity
of ≈ Lp(1/3, 1.296) for a smoothness bound Binit = Lp(1/3, 0.771).

This is not the end of the story: instead of just one filter, one can add more.
The analysis becomes even more involved, but this improves again on the com-
plexity. Numerical experiments indicate that performance does not improve be-
yond 6 filters, and for 6 filters, the final complexity given in [5] is summarized
in the following fact:

Fact. The initialization step of the descent can be done in time Lp(1/3, 1.232)
with a smoothness bound Binit = Lp(1/3, 0.811).

Finally, we mention that writing z′ ≡ u
v mod p for u and v that are about

half the size of p, and testing them for smoothness does not change the asymp-
totic complexities, but it yields a huge practical improvement, especially when
combined with sieving as in Joux-Lercier [23].

On the other hand, when neither f nor g are linear polynomials, the smooth-
ing test has to be done in one of the number fields, and then, in this context,
using half-size elements is necessary to get the appropriate complexity; we refer
to [5, Section 8.4.3] for details about this.

A.2 Descent step

After the initialization step, the discrete logarithm of z can be expressed in terms
of the virtual logarithms of a few ideals of degree 1 in one of the number fields
associated to f or g. Those whose norm is less than the smoothness bound B
that was used in the sieving and linear algebra steps are assumed to be already
known. Since B = Lp(1/3, ·) while Binit = Lp(2/3, ·), we expect to have a handful
of prime ideals whose logarithms are not known. These are the ones that will
be subject to this descent step. We do the analysis for one ideal of maximal size
Binit; since there are only polynomially many of them, doing all of them will
contribute only to the o(1) in the final exponent.

Let q be an ideal of norm q = Lp(α, c), where α ∈ [13 ,
2
3]. We consider the

lattice of polynomials ϕ(x) = a0+a1x+ · · ·+ak−1xk−1 that, after being mapped
to a principal ideal in the number field where q belongs, become divisible by q.
For k = 2, this would correspond to the (a, b)-pairs corresponding to q seen as
a special-q, but we allow larger degrees. Since we are going to allow a search

27

that takes a time T in Lp(1/3, ·) for handling q, the ai’s can be bounded by
(qT)1/k = Lp(α, c/k)Lp(1/3, ·).

Let us analyze first the case where α > 1/3 so that the second factor can be
neglected. The product of the norms is given by

Res(f(x), ϕ(x))Res(g(x), ϕ(x)) ≈ ‖ϕ‖deg f+deg g‖f‖k−1‖g‖k−1
≈ Lp(α, c/k(deg f + deg g))(‖f‖ ‖g‖)k−1.

Let us write deg f + deg g = δ(log p/ log log p)1/3, so that we can cover all the
variants. Then ‖f‖ ‖g‖ is Lp(2/3, 2/δ) in the case of GNFS and Lp(2/3, 1/δ) in
the case of SNFS. Finally, the product of the norms is

Lp

(
α+ 1/3,

cδ

k

)
Lp

(
2/3, { 1 for SNFS

2 for GNFS}
k − 1

δ

)
.

Here there are two strategies: we can fix k = 2, so that the second factor does
not contribute to the complexity, or we can let k grow in order to balance the
two factors.

Descending with higher degree polynomials. The best value for k is pro-
portional to (log p/ log log p)α/2−1/6 (we deliberately omit to analyze the pro-
portionality ratio). In that case, the product of the norms takes the form

Lp(α/2 + 1/2, ·),

so that, since we allow a time Lp(1/3, ·), we can expect to find an element that
is Lp(α/2+ 1/6, ·)-smooth. The smoothness test implies multiplying the cost by
Lp(α/4 + 1/12, ·), which is bounded by Lp(1/4, ·) since α ≤ 2/3, and therefore
does not contribute to the final complexity. As a consequence, as long as α is
more than 1

3 , it is possible to descend a q whose norm is in Lp(α, ·) in prime
ideals of norms at most Lp(α/2 + 1/2, ·), in time bounded by Lp(1/3, ·). We
can choose the exponent constant smaller than the other steps of the descent so
that these first steps become negligible. This is true whether we are dealing with
GNFS or SNFS.

As we get close to α = 1
3 , the value of k tends to a constant. We postpone

the corresponding analysis.

Descending with degree-1 polynomials. In the case where we force k = 2,
the product of the norms is dominated by the first factor and we get Lp(α +
1
3 , cδ/2). Let us try to descend q in prime ideals of norms slightly smaller than
the norm q of q, namely we target Lp(α, cλ), for some value λ that we hope
to be strictly less than 1. The probability of the product of the norms being
qλ-smooth is then in Lp(

1
3 ,

δ
6λ + o(1))−1. The cost of smoothness testing with

ECM is in Lp(α2 , ·), which is negligible as soon as α < 2/3. Hence, the cost of the
descent with degree-1 polynomials is dominated by the case α = 2/3, which we
will now focus on. In this limiting case, the cost of ECM is LLp(2/3,cλ)(1/2,

√
2+

28

o(1)) = Lp(1/3, 2
√
cλ/3 + o(1)), so that the time to descend q in prime ideals

of norms bounded by qλ is in Lp(1/3, δ6λ + 2
√
cλ/3 + o(1)). This is minimized

for λ = 3
√
δ2/12c and yields a running time of Lp(1/3, (3cδ/2)1/3 + o(1)). In the

case of GNFS, we have δ = 31/3, while it is δ = (3/2)1/3 for SNFS. We fix λ
so that we minimize the time when dealing with the largest q coming out from
the initialization step, namely for q = Lp(2/3, 0.811); this value c = 0.811 gives
λ = 0.598 in the case of GNFS, and λ = 0.513 in the case of SNFS. Both are
less than 1, which means that the descent process indeed descends. Finally, we
obtain the following:

Fact. If we use degree-1 polynomials, the cost of the first stages of the descent
is Lp(1/3, 1.206) for GNFS and Lp(1/3, 1.117) for SNFS.

Last steps of the descent. We now deal with the final steps of the descent
where q = Lp(1/3, c), with c larger than the constant involved in the smooth-
ness bound B = Lp(1/3, ·), which depends on whether we are in the GNFS or
SNFS case. In this setting, there is no gain in considering k > 2, so we keep
k = 2. The factor that was neglected when evaluating the size of the ai’s is no
longer negligible, so we start again, and assume that we are going to spend time
T = Lp(1/3, τ + o(1)). This propagates into the formulae and gives a bound
Lp(1/3, (τ + c)/2) for the ai’s, which in turn gives

Lp(2/3, (τ + c)δ/2)‖f‖ ‖g‖

for the product of the norms. Let us denote B = Lp(1/3, β) the smoothness
bound used for sieving and linear algebra, and write c = β+ ε, where ε > 0. We
omit the details, but it can be checked that if we allow time Lp(1/3, β), we can
descend q in prime ideals of norms at most Lp(1/3, β+ ε

4). This analysis is valid
both for GNFS and SNFS, even though the values of β and δ are different for
these two cases. This is no surprise that this is the cost of finding one relation in
the sieving step, since when q is just above the smoothness bound, descending
involves essentially the same procedure as what we do during sieving with special-
q that are marginally smaller. We obtain therefore:

Fact. The cost of the last stages of the descent is Lp(1/3, 0.961) for GNFS and
Lp(1/3, 0.763) for SNFS.

In this analysis, we have not studied the transition between the two modes
where we decrease the value α or the value c when descending an ideal of size
Lp(α, c). This technicality is dealt with in [17] in the context of the Function
Field Sieve, but it applies mutatis mutandis to our NFS situation.

In the following table, we summarize the exponent constants in the Lp(1/3, ·)
complexities of the various steps of the descent, for GNFS and SNFS, allowing
or not sieving with higher degree polynomials:

29

Descent step
Initialization step Large q Small q

Sieving deg = 1 Sieving higher deg
GNFS 1.232 1.206 o(1) 0.961
SNFS 1.232 1.117 o(1) 0.763

B Block Wiedemann algorithm timings

Location Nodes CPU Type Clock Speed Cores RAM Interconnect

UPenn 20 2×Xeon E5-2699v4 2.2 – 2.8GHz 44 512GB eth40g
8 2×Xeon E5-2680v3 2.5 – 2.9GHz 24 512GB eth40g
6 2×Xeon E5-2699v3 2.3 – 2.8GHz 36 128GB eth10g

Nancy 48 2×Xeon E5-2650v1 2.0 – 2.4GHz 16 64GB ib56g

Table 3. We ran both sieving and linear algebra on various clusters of different con-
figurations. For the CPU clock speed, we give both nominal and turbo speeds.

CPU Type Interconnect Nodes/Job Seconds per iteration

Sequence Solution Communication

Xeon E5-2699v4 eth40g 1 2.42 0.12
4 0.41 0.17
8 0.19 0.17
12 0.13 0.14
16 0.10 0.21 0.13

Xeon E5-2680v3 eth40g 2 2.24 0.30
8 0.35 0.15

Xeon E5-2699v3 eth10g 6 0.36 0.33
Xeon E5-2650v1 ib56g 2 3.7 0.19

8 0.60 0.10

Table 4. Timings for the Block Wiedemann algorithm as run on the various clusters
for the 1024-bit SNFS Discrete Log computation. Table 3 gives details on the node
configurations.

30

	A kilobit hidden SNFS discrete logarithm computation

