
How Fast Can Higher-Order Masking Be in
Software?

Dahmun Goudarzi1,2 and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 ENS, CNRS, INRIA and PSL Research University, Paris, France

dahmun.goudarzi@cryptoexperts.com

matthieu.rivain@cryptoexperts.com

Abstract. Higher-order masking is widely accepted as a sound counter-
measure to protect implementations of blockciphers against side-channel
attacks. The main issue while designing such a countermeasure is to
deal with the nonlinear parts of the cipher i.e. the so-called s-boxes.
The prevailing approach to tackle this issue consists in applying the
Ishai-Sahai-Wagner (ISW) scheme from CRYPTO 2003 to some poly-
nomial representation of the s-box. Several efficient constructions have
been proposed that follow this approach, but higher-order masking is
still considered as a costly (impractical) countermeasure. In this paper,
we investigate efficient higher-order masking techniques by conducting a
case study on ARM architectures (the most widespread architecture in
embedded systems). We follow a bottom-up approach by first investigat-
ing the implementation of the base field multiplication at the assembly
level. Then we describe optimized low-level implementations of the ISW
scheme and its variant (CPRR) due to Coron et al. (FSE 2013). Finally
we present improved state-of-the-art polynomial decomposition methods
for s-boxes with custom parameters and various implementation-level op-
timizations. We also investigate an alternative to these methods which
is based on bitslicing at the s-box level. We describe new masked bitslice
implementations of the AES and PRESENT ciphers. These implementa-
tions happen to be significantly faster than (optimized) state-of-the-art
polynomial methods. In particular, our bitslice AES masked at order 10
runs in 0.48 megacycles, which makes 8 milliseconds in presence of a 60
MHz clock frequency.

1 Introduction

Since their introduction in the late 1990’s, side-channel attacks have been con-
sidered as a serious threat against cryptographic implementations. Among the
existing protection strategies, one of the most widely used relies on applying
secret sharing at the implementation level, which is known as (higher-order)
masking. This strategy achieves provable security in the so-called probing secu-
rity model [24] and noisy leakage model [32, 17], which makes it a prevailing way
to get secure implementations against side-channel attacks.

Higher-Order Masking. Higher-order masking consists in sharing each in-
ternal variable x of a cryptographic computation into d random variables x1,
x2, . . . , xd, called the shares and satisfying x1 + x2 + · · · + xd = x for some
group operation +, such that any set of d − 1 shares is randomly distributed
and independent of x. In this paper, we will consider the prevailing Boolean
masking which is based on the bitwise addition of the shares. It has been for-
mally demonstrated that in the noisy leakage model, where the attacker gets
noisy information on each share, the complexity of recovering information on x
grows exponentially with the number of shares [12, 32]. This number d, called
the masking order, is hence a sound security parameter for the resistance of a
masked implementation.

When dth-order masking is involved to protect a blockcipher, a so-called
dth-order masking scheme must be designed to enable computation on masked
data. To be sound, a dth order masking scheme must satisfy the two following
properties: (i) completeness, at the end of the encryption/decryption, the sum
of the d shares must give the expected result; (ii) probing security, every tuple of
d−1 or less intermediate variables must be independent of any sensitive variable.

Most blockcipher structures are composed of one or several linear trans-
formation(s), and a non-linear function, called the s-box (where the linearity
is considered w.r.t. the bitwise addition). Computing a linear transformation
x 7→ `(x) in the masking world can be done in O(d) complexity by applying ` to
each share independently. This clearly maintains the probing security and the
completeness holds by linearity since we have `(x1) + `(x2) + · · ·+ `(xd) = `(x).
On the other hand, the non-linear operations (such as s-boxes) are more tricky
to compute on the shares while ensuring completeness and probing security.

Masked S-boxes. In [24], Ishai, Sahai, and Wagner tackled this issue by in-
troducing the first generic higher-order masking scheme for the multiplication
over F2 in complexity O(d2). The here-called ISW scheme was later used by
Rivain and Prouff to design an efficient masked implementation of AES [34].
Several works then followed to improve this approach and to extend it to other
SPN blockciphers [10, 14, 15, 26]. The principle of these methods consists in rep-
resenting an n-bit s-box as a polynomial

∑
i ai x

i in F2n [x]/(x2
n − x), whose

evaluation is then expressed as a sequence of linear functions (e.g. squaring, ad-
ditions, multiplications by constant coefficients) and nonlinear multiplications
over F2n . The former are simply masked in complexity O(d) (thanks to their
linearity), whereas the latter are secured using ISW in complexity O(d2). The
total complexity is hence mainly impacted by the number of nonlinear multipli-
cations involved in the underlying polynomial evaluation. This observation led
to a series of publications aiming at conceiving polynomial evaluation methods
with the least possible nonlinear multiplications [10, 35, 15]. The so-called CRV
method, due to Coron, Roy and Vivek [15], is currently the best known generic
method with respect to this criteria.

Recently, an alternative to previous ISW-based polynomial methods was pro-
posed by Carlet, Prouff, Rivain and Roche in [11]. They introduce a so-called

algebraic decomposition method that can express an s-box in terms of polynomi-
als of low algebraic degree. They also show that a variant of ISW due to Coron,
Prouff, Rivain and Roche [14] can efficiently be used to secure the computation
of any quadratic function. By combining the here-called CPRR scheme together
with their algebraic decomposition method, Carlet et al. obtain an efficient al-
ternative to existing ISW-based masking schemes. In particular, their technique
is argued to beat the CRV method based on the assumption that an efficiency
gap exists between an ISW multiplication and a CPRR evaluation. However, no
optimized implementation is provided to back up this assumption.

Despite these advances, higher-order masking still implies strong performance
overheads on protected implementations, and it is often believed to be impracti-
cal beyond small orders. On the other hand, most published works on the subject
focus on theoretical aspects without investigating optimized low-level implemen-
tations. This raises the following question: how fast can higher-order masking be
in software?

Our Contribution. In this paper, we investigate this question and present a
case study on ARM (v7) architectures, which are today the most widespread in
embedded systems (privileged targets of side-channel attacks). We provide an
extensive and fair comparison between the different methods of the state of the
art and a benchmarking on optimized implementations of higher-order masked
blockciphers. For such purpose, we follow a bottom-up approach and start by
investigating the efficient implementation of the base-field multiplication, which
is the core elementary operation of the ISW-based masking schemes. We propose
several implementations strategies leading to different time-memory trade-offs.
We then investigate the two main building blocks of existing masking schemes,
namely the ISW and CPRR schemes. We optimize the implementation of these
schemes and we describe parallelized versions that achieve significant gains in
performances. From these results, we propose fine-tuned variants of the CRV and
algebraic decomposition methods, which allows us to compare them in a practical
and optimized implementation context. We also investigate efficient polynomial
methods for the specific s-boxes of two important blockciphers, namely AES and
PRESENT.

As an additional contribution, we put forward an alternative strategy to
polynomial methods which consists in applying bitslicing at the s-box level.
More precisely, the s-box computations within a blockcipher round are bitsliced
so that the core nonlinear operation is not a field multiplication anymore (nor
a quadratic polynomial) but a bitwise logical AND between two m-bit registers
(where m is the number of s-box computations). This allows us to translate com-
pact hardware implementations of the AES and PRESENT s-boxes into efficient
masked implementations in software. This approach has been previously used to
design blockciphers well suited for masking [21] but, to the best of our knowledge,
has never been used to derive efficient higher-order masked implementations of
existing standard blockciphers such as AES or PRESENT. We further provide

implementation results for full blockciphers and discuss the security aspects of
our implementations.

Our results clearly demonstrate the superiority of the bitslicing approach (at
least on 32-bit ARM architectures). Our masked bitslice implementations of AES
and PRESENT are significantly faster than state-of-the-art polynomial methods
with fine-tuned low-level implementations. In particular, an encryption masked
at the order 10 only takes a few milliseconds with a 60 MHz clock frequency
(specifically 8ms for AES and 5ms for PRESENT).

Other Related Works. Our work focuses on the optimized implementation
of polynomial methods for efficient higher-order masking of s-boxes and block-
ciphers, as well as on the bitslice alternative. All these schemes are based on
Boolean masking with the ISW construction (or the CPRR variant) for the core
non-linear operation (which is either the field multiplication or the bitwise logi-
cal AND). Further masking techniques exist with additional features that should
be adverted here.

Genelle, Prouff and Quisquater suggest mixing Boolean masking and multi-
plicative masking [19]. This approach is especially effective for blockciphers with
inversion-based s-boxes such as AES. Prouff and Roche turn classic constructions
from multi-party computation into a higher-order masking scheme resilient to
glitches [33]. A software implementation study comparing these two schemes and
classical polynomial methods for AES has been published in [23]. Compared to
this previous work, our approach is to go deeper in the optimization (at the
assembly level) and we further investigate generic methods (i.e. methods that
apply to any s-box and not only to AES). Another worth-mentioning line of
works is the field of threshold implementations [29, 30] in which the principle of
threshold cryptography is applied to get secure hardware masking in the presence
of glitches (see for instance [31, 28, 6]). Most of threshold implementations target
first-order security but recent works discuss the extension to higher orders [5].
It should be noted that in the context of hardware implementations, the occur-
rence of glitches prevents the straight use of classic ISW-based Boolean masking
schemes (as considered in the present work). Threshold implementations and the
Prouff-Roche scheme are therefore the main solutions for (higher-order) masking
in hardware. On the other hand, these schemes are not competitive for the soft-
ware context (due to limited masking orders and/or to an increased complexity)
and they are consequently out of the scope of our study.

Finally, we would like to mention that subsequently to the first version of this
work, and motivated by the high performances of our bitslice implementations
of AES and PRESENT, we have extended the bitslice higher-order masking
approach to any s-box by proposing a generic decomposition method in [20].
New blockcipher designs with efficient masked bitslice implementation have also
been recently proposed in [25].

Paper Organization. The next section provides some preliminaries about
ARM architectures (Section 2). We then investigate the base field multiplica-

tion (Section 3) and the ISW and CPRR schemes (Section 4). Afterward, we
study polynomial methods for s-boxes (Section 5) and we introduce our masked
bitslice implementations of the AES and PRESENT s-boxes (Section 6). Eventu-
ally, we describe our implementations of the full ciphers (Section 7). The security
aspects of our implementations are further discussed in the full version of the
paper.

Source Code and Performances. For the sake of illustration, the perfor-
mances of our implementations are mostly displaid on graphics in the present
version. Exact performance figures (in terms of clock cycles, code size and RNG
consumption) are provided in the full version of the paper (available on IACR
ePrint). The source code of our implementations is also available on GitHub.

2 Preliminaries on ARM Architectures

Most ARM cores are RISC processors composed of sixteen 32-bit registers, la-
beled R0, R1, . . . , R15. Registers R0 to R12 are known as variable registers and
are available for computation.3 The three last registers are usually reserved for
special purposes: R13 is used as the stack pointer (SP), R14 is the link register
(LR) storing the return address during a function call, and R15 is the program
counter (PC). The link register R14 can also be used as additional variable register
by saving the return address on the stack (at the cost of push/pop instructions).
The gain of having a bigger register pool must be balanced with the saving
overhead, but this trick enables some improvements in many cases.

In ARM v7, most of the instructions can be split into the following three
classes: data instructions, memory instructions, and branching instructions. The
data instructions are the arithmetic and bitwise operations, each taking one clock
cycle (except for the multiplication which takes two clock cycles). The memory
instructions are the load and store (from and to the RAM) which require 3 clock
cycles, or their variants for multiple loads or stores (n + 2 clock cycles). The
last class of instructions is the class of branching instructions used for loops,
conditional statements and function calls. These instructions take 3 or 4 clock
cycles.

One important specificity of the ARM assembly is the barrel shifter allowing
any data instruction to shift one of its operands at no extra cost in terms of
clock cycles. Four kinds of shifting are supported: the logical shift left (LSL), the
logical shift right (LSR), the arithmetic shift right (ASR), and the rotate-right
(ROR). All these shifting operations are parameterized by a shift length in [[1, 32]]
(except for the logical shift left LSL which lies in [[0, 31]]). The latter can also be
relative by using a register but in that case the instruction takes an additional
clock cycle.

3 Note that some conventions exist for the first four registers R0–R3, also called argu-
ment registers, and serving to store the arguments and the result of a function at
call and return respectively.

Eventually, we assume that our target architecture includes a fast True Ran-
dom Number Generator (TRNG), that frequently fills a register with a fresh
32-bit random strings (e.g. every 10 clock cycles). The TRNG register can then
be read at the cost of a single load instruction.4

3 Base Field Multiplication

In this section, we focus on the efficient implementation of the multiplication
over F2n where n is small (typically n ∈ [[4, 10]]). The fastest method consists in
using a precomputed table mapping the 22n possible pairs of operands (a, b) to
the output product a · b.

In the context of embedded systems, one is usually constrained on the code
size and spending several kilobytes for (one table in) a cryptographic library
might be prohibitive. That is why we investigate hereafter several alternative
solutions with different time-memory trade-offs. Specifically, we look at the clas-
sical binary algorithm and exp-log multiplication methods. We also describe a
tabulated version of Karatsuba multiplication, and another table-based method:
the half-table multiplication. The obtained implementations are compared in
terms of clock cycles, register usage, and code size (where the latter is mainly
impacted by precomputed tables).

In the rest of this section, the two multiplication operands in F2n will be
denoted a and b. These elements can be seen as polynomials a(x) =

∑n−1
i=0 aix

i

and b(x) =
∑n−1
i=0 bix

i over F2[x]/p(x) where the ai’s and the bi’s are binary
coefficients and where p is a degree-n irreducible polynomial over F2[x]. In our
implementations, these polynomials are simply represented as n-bit strings a =
(an−1, . . . , a0)2 or equivalently a =

∑n−1
i=0 ai 2i (and similarly for b).

3.1 Binary Multiplication

The binary multiplication algorithm is the most basic way to perform a multi-
plication on a binary field. It consists in evaluating the following formula:

a(x) · b(x) =
(
· · ·
((
bn−1a(x)x+ bn−2a(x)

)
x+ bn−3a(x)

)
· · ·
)
x+ b0a(x) , (1)

by iterating over the bits of b. A formal description is given in Algorithm 1.

4 This is provided that the TRNG address is already in a register. Otherwise one must
first load the TRNG address, before reading the random value. Our code ensures a
gap of at least 10 clock cycles between two readings of the TRNG.

Algorithm 1 Binary multiplication algorithm

Input: a(x), b(x) ∈ F2[x]/p(x)
Output: a(x) · b(x) ∈ F2[x]/p(x)
1. r(x)← 0
2. for i = n− 1 down to 0 do
3. r(x)← x · r(x) mod p(x)
4. if bi = 1 then r(x)← r(x) + a(x)
5. end for
6. return r(x) mod p(x)

The reduction modulo p(x) can be done either inside the loop (at Step 3 in
each iteration) or at the end of the loop (at Step 6). If the reduction is done
inside the loop, the degree of x · r(x) is at most n in each iteration. So we have

x · r(x) mod p(x) =

{
x · r(x)− p(x) if rn−1 = 1
x · r(x) otherwise

(2)

The reduction then consists in subtracting p(x) to x ·r(x) if and only if rn−1 = 1
and doing nothing otherwise. In practice, the multiplication by x simply consists
in left-shifting the bits of r and the subtraction of p is a simple XOR. The tricky
part is to conditionally perform the latter XOR with respect to the bit rn−1 as
we aim to a branch-free code. This is achieved using the arithmetic right shift5

instruction (sometimes called signed shift) to compute (r � 1)⊕ (rn−1 × p) by
putting rn−1 at the sign bit position, which can be done in 3 ARM instructions
(3 clock cycles) as follows:

LSL $tmp , $res , #(32-n) ;; tmp = r_{n-1}

AND $tmp , $mod , $tmp , ASR #32 ;; tmp = p & (tmp ASR 32)

EOR $res , $tmp , $res , LSL #1 ;; r = (r_{n-1} * p)^(r << 1)

Step 4 consists in conditionally adding a to r whenever bi equals 1. Namely,
we have to compute r⊕ (bi×a). In order to multiply a by bi, we use the rotation
instruction to put bi in the sign bit and the arithmetic shift instruction to fill a
register with bi. The latter register is then used to mask a with a bitwise AND
instruction. The overall Step 4 is performed in 3 ARM instructions (3 clock
cycles) as follows:

ROR $opB , #31 ;; b_i = sign(opB)

AND $tmp , $opA , #opB , ASR #32 ;; tmp = a & (tmp ASR 32)

EOR $res , $tmp ;; r = r^(a * b_i)

5 This instruction performs a logical right-shift but instead of filling the vacant bits
with 0, it fills these bits with the leftmost bit operand (i.e. the sign bit).

Variant. If the reduction is done at the end of the loop, Step 3 then becomes
a simple left shift, which can be done together with Step 4 in 3 instructions (3
clock cycles) as follows:

ROR $opB , #31 ;; b_i = sign(opB)

AND $tmp , $opA , $opB , ASR #32 ;; tmp = a & (tmp ASR 32)

EOR $res , $tmp , $res , LSL #1 ;; r = (a * b_i)^(r << 1)

The reduction must then be done at the end of the loop (Step 6), where we
have r(x) = a(x) · b(x) which can be of degree up to 2n−2. Let rh and r` be the
polynomials of degree at most n−2 and n−1 such that r(x) = rh(x) ·xn+r`(x).
Since we have r(x) mod p(x) = (rh(x) · xn mod p(x)) + r`(x), we only need
to reduce the high-degree part rh(x) · xn. This can be done by tabulating the
function mapping the n − 1 coefficients of rh(x) to the n − 2 coefficients of
rh(x)·xn mod p(x). The overall final reduction then simply consists in computing
T [r � n]⊕ (r ∧ (2n − 1)), where T is the corresponding precomputed table.

3.2 Exp-Log Multiplication

Let g ∈ F2n be a generator of the multiplicative group F∗2n . We shall denote by
expg the exponential function defined over [[0, 2n − 1]] as expg(`) = g`, and by
logg the discrete logarithm function defined over F∗2n as logg = exp−1g . Assume
that these functions can be tabulated (which is usually the case for small values
of n). The multiplication between field elements a and b can then be efficiently
computed as

a · b =

{
expg(logg(a) + logg(b) mod 2n − 1) if a 6= 0 and b 6= 0
0 otherwise

(3)

Le us denote t = logg(a) + logg(b). We have t ∈ [[0, 2n+1 − 2]] giving

t mod 2n − 1 =

{
t− 2n + 1 if tn = 1
t otherwise

(4)

where tn is the most significant bit in the binary expansion t =
∑n
i=0 ti 2

i, which
can be rewritten as t mod 2n − 1 = (t + tn) ∧ (2n − 1). This equation can be
evaluated with 2 ARM instructions6 (2 clock cycles) as follows:

ADD $tmp , $tmp , LSR #n ;;tmp = tmp + tmp >>n

AND $tmp , #(2^n-1) ;;tmp = tmp & (2^n-1)

6 Note that for n > 8, the constant 2n−1 does not lie in the range of constants enabled
by ARM (i.e. rotated 8-bit values). In that case, one can use the BIC instruction to
perform a logical AND where the second argument is complemented. The constant
to be used is then 2n which well belongs to ARM constants whatever the value of n.

Variant. Here again, a time-memory trade-off is possible: the expg table can
be doubled in order to handle a (n+ 1)-bit input and to perform the reduction.
This simply amounts to consider that expg is defined over [[0, 2n+1 − 2]] rather
than over [[0, 2n − 1]].

Zero-testing. The most tricky part of the exp-log multiplication is to manage
the case where a or b equals 0 while avoiding any conditional branch. Once again
we can use the arithmetic right-shift instruction to propagate the sign bit and
use it as a mask. The test of zero can then be done with 4 ARM instructions (4
clock cycles) as follows:

RSB $tmp , $opA , #0 ;; tmp = 0 - a

AND $tmp , $opB , $tmp , ASR #32 ;; tmp = b & (tmp ASR 32)

RSB $tmp , #0 ;; tmp = 0 - tmp

AND $res , $tmp , ASR #32 ;; r = r & (tmp ASR 32)

3.3 Karatsuba Multiplication

The Karatsuba method is based on the following equation:

a · b = (ah + a`)(bh + b`)x
n
2 + ah bh (xn + x

n
2) + a` b` (x

n
2 + 1) mod p(x) (5)

where ah, a`, bh, b` are the n
2 -degree polynomials such that a(x) = ah x

n
2 +a` and

b(x) = bh x
n
2 + b`. The above equation can be efficiently evaluated by tabulating

the following functions:

(ah + a`, bh + b`) 7→ (ah + a`)(bh + b`)x
n
2 mod p(x) ,

(ah, bh) 7→ ah bh (xn + x
n
2) mod p(x) ,

(a`, b`) 7→ a` b` (x
n
2 + 1) mod p(x) .

We hence obtain a way to compute the multiplication with 3 look-ups and a few
XORs based on 3 tables of 2n elements.

In practice, the most tricky part is to get the three pairs (ah||bh), (a`||b`)
and (ah+a`||bh+ b`) to index the table with the least instructions possible. The
last pair is a simple addition of the two first ones. The computation of the two
first pairs from the operands a ≡ (ah||a`) and b ≡ (bh||b`) can then be seen as
the transposition of a 2× 2 matrix. This can be done with 4 ARM instructions
(4 clock cycles) as follows:

EOR $tmp0 , $opA , $opB , LSR #(n/2) ;; tmp0 = [a_h|a_l^b_h]

EOR $tmp1 , $opB , $tmp0 , LSL #(n/2) ;; tmp1 = [a_h|a_l|b_l]

BIC $tmp1 , #(2^n*(2^(n/2) -1)) ;; tmp1 = [a_l|b_l]

EOR $tmp0 , $tmp1 , LSR #(n/2) ;; tmp0 = [a_h|b_h]

3.4 Half-Table Multiplication

The half-table multiplication can be seen as a trade-off between the Karatsuba
method and the full-table method. While Karatsuba involves 3 look-ups in three
2n-sized tables and the full-table method involves 1 look-up in a 22n-sized table,
the half-table method involves 2 look-ups in two 2

3n
2 -sized tables. It is based on

the following equation:

a · b = bh x
n
2 (ah x

n
2 + a`) + b` (ah x

n
2 + a`) mod p(x) , (6)

which can be efficiently evaluated by tabulating the functions:

(ah, a`, bh) 7→ bh x
n
2 (ah x

n
2 + a`) mod p(x) ,

(ah, a`, b`) 7→ b` (ah x
n
2 + a`) mod p(x) .

Once again, the barrel shifter is useful to get the input triplets efficiently.
Each look-up can be done with two ARM instructions (for a total of 8 clock
cycles) as follows:

EOR $tmp ,$opB ,$opA ,LSL#n ;;tmp=[a_h|a_l|b_h|b_l]

LDRB $res ,[$tab1 ,$tmp ,LSR#(n/2) ;;res=T1[a_h|a_l|b_h]

EOR $tmp ,$opA ,$opB ,LSL#(32-n/2) ;;tmp=[b_l |0..| a_h|a_l]

LDRB $tmp ,[$tab2 ,$tmp ,ROR#(32-n/2)] ;;tmp=T2[a_h|a_l|b_l]

3.5 Performances

The obtained performances are summarized in Table 1 in terms of clock cycles,
register usage, and code size. For clock cycles, the number in brackets indicates
instructions that need to be done only once when multiple calls to the multi-
plication are performed (as in the secure multiplication procedure described in
the next section). These are initialization instructions such as loading a table
address in a register. For n > 8, elements take two bytes to be stored (assuming
n ≤ 16) which implies an overhead in clock cycles and a doubling of the table
size. For most methods, the clock cycles and register usage are constant w.r.t.
n ≥ 8, whereas the code size depends on n. For the sake of illustration, we there-
fore additionally display the code size (and corresponding LUT sizes) in Figure
1 for several values of n.

Table 1. Multiplication performances.

bin mult v1 bin mult v2 exp-log v1 exp-log v2 kara. half-tab full-tab

clock cycles (n ≤ 8) 10n + 3 (+3) 7n + 3 (+3) 18 (+2) 16 (+2) 19 (+2) 10 (+3) 4 (+3)

clock cycles (n > 8) 10n + 4 (+3) 7n + 15 (+3) 35 (+2) 31 (+2) 38 (+2) n/a n/a

registers 5 5 5 (+1) 5 (+1) 6 (+1) 5 (+1) 5

code size (n ≤ 8) 52 2n−1 + 48 2n+1 + 48 3 · 2n + 40 3 · 2n + 42 2
3n
2

+1 + 24 22n + 12

4 6 8

10−1

100

101

n

K
B

bin mult v1

bin mult v2

exp-log v1

exp-log v2

half-table

full-table

n 4 6 8 10

Binary v1 0 0 0 0

Binary v2 8 B 32 B 128 B 1 KB

Exp-log v1 32 B 128 B 0.5 KB 4 KB

Exp-log v2 48 B 192 B 0.75 KB 6 KB

Karatsuba 48 B 192 B 0.75 KB 6 KB

Half-table 0.13 KB 1 KB 8 KB 128 KB

Full-table 0.25 KB 4 KB 64 KB 2048 KB

Fig. 1. Full code size (left graph) and LUT size (right table) w.r.t. n.

We observe that all the methods provide different time-memory trade-offs
except for Karatsuba which is beaten by the exp-log method (v1) both in terms
of clock cycles and code size. The latter method shall then always be preferred
to the former (at least on our architecture). As expected, the full-table method
is by far the fastest way to compute a field multiplication, followed by the half-
table method. However, depending on the value of n, these methods might be too
consuming in terms of code size due to their large precomputed tables. On the
other hand, the binary multiplication (even the improved version) has very poor
performances in terms of clock cycles and it should only be used for extreme cases
where the code size is very constrained. We consider that the exp-log method v2
(i.e. with doubled exp-table) is a good compromise between code size an speed
whenever the full-table and half-table methods are not affordable (which might
be the case for e.g. n ≥ 8). In the following, we shall therefore focus our study on
secure implementations using the exp-log (v2), half-table or full-table method
for the base field multiplication.

4 Secure Multiplications and Quadratic Evaluations

We have seen several approaches to efficiently implement the base-field multipli-
cation. We now investigate the secure multiplication in the masking world where
the two operands a, b ∈ F2n are represented as random d-sharings (a1, a2, . . . , ad)
and (b1, b2, . . . , bd). We also address the secure evaluation of a function f of alge-
braic degree 2 over F2n (called quadratic function in the following). Specifically,
we focus on the scheme proposed by Ishai, Sahai, and Wagner (ISW scheme) for
the secure multiplication [24], and its extension by Coron, Prouff, Rivain and
Roche (CPRR scheme) to secure any quadratic function [14, 11].

4.1 Algorithms

ISW multiplication. From two d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd),
the ISW scheme computes an output d-sharing (c1, c2, . . . , cd) as follows:

1. for every 1 ≤ i < j ≤ d, sample a random value ri,j over F2n ;
2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j + ai · bj) + aj · bi;

3. for every 1 ≤ i ≤ d, compute ci = ai · bi +
∑
j 6=i ri,j .

One can check that the output (c1, c2, . . . , cd) is well a d-sharing of the product
c = a · b. We indeed have

∑
i ci =

∑
i,j ai · bj = (

∑
i ai)(

∑
j bj) since every

random value ri,j appears exactly twice in the sum and hence vanishes.

Mask refreshing. The ISW multiplication was originally proved probing secure
at the order t = b(d − 1)/2c (and not d − 1 as one would expect with masking
order d). The security proof was later made tight under the condition that the
input d-sharings are based on independent randomness [34]. In some situations,
this independence property is not satisfied. For instance, one might have to
multiply two values a and b where a = `(b) for some linear operation `. In that
case, the shares of a are usually derived as ai = `(bi), which clearly breaches
the required independence of input shares. To deal with this issue, one must
refresh the sharing of a. However, one must be careful doing so since a bad
refreshing procedure might introduce a flaw [14]. A sound method for mask-
refreshing consists in applying an ISW multiplication between the sharing of a
and the tuple (1, 0, 0, . . . , 0) [17, 2]. This gives the following procedure:

1. for every 1 ≤ i < j ≤ d, randomly sample ri,j over F2n and set rj,i = ri,j ;
2. for every 1 ≤ i ≤ d, compute a′i = ai +

∑
j 6=i ri,j .

It is not hard to see that the output sharing (a′1, a
′
2, . . . , a

′
d) well encodes a. One

might think that such a refreshing implies a strong overhead in performances
(almost as performing two multiplications) but this is still better than doubling
the number of shares (which roughly quadruples the multiplication time). More-
over, we show hereafter that the implementation of such a refreshing procedure
can be very efficient in practice compared to the ISW multiplication.

CPRR evaluation. The CPRR scheme was initially proposed in [14] as a
variant of ISW to securely compute multiplications of the form x 7→ x · `(x)
where ` is linear, without requiring refreshing. It was then shown in [11] that
this scheme (in a slightly modified version) could actually be used to securely
evaluate any quadratic function f over F2n . The method is based on the following
equation

f(x1+x2+· · ·+xd) =
∑

1≤i<j≤d

f(xi+xj+si,j)+f(xj+si,j)+f(xi+si,j)+f(si,j)

+

d∑
i=1

f(xi) + (d+ 1 mod 2) · f(0) (7)

which holds for every (xi)i ∈ (F2n)d, every (si,j)1≤i<j≤d ∈ (F2n)d(d−1)/2, and
every quadratic function f over F2n .

From a d-sharing (x1, x2, . . . , xd), the CPRR scheme computes an output
d-sharing (y1, y2, . . . , yd) as follows:

1. for every 1 ≤ i < j ≤ d, sample two random values ri,j and si,j over F2n ,
2. for every 1 ≤ i < j ≤ d, compute rj,i = ri,j + f(xi + si,j) + f(xj + si,j) +
f((xi + si,j) + xj) + f(si,j) ,

3. for every 1 ≤ i ≤ d, compute yi = f(xi) +
∑
j 6=i ri,j ,

4. if d is even, set y1 = y1 + f(0).

According to (7), we then have
∑d
i=1 yi = f

(∑d
i=1 xi), which shows that the

output sharing (y1, y2, . . . , yd) well encodes y = f(x).
In [14, 11] it is argued that in the gap where the field multiplication cannot

be fully tabulated (22n elements is too much) while a function f : F2n → F2n

can be tabulated (2n elements fit), the CPRR scheme is (likely to be) more
efficient than the ISW scheme. This is because it essentially replaces (costly) field
multiplications by simple look-ups. We present in the next section the results of
our study for our optimized ARM implementations.

4.2 Implementations and Performances

For both schemes we use the approach suggested in [13] that directly accumulates
each intermediate result ri,j in the output share ci so that the memory cost is
O(d) instead of O(d2) when the ri,j ’s are stored. Detailed algorithms can be
found in the appendix. The ARM implementation of these algorithms is rather
straightforward and it does not make use of any particular trick.

As argued in Section 3.5, we consider three variants for the base field multipli-
cation in the ISW scheme, namely the full-table method, the half-table method
and the exp-log method (with doubled exp table). The obtained ISW variants
are labeled ISW-FT, ISW-HT and ISW-EL in the following. The obtained per-
formances are illustrated in Figure 2 with respect to d. Note that we did not
consider ISW-FT for n > 8 since the precomputed tables are too huge.

2 4 6 8 10

1,000

2,000

3,000

d

cl
o
ck

cy
cl

es

ISW FT

ISW HT

ISW EL

CPRR

Fig. 2. Timings of ISW and CPRR schemes.

These results show that CPRR indeed outperforms ISW whenever the field
multiplication cannot be fully tabulated. Even the half-table method (which
is more consuming in code-size) is slower than CPRR. For n ≤ 8, a CPRR
evaluation asymptotically costs 1.16 ISW-FT, 0.88 ISW-HT, and 0.75 ISW-EL.

4.3 Parallelization

Both ISW and CPRR schemes work on n-bit variables, each of them occupy-
ing a full 32-bit register. Since in most practical scenarios, we have n ∈ [[4, 8]],
this situation is clearly suboptimal in terms of register usage, and presumably
suboptimal in terms of timings. A natural idea to improve this situation is to
use parallelization. A register can simultaneously store m := b32/nc values, we
can hence try to perform m ISW/CPRR computations in parallel (which would
in turn enable to perform m s-box computations in parallel). Specifically, each
input shares is replaced by m input shares packed into a 32-bit value. The ISW
(resp. CPRR) algorithm load packed values, and perform the computation on
each unpacked n-bit chunk one-by-one. Using such a strategy allows us to save
multiple load and store instructions, which are among the most expensive in-
structions of ARM assembly (3 clock cycles). Specifically, we can replace m load
instructions by a single one for the shares ai, bj in ISW (resp. xi, xj in CPRR)
and the random values ri,j , si,j (read from the TRNG), we can replace m store
instructions by a single one for the output shares, and we can replace m XOR
instructions by a single one for some of the addition involved in ISW (resp.
CPRR). On the other hand, we get an overhead for the extraction of the n-bit
chunks from the packed 32-bit values. But each of these extractions takes a single
clock cycle (thanks to the barrel shifter), which is rather small compared to the
gain in load and store instructions.

We implemented parallel versions of ISW and CPRR for n = 4 and n = 8.
For the former case, we can perform m = 8 evaluations in parallel, whereas for
the later case we can perform m = 4 evaluations in parallel. For n = 4, we
only implemented the full-table multiplication for ISW, since we consider that
a 256-byte table in code is always affordable. For n = 8 on the other hand, we
did not implement the full-table, since we consider that a 64-KB table in code
would be to much in most practical scenarios. Figures 3 and 4 give the obtained
performances in terms of clock cycles.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

·104

d

cl
o
ck

cy
cl

es

ISW-HT � 4

ISW-HT × 4

ISW-EL � 4

ISW-EL × 4

CPRR � 4

CPRR × 4

Fig. 3. Timings of (parallel) ISW and
CPRR schemes for n = 8.

2 4 6 8 10

0.5

1

1.5

·104

d

cl
o
ck

cy
cl

es

ISW-FT � 8

ISW-FT × 8

CPRR � 8

CPRR × 8

Fig. 4. Timings of (parallel) ISW and
CPRR schemes for n = 4.

These results show the important gain obtained by using parallelism. For
ISW, we get an asymptotic gain around 30% for 4 parallel evaluations (n = 8)
compared to 4 serial evaluations, and we get a 58% asymptotic gain for 8 parallel
evaluations (n = 4) compared to 8 serial evaluations. For CPRR, the gain is
around 50% (timings are divided by 2) in both cases (n = 8 and n = 4). We
also observe that the efficiency order keeps unchanged with parallelism, that is:
ISW-FT > CPRR > ISW-HT > ISW-EL.

Remark 1. Note that using parallelization in our implementations does not com-
promise the probing security. Indeed, we pack several bytes/nibbles within one
word of the cipher state but we never pack (part of) different shares of the
same variable together. The probing security proofs hence apply similarly to the
parallel implementations.7

4.4 Mask-Refreshing Implementation

The ISW-based mask refreshing is pretty similar to an ISW multiplication, but
it is actually much faster since it involves no field multiplications and fewer
additions (most terms being multiplied by 0). It simply consists in processing:

for i = 1 .. d : for j = i+ 1 .. d : r ← $; ai ← ai + r; aj ← aj + r;

A straightforward implementation of this process is almost 3 times faster than
the fastest ISW multiplication, namely the full-table one (see Figure 5).

We can actually do much better. Compared to a standard ISW implementa-
tion, the registers of the field multiplication are all available and can hence be
used in order to save several loads and stores. Indeed, the straightforward im-
plementation performs d− i+ 1 loads and stores for every i ∈ [[1, d]], specifically
1 load-store for ai and d − i for the aj ’s. Since we have some registers left, we
can actually pool the aj ’s loads and stores for several ai’s. To do so, we load
several shares ai, ai+1, . . . , ai+k with the LDM instruction (which has a cost of
k + 2 instead of 3k) and process the refreshing between them. Then, for every
j ∈ [[i + k + 1, d]], we load aj , performs the refreshing between aj and each of
the ai, ai+1, . . . , ai+k, and store aj back. Afterwards, the shares ai, ai+1, . . . ,
ai+k are stored back with the STM instruction (which has a cost of k+ 2 instead
of 3k). This allows us to load (and store) the aj only once for the k shares
instead of k times, and to take advantage of the LDM and STM instructions. In
practice, we could deal with up to k = 8 shares at the same time, meaning that
for d ≤ 8 all the shares could be loaded and stored an single time using LDM and
STM instructions.

7 Putting several shares of the same variable in a single register would induce a security
flaw in the probing model where full registers can be probed. For this reason, we
avoid doing so and we stress that parallelization does not result in such an undesired
result. However, it should be noted that in some other relevant security models, such
as the single-bit probing model or the bounded moment leakage model [3], this would
not be an issue anyway.

2 4 6 8 10

500

1,000

1,500

2,000

d

cl
o
ck

cy
cl

es

ISW-FT multiplication

ISW-based mask refreshing

Optimized version

Fig. 5. Timings of mask refreshing.

The performances of our implementations of the ISW-based mask refreshing
are plotted in Figure 5. Our optimized refreshing is up to 3 times faster than the
straightforward implementation and roughly 10 times faster that the full-table-
based ISW multiplication.

5 Polynomial Methods for S-boxes

This section addresses the efficient implementation of polynomial methods for
s-boxes based on ISW and CPRR schemes. We first investigate the two best
known generic methods, namely the CRV method [15], and the algebraic decom-
position method [11], for which we propose some improvements. We then look
at specific methods for the AES and PRESENT s-boxes, and finally provide
extensive comparison of our implementation results.

5.1 CRV Method

The CRV method was proposed by Coron, Roy and Vivek in [15]. Before recalling
its principle, let us introduce the notion of cyclotomic class. For a given integer
n, the cyclotomic class of α ∈ [[0, 2n−2]] is defined as Cα = {α·2i mod 2n−1 ; i ∈
N}. We have the following properties: (i) cyclotomic classes are equivalence
classes partitioning [[0, 2n − 2]], and (ii) a cyclotomic class has at most n ele-
ments. In the following, we denote by xL the set of monomials {xα ; α ∈ L} for
some set L ⊆ [[0, 2n − 1]].

The CRV method consists in representing an s-box S(x) over F2n [x]/(x2
n−x)

as

S(x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x) , (8)

where pi(x) and qi(x) are polynomials with monomials in xL for some set L =
Cα1=0∪Cα2=1∪Cα3

∪. . .∪Cα`
such that for every i ≥ 3, αi = αj+αk mod 2n−1

for some j, k < i (or more generally αi = 2w · αj + αk mod 2n − 1 with k ∈
[[0, n− 1]]). Such polynomials can be written as:

pi(x) =
∑̀
j=2

li,j(x
αj) + ci,0 and qi(x) =

∑̀
j=2

l′i,j(x
αj) + c′i,0 , (9)

where the li,j , l
′
i,j are linearized polynomials over F2n [x]/(x2

n − x) and where
the ci,0, c

′
i,0 are constants in F2n .

In [15], the authors explain how to find such a representation. In a nutshell,
one randomly picks the qi’s and search for pi’s satisfying (8). This amounts to
solve a linear system with 2n equations and t · |L| unknowns (the coefficients of
the pi’s). Note that when the choice of the classes and the qi’s leads to a solvable
system, then it can be used with any s-box (since the s-box is the target vector
of the linear system). We then have two necessary (non sufficient) conditions for
such a system to be solvable: (1) the set L of cyclotomic classes is such that
t · |L| ≥ 2n, (2) all the monomials can be reached by multiplying two monomials
from xL, that is {xi · xj mod (x2

n − x) ; i, j ∈ L} = x[[0,2
n−1]]. For the sake of

efficiency, the authors of [15] impose an additional constraint for the choice of the
classes: (3) every class (but C0 = {0}) have the maximal cardinality of n. Under
this additional constraint, condition (1) amounts to the following inequality:
t ·
(
1 + n · (` − 1)) ≥ 2n. Minimizing the number of nonlinear multiplications

while satisfying this constraint leads to parameters t ≈
√

2n/n and ` ≈
√

2n/n.

Based on the above representation, the s-box can be evaluated using (` −
2) + (t − 1) nonlinear multiplications (plus some linear operations). In a first
phase, one generates the monomials corresponding to the cyclotomic classes in
L. Each xαi can be obtained by multiplying two previous xαj and xαk (where
xαj might be squared w times if necessary). In the masking world, each of these
multiplications is performed with a call to ISW. The polynomials pi(x) and qi(x)
can then be computed according to (9). In practice the linearized polynomials
are tabulated so that at masked computation, applying a li,j simply consists
in performing a look-up on each share of the corresponding xαj . In the second
phase, one simply evaluates (8), which takes t − 1 nonlinear multiplications
plus some additions. We recall that in the masking world, linear operation such
as additions or linearized polynomial evaluations can be applied on each share
independently yielding a O(d) complexity, whereas nonlinear multiplications are
computed by calling ISW with a O(d2) complexity. The performances of the
CRV method is hence dominated by the `+ t− 3 calls to ISW.

Mask refreshing. As explained in Section 4.1, one must be careful while
composing ISW multiplications with linear operations. In the case of the CRV
method, ISW multiplications are involved on sharings of values qi(x) and pi(x)
which are linearly computed from the sharings of the xαj (see (9)). This contra-
dicts the independence requirement for the input sharings of an ISW multipli-
cation, and this might presumably induce a flaw as the one described in [14]. In

order to avoid such a flaw in our masked implementation of CRV, we systemati-
cally refreshed one of the input sharings, namely the sharing of qi(x). As shown
in Section 4.4, the overhead implied by such a refreshing is manageable.

Improving CRV with CPRR. As suggested in [11], CRV can be improved
by using CPRR evaluations instead of ISW multiplications in the first phase of
CRV, whenever CPRR is faster than ISW (i.e. when full-table multiplication
cannot be afforded). Instead of multiplying two previously computed powers
xαj and xαk , the new power xαi is derived by applying the quadratic function
x 7→ x2

w+1 for some w ∈ [[1, n − 1]]. In the masking world, securely evaluating
such a function can be done with a call to CPRR. The new chain of cyclotomic
classes Cα1=0 ∪ Cα2=1 ∪ Cα3

∪ . . . ∪ Cα`
must then satisfy αi = (2w + 1)αj for

some j < i and w ∈ [[1, n− 1]].
We have implemented the search of such chains of cyclotomic classes satisfy-

ing conditions (1), (2) and (3). We could validate that for every n ∈ [[4, 10]] and
for the parameters (`, t) given in [15], we always find such a chain leading to a
solvable system. For the sake of code compactness, we also tried to minimize the
number of CPRR exponents 2w + 1 used in these chains (since in practice each
function x 7→ x2

w+1 is tabulated). For n ∈ {4, 6, 7} a single CPRR exponent
(either 3 or 5) is sufficient to get a satisfying chain (i.e. a chain of cyclotomic
class fulfilling the above conditions and leading to a solvable system). For the
other values of n, we could prove that a single CPRR exponent does not suffice
to get a satisfying chain. We could then find satisfying chains for n = 5 and
n = 8 using 2 CPRR exponents (specifically 3 and 5). For n > 8, we tried all the
pairs and triplets of possible CPRR exponents without success, we could only
find a satisfying chain using the 4 CPRR exponents 3, 5, 9 and 17.

Optimizing CRV parameters. We can still improve CRV by optimizing the
parameters (`, t) depending on the ratio θ = CCPRR

CISW
, where CCPRR and CISW

denote the costs of ISW and CPRR respectively. The cost of the CRV method
satisfies

CCRV = (`− 2) CCPRR + (t− 1) CISW =
(
(`− 2) · θ + t− 1)

)
CISW

≥
(

(`− 2) · θ +

⌈
2n

(`− 1) · n+ 1

⌉
− 1
)
CISW

where the inequality holds from conditions (1) and (3) above. This lower bound
ensures that the system contains enough unknowns to be solvable. In practice,
it was observed in [15] that this is a sufficient condition most of the time to get
a solvable system (and our experiments corroborate this fact). Our optimized
version of CRV hence consists in using the parameter ` minimizing the above

lower bound and the corresponding t =
⌈

2n

(`−1)·n+1

⌉
as parameters for given

bit-length n and cost ratio θ.
It can be checked (see full version) that a ratio slightly lower than 1 implies a

change of optimal parameters for all values of n except 4 and 9. In other words, as

soon as CPRR is slightly faster than ISW, using a higher ` (i.e. more cyclotomic
classes) and therefore a lower t is a sound trade. For our implementations of
ISW and CPRR (see Section 4), we obtained a ratio θ greater than 1 only when
ISW is based on the full-table multiplication. In that case, no gain can be obtain
from using CPRR in the first phase of CRV, and one should use the original CRV
parameters. On the other hand, we obtained θ-ratios of 0.88 and 0.75 for half-
table-based ISW and exp-log-based ISW respectively. For the parallel versions,
these ratios become 0.69 (half-table ISW) and 0.58 (exp-log ISW). For such
ratios, the optimal parameter ` is greater than in the original CRV method (see
full version for details).

For n ∈ {6, 8, 10}, we checked whether we could find satisfying CPRR-based
chains of cyclotomic classes, for the obtained optimal parameters. For n = 6,
the optimal parameters are (`, t) = (5, 3) (giving 3 CPRR plus 2 ISW) which
are actually the original CRV parameters. We could find a satisfying chain for
these parameters. For n = 8, the optimal parameters are (`, t) = (9, 4) (giving 7
CPRR plus 3 ISW). For these parameters we could not find any satisfying chain.
We therefore used the second best set of parameters that is (`, t) = (8, 5) (giving
6 CPRR plus 4 ISW) for which we could find a satisfying chain. For n = 10, the
optimal parameters are (`, t) = (14, 8) (giving 12 CPRR plus 7 ISW). For these
parameters we could neither find any satisfying chain. So once again, we used
the second best set of parameters, that is (`, t) = (13, 9) (giving 11 CPRR plus 8
ISW) and for which we could find a satisfying chain. All the obtained satisfying
CPRR-based chains of cyclotomic classes are provided in the full version of the
paper.

Table 2 compares the performances of the original CRV method and the im-
proved versions for our implementation of ISW (half-table and exp-log variants)
and CPRR.8 For the improved methods, we give the ratio of asymptotic per-
formances with respect to the original version. This ratio ranks between 79%
and 94% for the improved version and between 75% and 93% for the improved
version with optimized parameters.

Table 2. Performances of CRV original version and improved version (with and without
optimized parameters).

Original CRV ([15]) CRV with CPRR ([11]) Optimized CRV with CPPR

ISW # CPRR clock cycles # ISW # CPRR clock cycles ratio # ISW # CPRR clock cycles ratio

n = 6 (HT) 5 0 142.5 d2 + O(d) 2 3 132 d2 + O(d) 93% 2 3 132 d2 + O(d) 93%

n = 6 (EL) 5 0 167.5 d2 + O(d) 2 3 142 d2 + O(d) 85% 2 3 142 d2 + O(d) 85%

n = 8 (HT) 10 0 285 d2 + O(d) 5 5 267.5 d2 + O(d) 94% 4 6 264 d2 + O(d) 93%

n = 8 (EL) 10 0 335 d2 + O(d) 5 5 292.5 d2 + O(d) 87% 4 6 284 d2 + O(d) 85%

n = 10 (EL) 19 0 997.5 d2 + O(d) 10 9 858 d2 + O(d) 86% 8 11 827 d2 + O(d) 83%

n = 8 (HT) �4 10 0 775 d2 + O(d) 5 5 657.5 d2 + O(d) 85% 4 6 634 d2 + O(d) 82%

n = 8 (EL) �4 10 0 935 d2 + O(d) 5 5 737.5 d2 + O(d) 79% 4 6 698 d2 + O(d) 75%

8 We only count the calls to ISW and CPRR since other operations are similar in the
three variants and have linear complexity in d.

5.2 Algebraic Decomposition Method

The algebraic decomposition method was recently proposed by Carlet, Prouff,
Rivain and Roche in [11]. It consists in using a basis of polynomials (g1, g2, . . . , gr)
that are constructed by composing polynomials fi as follows{

g1(x) = f1(x)
gi(x) = fi

(
gi−1(x)

) (10)

The fi’s are of given algebraic degree s. In our context, we consider the al-
gebraic decomposition method for s = 2, where the fi’s are (algebraically)
quadratic polynomials. The method then consists in representing an s-box S(x)
over F2n [x]/(x2

n − x) as

S(x) =

t∑
i=1

pi
(
qi(x)

)
+

r∑
i=1

`i
(
gi(x)

)
+ `0(x) , (11)

with

qi(x) =

r∑
j=1

`i,j
(
gj(x)

)
+ `i,0(x) , (12)

where the pi’s are quadratic polynomials over F2n [x]/(x2
n − x), and where the

`i’s and the `i,j ’s are linearized polynomials over F2n [x]/(x2
n − x).

As explain in [11], such a representation can be obtained by randomly picking
some fi’s and some `i,j ’s (which fixes the qi’s) and then search for pi’s and `i’s
satisfying (11). As for the CRV method, this amounts to solve a linear system
with 2n equations where the unknowns are the coefficients of the pi’s and the
`i’s. Without loss of generality, we can assume that only `0 has a constant
terms. In that case, each pi is composed of 1

2n(n + 1) monomials, and each
`i is composed of n monomials (plus a constant term for `0). This makes a total
of 1

2 n (n+ 1) · t+n · r+ 1 unknown coefficients. In order to get a solvable system
we hence have the following condition: (1) 1

2 n (n+1) · t+n ·r+1 ≥ 2n. A second
condition is (2) 2r+1 ≥ n, otherwise there exists some s-box with algebraic degree
greater than 2r+1 that cannot be achieved with the above decomposition i.e. the
obtained system is not solvable for every target S.

Based on the above representation, the s-box can be evaluated using r + t
evaluations of quadratic polynomials (the fi’s and the qi’s). In the masking
world, this is done thanks to CPRR evaluations. The rest of the computation
are additions and (tabulated) linearized polynomials which are applied to each
share independently with a complexity linear in d. The cost of the algebraic
decomposition method is then dominated by the r + t calls to CPRR.

We implemented the search of sound algebraic decompositions for n ∈ [[4, 10]].
Once again, we looked for full rank systems i.e. systems that would work with
any target s-box. For each value of n, we set r to the smallest integer satisfying
condition (2) i.e. r ≥ log2(n) − 1, and then we looked for a t starting from the

lower bound t ≥ 2(2n−rn−1)
n(n+1) (obtained from condition (1)) and incrementing until

a solvable system can be found. We then increment r and reiterate the process
with t starting from the lower bound, and so on. For n ≤ 8, we found the same
parameters as those reported in [11]. For n = 9 and n = 10 (these cases were
not considered in [11]), the best parameters we obtained were (r, t) = (3, 14) and
(r, t) = (4, 22) respectively.

Saving linear terms. In our experiments, we realized that the linear terms
`i
(
gi(x)

)
could always be avoided in (11). Namely, for the best known pa-

rameters (r, t) for every n ∈ [[4, 10]], we could always find a decomposition
S(x) =

∑t
i=1 pi

(
qi(x)

)
hence saving r + 1 linearized polynomials. This is not

surprising if we compare the number of degrees of freedom brought by the pi’s
in the linear system (i.e. 1

2 n (n+ 1) · t) to those brought by the `i’s (i.e. n · r).
More details are given in the full version of the paper.

5.3 Specific Methods for AES and PRESENT

Rivain-Prouff (RP) method for AES. Many works have proposed masking
schemes for the AES s-box and most of them are based on its peculiar algebraic
structure. It is the composition of the inverse function x 7→ x254 over F28 and
an affine function: S(x) = Aff(x254). The affine function being straightforward
to mask with linear complexity, the main issue is to design an efficient masking
scheme for the inverse function.

In [34], Rivain and Prouff introduced the approach of using an efficient ad-
dition chain for the inverse function that can be implemented with a minimal
number of ISW multiplications. They show that the exponentiation to the 254
can be performed with 4 nonlinear multiplications plus some (linear) squarings,
resulting in a scheme with 4 ISW multiplications. In [14], Coron et al. propose
a variant where two of these multiplications are replaced CPRR evaluations (of
the functions x 7→ x3 and x 7→ x5).9 This was further improved by Grosso et al.
in [22] who proposed the following addition chain leading to 3 CPRR evaluations
and one ISW multiplications: x254 = (x2 · ((x5)5)5)2. This addition chain has the
advantage of requiring a single function x 7→ x5 for the CPRR evaluation (hence
a single LUT for masked implementation). Moreover it can be easily checked by
exhaustive search that no addition chain exists that trades the last ISW mul-
tiplication for a CPRR evaluation. We therefore chose to use the Grosso et al.
addition chain for our implementation of the RP method.

Kim-Hong-Lim (KHL) method for AES. This method was proposed in
[26] as an improvement of the RP scheme. The main idea is to use the tower

9 The original version of the RP scheme [34] actually involved a weak mask refreshing
procedure which was exploited in [14] to exhibit a flaw in the s-box processing.
The CPRR variant of ISW was originally meant to patch this flaw but the authors
observed that using their scheme can also improve the performances. The security
of the obtained variant of the RP scheme was recently verified up to masking order
4 using program verification techniques [2].

field representation of the AES s-box [36] in order to descend from F28 to F24

where the multiplications can be fully tabulated. Let δ denote the isomorphism
mapping F28 to (F24)2 with F28 ≡ F24 [x]/p(x), and let γ ∈ F28 and λ ∈ F24 such
that p(x) = x2 + x+ λ and p(γ) = 0. The tower field method for the AES s-box
works as follows:

1. ahγ + al = δ(x), ah, al ∈ F24 4. a′h = d′ aj ∈ F24

2. d = λ a2h + al · (ah + al) ∈ F24 5. a′l = d′(ah + al) ∈ F24

3. d′ = d14 ∈ F24 6. S(x) = Aff(δ−1(a′hγ + a′l)) ∈ F28

At the third step, the exponentiation to the 14 can be performed as d14 =
(d3)4 · d2 leading to one CPRR evaluation (for d 7→ d3) and one ISW multiplica-
tion (plus some linear squarings).10 This gives a total of 4 ISW multiplications
and one CPRR evaluation for the masked AES implementation.

F◦G method for PRESENT. As a 4-bit s-box, the PRESENT s-box can be
efficiently secured with the CRV method using only 2 (full table) ISW multiplica-
tions. The algebraic decomposition method would give a less efficient implemen-
tation with 3 CPRR evaluations. Another possible approach is to use the fact
that the PRESENT s-box can be expressed as the composition of two quadratic
functions S(x) = F ◦G(x). This representation was put forward by Poschmann
et al. in [31] to design an efficient threshold implementation of PRESENT. In our
context, this representation can be used to get a masked s-box evaluation based
on 2 CPRR evaluations. Note that this method is asymptotically slower than
CRV with 2 full-table ISW multiplications. However, due to additional linear
operations in CRV, F ◦G might actually be better for small values of d.

5.4 Implementations and Performances

We have implemented the CRV method and the algebraic decomposition method
for the two most representative values of n = 4 and n = 8. For n = 4, we used
the full-table multiplication for ISW (256-byte table), and for n = 8 we used the
half-table multiplication (8-KB table) and the exp-log multiplication (0.75-KB
table). Based on our analysis of Section 5.1, we used the original CRV method for
n = 4 (i.e. (`, t) = (3, 2) with 2 ISW multiplications), and we used the improved
CRV method with optimized parameters for n = 8 (i.e. (`, t) = (8, 5) with 6
CPRR evaluations and 4 ISW multiplications). We further implemented parallel
versions of these methods, which mainly consisted in replacing calls to ISW and
CPRR by calls to their parallel versions (see Section 4.3), and replacing linear
operations by their parallel counterparts.

We also implemented the specific methods described in Section 5.3 for the
AES and PRESENT s-boxes, as well as their parallel counterparts. Specifically,

10 The authors of [26] suggest to perform d3 = d2 ·d with a full tabulated multiplication
but this would actually imply a flaw as described in [14]. That is why we use a CPRR
evaluation for this multiplication.

we implemented the F ◦G method for PRESENT and the RP and KHL methods
for AES. The RP method was implemented with both the half-table and the
exp-log methods for the ISW multiplication. For the KHL method, the ISW
multiplications and the CPRR evaluation are performed on 4-bit values. It was
then possible to perform 8 evaluations in parallel. Specifically, we first apply the
isomorphism δ on 8 s-box inputs to obtain 8 pairs (ah, al). The ah values are
grouped in one register and the al values are then grouped in a second register.
The KHL method can then be processed in a 8-parallel version relying on the
parallel ISW and CPRR procedures for n = 4.

Our implementation results (in terms of clock cycles) are depicted in Figures
6 and 7 for n = 4 (with the F ◦G method as a particular case), in Figures 8 and
9 for n = 8, and in Figures 10 and 11 for the AES s-box.

2 4 6 8 10

2,000

4,000

6,000

8,000

d

cl
o
ck

cy
cl

es

Alg. decomp.

CRV-(3, 2)

F ◦G

Fig. 6. Timings for one s-box (n = 4).

2 4 6 8 10

1

2

3

·104

d

cl
o
ck

cy
cl

es

Alg. decomp. (8�)

CRV-(3, 2) (8�)

F ◦G (8�)

F ◦G (8×)

Fig. 7. Timings for 8 s-boxes (n = 4).

2 4 6 8 10

2

4

6

8

·104

d

cl
o
ck

cy
cl

es

Alg. decomp.

CRV-(8, 5) (ISW-HT)

CRV-(8, 5) (ISW-EL)

Fig. 8. Timings for one s-box (n = 8).

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

·105

d

cl
o
ck

cy
cl

es

Alg. decomp.(4�)

CRV-(8, 5) (ISW-HT) (4�)

CRV-(8, 5) (ISW-EL) (4�)

CRV-(8, 5) (ISW-HT) (4×)

Fig. 9. Timings for 4 s-boxes (n = 8).

We observe that the CRV method is clearly better than the algebraic de-
composition method for n = 4 in both the serial and parallel case. This is not
surprising since the former involves 2 calls to ISW-FT against 3 calls to CPRR
for the latter. For n = 8, CRV is only slightly better than the algebraic decompo-

sition, which is due to the use of CPRR and optimized parameters, as explained
in Section 5.1. On the other hand, the parallel implementation of the algebraic
decomposition method becomes better than CRV which is due to the efficiency
of the CPRR parallelization.

Regarding the specific case of PRESENT, we see that the F ◦ G method is
actually better than CRV for d ∈ [[2, 10]] thought it is asymptotically slower. It
can be checked (see full version) that CRV becomes faster only after d ≥ 38.
In parallel, F ◦ G is also faster than CRV until d ≥ 11. This shows that the
F ◦G method offers a valuable alternative to the CRV method for PRESENT in
practice. Note that many 4-bit s-boxes have a similar decomposition (see [6] for
an extensive analysis), so this method could be applied to further blockciphers.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2
·104

d

cl
o
ck

cy
cl

es

KHL

RP (ISW-HT)

RP (ISW-EL)

Fig. 10. Timings for one AES s-box.

2 4 6 8 10

2

4

6

8

·104

d

cl
o
ck

cy
cl

es

KHL (8�)

RP (ISW-HT) (2× 4�)

RP (ISW-EL) (2× 4�)

RP (ISW-HT) (8×)

Fig. 11. Timings for 8 AES s-boxes.

For the AES, we observe that the RP method is better than KHL, which
means that the gain obtained by using full-table multiplications does not com-
pensate the overhead implied by the additional multiplication required in KHL
compared to RP. We also see that the two versions of RP are very closed, which
is not surprising since the difference regards a single multiplication (the other
ones relying on CPRR). Using ISW-HT might not be interesting in this con-
text given the memory overhead. For the parallel versions, KHL becomes better
since it can perform 8 evaluations simultaneously, whereas RP is bounded to a
parallelization degree of 4. This shows that though the field descent from F28 to
F24 might be nice for full tabulation, it is mostly interesting for increasing the
parallelization degree.

Eventually as a final and global observation, we clearly see that using par-
allelism enables significant improvements. The timings of parallel versions rank
between 40% and 60% of the corresponding serial versions. In the next section,
we push the parallelization one step further, namely we investigate bitslicing for
higher-order masking implementations.

6 Bitslice Methods for S-boxes

In this section, we focus on the secure implementation of AES and PRESENT s-
boxes using bitslice. Bitslice is an implementation strategy initially proposed by
Biham in [4]. It consists in performing several parallel evaluations of a Boolean
circuit in software where the logic gates can be replaced by instructions working
on registers of several bits. As nicely explained in [27], “in the bitslice implemen-
tation one software logical instruction corresponds to simultaneous execution of
m hardware logical gates, where m is a register size [...] Hence bitslice can be
efficient when the entire hardware complexity of a target cipher is small and an
underlying processor has many long registers.”

In the context of higher-order masking, bitslice can be used at the s-box
level to perform several secure s-box computations in parallel. One then need a
compact Boolean representation of the s-box, and more importantly a represen-
tation with the least possible nonlinear gates. These nonlinear gates can then be
securely evaluated in parallel using the ISW scheme as detailed hereafter. Such
an approach was applied in [21] to design blockciphers with efficient masked
computations. To the best of our knowledge, it has never been applied to get
fast implementations of classical blockciphers such as AES or PRESENT. Also
note that a bitsliced implementation of AES masked at first and second orders
was described in [1] and used as a case study for practical side-channel attacks
on a ARM Cortex-A8 processor running at 1 GHz.

6.1 ISW Logical AND

The ISW scheme can be easily adapted to secure a bitwise logical AND between
two m-bit registers. From two d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd) of
two m-bit strings a, b ∈ {0, 1}m, the ISW scheme computes an output d-sharing
(c1, c2, . . . , cd) of c = a ∧ b as follows:

1. for every 1 ≤ i < j ≤ d, sample an m-bit random value ri,j ,
2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j ⊕ ai ∧ bj)⊕ aj ∧ bi ,
3. for every 1 ≤ i ≤ d, compute ci = ai ∧ bi ⊕

⊕
j 6=i ri,j .

On the ARM architecture considered in this paper, registers are of size m =
32 bits. We can hence perform 32 secure logical AND in parallel. Moreover a
logical AND is a single instruction of 1 clock cycle in ARM so we expect the
above ISW logical AND to be faster than the ISW field multiplications. The
detailed performances of our ISW-AND implementation are provided in the full
version. We observe that the ISW-AND is indeed faster than the fastest ISW
field multiplication (i.e. ISW-FT). Moreover it does not require any precomputed
table and is hence lighter in code than the ISW field multiplications (except for
the binary multiplication which is very slow).

6.2 Secure Bitslice AES S-box

For the AES s-box, we based our work on the compact representation proposed
by Boyar et al. in [8]. Their circuit is obtained by applying logic minimization

techniques to the tower-field representation of Canright [9]. It involves 115 logic
gates including 32 logical AND. The circuit is composed of three parts: the top
linear transformation involving 23 XOR gates and mapping the 8 s-box input
bits x0, x1, . . . , x7 to 23 new bits x7, y1, y2, . . . , y21; the middle non-linear
transformation involving 30 XOR gates and 32 AND gates and mapping the
previous 23 bits to 18 new bits z0, z1, . . . , z17; and the bottom linear transfor-
mation involving 26 XOR gates and 4 XNOR gates and mapping the 18 previous
bits to the 8 s-box output bits s0, s1, . . . , s7. In particular, this circuit improves
the usual count of 34 AND gates involved in previous tower-field representations
of the AES s-box.

Using this circuit, we can perform the 16 s-box computations of an AES
round in parallel. That is, instead of having 8 input bits mapped to 8 output
bits, we have 8 (shared) input 16-bit words X0, X1, . . . , X7 mapped to 8 (shared)
output 16-bit words S1, S2, . . . , S8. Each word Xi (resp. Si) contains the ith
bits input bit (resp. output bit) of the 16 s-boxes. Each XOR gate and AND
gate of the original circuit is then replaced by the corresponding (shared) bitwise
instruction between two 16-bit words.

Parallelizing AND gates. For our masked bitslice implementation, a sound
complexity unit is one call to the ISW-AND since this is the only nonlinear oper-
ation, i.e. the only operation with quadratic complexity in d (compared to other
operations that are linear in d). In a straightforward bitslice implementation of
the considered circuit, we would then have a complexity of 32 ISW-AND. This
is suboptimal since each of these ISW-AND is applied to 16-bit words whereas
it can operates on 32-bit words. Our main optimization is hence to group to-
gether pairs of ISW-AND in order to replace them by a single ISW-AND with
fully filled input registers. This optimization hence requires to be able to group
AND gates by pair that can be computed in parallel. To do so, we reordered the
gates in the middle non-linear transformation of the Boyar et al. circuit, while
keeping the computation consistent. We were able to fully parallelize the AND
gates, hence dropping our bitslice complexity from 32 down to 16 ISW-AND.
We thus get a parallel computation of the 16 AES s-boxes of one round with
a complexity of 16 ISW-AND, that is one single ISW-AND per s-box. Since an
ISW-AND is (significantly) faster than any ISW multiplication, our masked bit-
slice implementation breaks through the barrier of one ISW field multiplication
per s-box. Our reordered version of the Boyar et al. circuit is provided in the
full version of the paper.

Mask refreshing. As for the CRV method, our bitslice AES s-box makes calls
to ISW with input sharings that might be linearly related. In order to avoid
any flaw, we systematically refreshed one of the input sharings in our masked
implementation. Here again, the implied overhead is mitigated (between 5% and
10%).

6.3 Secure Bitslice PRESENT S-box

For our masked bitslice implementation of the PRESENT s-box, we used the
compact representation given by Courtois et al. in [16], which was obtained
from Boyar et al. ’s logic minimization techniques improved by involving OR
gates. This circuit is composed of 4 nonlinear gates (2 AND and 2 OR) and 9
linear gates (8 XOR and 1 XNOR).

PRESENT has 16 parallel s-box computations per round, as AES. We hence
get a bitslice implementation with 16-bit words that we want to group for the
calls to ISW-AND. However for the chosen circuit, we could not fully parallelize
the nonlinear gates because of the dependency between three of them. We could
however group the two OR gates after a slight reordering of the operations. We
hence obtain a masked bitslice implementation computing the 16 PRESENT s-
boxes in parallel with 3 calls to ISW-AND. Our reordered version of the circuit is
depicted in the full version of the paper. For the sake of security, we also refresh
one of the two input sharings in the 3 calls to ISW-AND. As for the bitslice AES
s-box, the implied overhead is manageable.

6.4 Implementation and Performances

Figures 12 and 13 plot the performances obtained for our masked bitslice imple-
mentations of the AES and PRESENT s-boxes. For comparison, we also recall
the performances of the fastest polynomial methods for AES and PRESENT
(i.e. parallel versions of KHL and F ◦G) as well as the fastest generic methods
for n = 8 and n = 4 (i.e. parallel versions of the algebraic decomposition method
for n = 8 and CRV for n = 4).

2 4 6 8 10

0.5

1

1.5

2

2.5

·105

d

cl
o
ck

cy
cl

es

Bitslice (16�)

KHL (2× 8�)

Alg. dec. for n = 8 (4× 4�)

Fig. 12. Timings for 16 AES s-boxes.

2 4 6 8 10

1

2

3

·104

d

cl
o
ck

cy
cl

es

Bitslice (16�)

F ◦G (2× 8�)

CRV for n = 4 (2× 8�)

Fig. 13. Timings for 16 PRESENT s-
boxes.

These results clearly demonstrate the superiority of the bitslicing approach.
Our masked bitslice implementations of the AES and PRESENT s-boxes are
significantly faster than state-of-the art polynomial methods finely tuned at the
assembly level.

7 Cipher Implementations

This section finally describes masked implementations of the full PRESENT
and AES blockciphers. These blockciphers are so-called substitution-permutation
networks, where each round is composed of a key addition layer, a nonlinear layer
and a linear diffusion layer. For both blockciphers, the nonlinear layer consists in
the parallel application of 16 s-boxes. The AES works on a 128-bit state (which
divides into sixteen 8-bit s-box inputs) whereas PRESENT works on a 64-bit
state (which divides into sixteen 4-bit s-box inputs). For detailed specifications of
these blockciphers, the reader is referred to [18] and [7]. For both blockciphers, we
follow two implementation strategies: the standard one (with parallel polynomial
methods for s-boxes) and the bitslice one (with bitslice s-box masking).

For the sake of efficiency, we assume that the key is already expanded, and
for the sake of security we assume that each round key is stored in (non-volatile)
memory under a shared form. In other words, we do not perform a masked key
schedule. Our implementations start by masking the input plaintext with d− 1
random m-bit strings (where m is the blockcipher bit-size) and store the d result-
ing shares in memory. These d shares then compose the sharing of the blockcipher
state that is updated by the masked computation of each round. When all the
rounds have been processed, the output ciphertext is recovered by adding all
the output shares of the state. For the bitslice implementations, the translation
from standard to bitslice representation is performed before the initial masking
so that it is done only once. Similarly, the translation back from the bitslice to
the standard representation is performed a single time after unmasking.

The secure s-box implementations are done as described in previous sections.
It hence remains to deal with the key addition and the linear layers. These steps
are applied to each share of the state independently. The key-addition step simply
consists in adding each share of the round key to one share of the state. The
linear layer implementations are described in the full version of the paper.

7.1 Performances

In our standard implementation of AES, we used the parallel versions of KHL
and RP (with ISW-EL) for the s-box. For the standard implementation of
PRESENT, we used the parallel versions of the F ◦G method and of the CRV
method. The obtained performances are summarized in Table 3. The timings are
further plotted in Figures 14 and 15 for illustratetion.

These results clearly confirm the superiority of the bitslice implementations
in our context. The bitslice AES implementation asymptotically takes 38% of the
timings of the standard AES implementation using the best parallel polynomial
method for the s-box (namely KHL). This ratio reaches 18% for PRESENT
(compared to the F ◦G method). It is also interesting to observe that PRESENT
is slower than AES for standard masked implementations whereas it is faster for
masked bitslice implementations. In the latter case, a PRESENT computation
asymptotically amounts to 0.58 AES computation. This ratio directly results

from the number of calls to ISW-AND which is 10× 16 = 160 for AES (16 per
round) and 31× 3 = 93 for PRESENT (3 per round).

Table 3. Performances of masked blockciphers implementation.

Clock cycles Code (KB) Random (bytes)

Bitslice AES 3280 d2 + 14075 d + 12192 7.5 640d(d + 1)

Standard AES (KHL �) 7640 d2 + 6229 d + 6311 4.8 560d(d + 1)

Standard (AES RP-HT �) 9580 d2 + 5129 d + 7621 12.4 400d(d + 1)

Standard (AES RP-EL �) 10301 d2 + 6561 d + 7633 4.1 400d(d + 1)

Bitslice PRESENT 1906.5 d2 + 10972.5 d + 7712 2.2 372d(d + 1)

Standard PRESENT (F ◦G �) 11656 d2 + 341 d + 9081 1.9 496d(d + 1)

Standard PRESENT (CRV �) 9145 d2 + 45911 d + 11098 2.6 248d(d + 1)

2 4 6 8 10

0.2

0.4

0.6

0.8

1
·106

d

cl
o
ck

cy
cl

es

Bitslice

Standard (KHL)

Standard (RP-HL)

Fig. 14. Timings of masked AES.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

·106

d

cl
o
ck

cy
cl

es

Bitslice

Standard (F ◦G)

Standard (CRV)

Fig. 15. Timings of masked PRESENT.

In order to illustrate the obtained performances in practice, Table 4 gives
the corresponding timings in milliseconds for a clock frequency of 60 MHz. For a
masking order of 10, our bitslice implementations only take a few milliseconds.

Table 4. Timings for masked bistlice AES and PRESENT with a 60 Mhz clock.

d = 2 d = 3 d = 4 d = 5 d = 10

Bitslice AES 0.89 ms 1.39 ms 1.99 ms 2.7 ms 8.01 ms

Bitslice PRESENT 0.62 ms 0.96 ms 1.35 ms 1.82 ms 5.13 ms

References

1. J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede. DPA, bitslicing and
masking at 1 GHz. In T. Güneysu and H. Handschuh, editors, Cryptographic

Hardware and Embedded Systems – CHES 2015, volume 9293 of Lecture Notes in
Computer Science, pages 599–619, Saint-Malo, France, Sept. 13–16, 2015. Springer,
Heidelberg, Germany.

2. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub.
Verified proofs of higher-order masking. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture
Notes in Computer Science, pages 457–485, Sofia, Bulgaria, Apr. 26–30, 2015.
Springer, Heidelberg, Germany.

3. G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert, and P.-Y. Strub.
Parallel implementations of masking schemes and the bounded moment leakage
model. Cryptology ePrint Archive, Report 2016/912, 2016. http://eprint.iacr.
org/2016/912.

4. E. Biham. A fast new DES implementation in software. In E. Biham, editor, Fast
Software Encryption – FSE’97, volume 1267 of Lecture Notes in Computer Science,
pages 260–272, Haifa, Israel, Jan. 20–22, 1997. Springer, Heidelberg, Germany.

5. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-order threshold
implementations. In P. Sarkar and T. Iwata, editors, Advances in Cryptology –
ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer Science,
pages 326–343, Kaoshiung, Taiwan, R.O.C., Dec. 7–11, 2014. Springer, Heidelberg,
Germany.

6. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold implemen-
tations of all 3 × 3 and 4 × 4 S-boxes. In E. Prouff and P. Schaumont, editors,
Cryptographic Hardware and Embedded Systems – CHES 2012, volume 7428 of Lec-
ture Notes in Computer Science, pages 76–91, Leuven, Belgium, Sept. 9–12, 2012.
Springer, Heidelberg, Germany.

7. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher.
In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems – CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
450–466, Vienna, Austria, Sept. 10–13, 2007. Springer, Heidelberg, Germany.

8. J. Boyar, P. Matthews, and R. Peralta. Logic minimization techniques with appli-
cations to cryptology. Journal of Cryptology, 26(2):280–312, Apr. 2013.

9. D. Canright. A very compact S-box for AES. In J. R. Rao and B. Sunar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2005, volume 3659 of
Lecture Notes in Computer Science, pages 441–455, Edinburgh, UK, Aug. 29 –
Sept. 1, 2005. Springer, Heidelberg, Germany.

10. C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-order
masking schemes for S-boxes. In A. Canteaut, editor, Fast Software Encryption
– FSE 2012, volume 7549 of Lecture Notes in Computer Science, pages 366–384,
Washington, DC, USA, Mar. 19–21, 2012. Springer, Heidelberg, Germany.

11. C. Carlet, E. Prouff, M. Rivain, and T. Roche. Algebraic decomposition for probing
security. In R. Gennaro and M. J. B. Robshaw, editors, Advances in Cryptology
– CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 742–763, Santa Barbara, CA, USA, Aug. 16–20, 2015. Springer, Heidelberg,
Germany.

12. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, Advances in Cryptology
– CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412,
Santa Barbara, CA, USA, Aug. 15–19, 1999. Springer, Heidelberg, Germany.

13. J.-S. Coron. Higher order masking of look-up tables. In P. Q. Nguyen and E. Os-
wald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 441–458, Copenhagen, Denmark, May 11–
15, 2014. Springer, Heidelberg, Germany.

14. J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In S. Moriai, editor, Fast Software Encryption – FSE 2013,
volume 8424 of Lecture Notes in Computer Science, pages 410–424, Singapore,
Mar. 11–13, 2014. Springer, Heidelberg, Germany.

15. J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In L. Batina and M. Rob-
shaw, editors, Cryptographic Hardware and Embedded Systems – CHES 2014, vol-
ume 8731 of Lecture Notes in Computer Science, pages 170–187, Busan, South
Korea, Sept. 23–26, 2014. Springer, Heidelberg, Germany.

16. N. T. Courtois, D. Hulme, and T. Mourouzis. Solving circuit optimisation problems
in cryptography and cryptanalysis. Cryptology ePrint Archive, Report 2011/475,
2011. http://eprint.iacr.org/2011/475.

17. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing
attacks to noisy leakage. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryp-
tology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science,
pages 423–440, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany.

18. FIPS PUB 197. Advanced Encryption Standard, Nov. 2001.
19. L. Genelle, E. Prouff, and M. Quisquater. Thwarting higher-order side channel

analysis with additive and multiplicative maskings. In B. Preneel and T. Takagi,
editors, Cryptographic Hardware and Embedded Systems – CHES 2011, volume
6917 of Lecture Notes in Computer Science, pages 240–255, Nara, Japan, Sept. 28 –
Oct. 1, 2011. Springer, Heidelberg, Germany.

20. D. Goudarzi and M. Rivain. On the multiplicative complexity of boolean functions
and bitsliced higher-order masking. In B. Gierlichs and A. Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems – CHES 2016, volume 9813 of
Lecture Notes in Computer Science, pages 457–478, Santa Barbara, CA, USA,
Aug. 17–19, 2016. Springer, Heidelberg, Germany.

21. V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici. LS-designs: Bitslice encryp-
tion for efficient masked software implementations. In C. Cid and C. Rechberger,
editors, Fast Software Encryption – FSE 2014, volume 8540 of Lecture Notes in
Computer Science, pages 18–37, London, UK, Mar. 3–5, 2015. Springer, Heidel-
berg, Germany.

22. V. Grosso, E. Prouff, and F.-X. Standaert. Efficient masked S-boxes processing -
A step forward -. In D. Pointcheval and D. Vergnaud, editors, AFRICACRYPT
14: 7th International Conference on Cryptology in Africa, volume 8469 of Lecture
Notes in Computer Science, pages 251–266, Marrakesh, Morocco, May 28–30, 2014.
Springer, Heidelberg, Germany.

23. V. Grosso, F.-X. Standaert, and S. Faust. Masking vs. multiparty computation:
How large is the gap for AES? In G. Bertoni and J.-S. Coron, editors, Cryptographic
Hardware and Embedded Systems – CHES 2013, volume 8086 of Lecture Notes in
Computer Science, pages 400–416, Santa Barbara, CA, USA, Aug. 20–23, 2013.
Springer, Heidelberg, Germany.

24. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 463–481, Santa Barbara,
CA, USA, Aug. 17–21, 2003. Springer, Heidelberg, Germany.

25. A. Journault, F. Standaert, and K. Varici. Improving the security and efficiency
of block ciphers based on LS-designs. Des. Codes Cryptography, 82(1-2):495–509,
2017.

26. H. Kim, S. Hong, and J. Lim. A fast and provably secure higher-order masking
of AES S-box. In B. Preneel and T. Takagi, editors, Cryptographic Hardware
and Embedded Systems – CHES 2011, volume 6917 of Lecture Notes in Computer
Science, pages 95–107, Nara, Japan, Sept. 28 – Oct. 1, 2011. Springer, Heidelberg,
Germany.

27. M. Matsui and J. Nakajima. On the power of bitslice implementation on intel
core2 processor. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware
and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes in Computer
Science, pages 121–134, Vienna, Austria, Sept. 10–13, 2007. Springer, Heidelberg,
Germany.

28. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits:
A very compact and a threshold implementation of AES. In K. G. Paterson, edi-
tor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 69–88, Tallinn, Estonia, May 15–19, 2011. Springer,
Heidelberg, Germany.

29. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. In P. J. Lee and J. H. Cheon, editors,
ICISC 08: 11th International Conference on Information Security and Cryptology,
volume 5461 of Lecture Notes in Computer Science, pages 218–234, Seoul, Korea,
Dec. 3–5, 2009. Springer, Heidelberg, Germany.

30. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. Journal of Cryptology, 24(2):292–321,
Apr. 2011.

31. A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling. Side-
channel resistant crypto for less than 2,300 GE. Journal of Cryptology, 24(2):322–
345, Apr. 2011.

32. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology –
EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
142–159, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

33. E. Prouff and T. Roche. Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In B. Preneel and T. Takagi, editors,
Cryptographic Hardware and Embedded Systems – CHES 2011, volume 6917 of
Lecture Notes in Computer Science, pages 63–78, Nara, Japan, Sept. 28 – Oct. 1,
2011. Springer, Heidelberg, Germany.

34. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In S. Man-
gard and F.-X. Standaert, editors, Cryptographic Hardware and Embedded Systems
– CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages 413–427,
Santa Barbara, CA, USA, Aug. 17–20, 2010. Springer, Heidelberg, Germany.

35. A. Roy and S. Vivek. Analysis and improvement of the generic higher-order mask-
ing scheme of FSE 2012. In G. Bertoni and J.-S. Coron, editors, Cryptographic
Hardware and Embedded Systems – CHES 2013, volume 8086 of Lecture Notes in
Computer Science, pages 417–434, Santa Barbara, CA, USA, Aug. 20–23, 2013.
Springer, Heidelberg, Germany.

36. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A compact Rijndael hardware
architecture with S-box optimization. In C. Boyd, editor, Advances in Cryptology
– ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
239–254, Gold Coast, Australia, Dec. 9–13, 2001. Springer, Heidelberg, Germany.

