
A Note on Perfect Correctness by
Derandomization?

Nir Bitansky and Vinod Vaikuntanathan

MIT

Abstract. We show a general compiler that transforms a large class of
erroneous cryptographic schemes (such as public-key encryption, indis-
tinguishability obfuscation, and secure multiparty computation schemes)
into perfectly correct ones. The transformation works for schemes that
are correct on all inputs with probability noticeably larger than half, and
are secure under parallel repetition. We assume the existence of one-way
functions and of functions with deterministic (uniform) time complexity
2O(n) and non-deterministic circuit complexity 2Ω(n).
Our transformation complements previous results that showed how public-
key encryption and indistinguishability obfuscation that err on a notice-
able fraction of inputs can be turned into ones that for all inputs are
often correct.
The technique relies on the idea of “reverse randomization” [Naor, Crypto
1989] and on Nisan-Wigderson style derandomization, previously used
in cryptography to remove interaction from witness-indistinguishable
proofs and commitment schemes [Barak, Ong and Vadhan, Crypto 2003].

1 Introduction

Randomized algorithms are often faster and simpler than their state-of-the-art
deterministic counterparts, yet, by their very nature, they are error-prone. This
gap has motivated a rich study of derandomization, where a central avenue has
been the design of pseudo-random generators [BM84, Yao82a, NW94] that could
offer one universal solution for the problem. This has led to surprising results,
intertwining cryptography and complexity theory, and culminating in a deran-
domization of BPP under worst-case complexity assumptions, namely, the ex-
istence of functions in E = Dtime(2O(n)) with worst-case circuit complexity
2Ω(n) [NW94, IW97].

For cryptographic algorithms, the picture is somewhat more subtle. Indeed,
in cryptography, randomness is almost always necessary to guarantee any sense
of security. While many cryptographic schemes are perfectly correct even if ran-
domized, some do make errors. For example, in some encryption algorithms,
notably the lattice-based ones [AD97, Reg05], most but not all ciphertexts can

? Research supported in part by NSF Grants CNS-1350619 and CNS-1414119, Alfred
P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation,
and a Steven and Renee Finn Career Development Chair from MIT.

2 Nir Bitansky and Vinod Vaikuntanathan

be decrypted correctly. Here, however, we cannot resort to general derandomiza-
tion, as a (completely) derandomized version will most likely be totally insecure.

It gets worse. While for general algorithms infrequent errors are tolerable in
practice, for cryptographic algorithms, errors can be (and have been) exploited
by adversaries (see [BDL01] and a long line of followup works). Thus, the ques-
tion of eliminating errors is ever more important in the cryptographic context.
This question was addressed in a handful of special contexts in cryptography.
In the context of interactive proofs, [GMS87, FGM+89] show how to turn any
interactive proof into one with perfect completeness. In the context of encryption
schemes, Goldreich, Goldwasser, and Halevi [GGH97] showed how to partially
eliminate errors from lattice-based encryption schemes [AD97, Reg05]. Subse-
quent works, starting from that of Dwork, Naor and Reingold [DNR04a], show
how to partially eliminate errors from any encryption scheme [HR05, LT13].
Here, “partial” refers to the fact that they eliminate errors from the encryption
and decryption algorithms, but not the key generation algorithm. That is, in
their final immunized encryption scheme, it could still be the case that there are
bad keys that always cause decryption errors. In the context of indistinguisha-
bility obfuscation (IO), Bitansky and Vaikuntanathan [BV16] recently showed
how to partially eliminate errors from any IO scheme: namely, they show how to
convert any IO scheme that might err on a fraction of the inputs into one that
is correct on all inputs, with high probability over the coins of the obfuscator.

This Work. We show how to completely immunize a large class of cryptographic
algorithms, turning them into algorithms that make no errors at all. Our most
general result concerns cryptographic algorithms (or protocols) that are “secure
under parallel repetition”. We show:

Theorem 1.1 (Informal). Assume that one-way functions exist and functions
with deterministic (uniform) time complexity 2O(n) and non-deterministic cir-
cuit complexity 2Ω(n) exist. Then, any encryption scheme, indistinguishability
obfuscation scheme, and multiparty computation protocol that is secure under
parallel repetition can be completely immunized against errors.

More precisely, we show that perfect correctness is guaranteed when the
transformed scheme or protocol are executed honestly. The security of the trans-
formed scheme or protocol is inherited from the security of the original scheme
under parallel repetition. In the default setting of encryption and obfuscation
schemes, encryption and obfuscation are always done honestly, and security un-
der parallel repetition is well known to be guaranteed automatically. Accordingly,
we obtain the natural notion of perfectly-correct encryption and obfuscation. In
contrast, in the setting of MPC, corrupted parties may in general affect any
part of the computation. In particular, in the case of corrupted parties, the
transformed protocol does not provide a better correctness guarantee, but only
the same correctness guarantee as the original (repeated) protocol. We find
that perfect correctness is a natural requirement and the ability to generically
achieve it for a large class of cryptographic schemes is aesthetically appealing.
In addition, while in many applications almost perfect correctness may be suffi-

A Note on Perfect Correctness by Derandomization 3

cient, some applications do require perfectly correct cryptographic schemes. For
example, using public-key encryption as a commitment scheme requires perfect
correctness, the construction of non-interactive witness-indistinguishable proofs
in [BP15] requires a perfectly correct indistinguishability obfuscation, and the
construction of 3-message zero knowledge against uniform verifiers [BCPR14],
requires perfectly correct delegation schemes.

Our tools, perhaps unsurprisingly given the above discussion, come from the
area of derandomization, in particular we make heavy use of Nisan-Wigderson
(NW) type pseudorandom generators. Such NW-generators were previously used
by Barak, Ong and Vadhan [BOV07] to remove interaction from commitment
schemes and ZAPs. We use it here for a different purpose, namely to immunize
cryptographic algorithms from errors. Below, we elaborate on the similarities
and differences.

1.1 The Basic Idea

We briefly explain the basic idea behind the transformation, focusing on the
case of public-key encryption. Imagine that we have an encryption scheme given
by randomized key-generation and encryption algorithms, and a deterministic
decryption algorithm (Gen,Enc,Dec), where for any message m ∈ {0, 1}n, there
is a tiny decryption error:

Pr
(rg,re)←{0,1}poly(n)

[Decsk(Encpk(m; re)) 6= m | (pk, sk) = Gen(rg)] ≤ 2−n .

Can we deterministically choose “good randomness” (rg, re) that leads to cor-
rect decryption? This question indeed seems analogous to the question of deran-
domizing BPP. There, the problem can be solved using Nisan-Wigderson type
pseudo-random generators [NW94]. Such generators can produce a poly(n)-long
pseudo-random string using a short random seed of length d(n) = O(log n).
They are designed to fool distinguishers of some prescribed polynomial size t(n),
and may run in time 2O(d) � t. Derandomization of the BPP algorithm is then
simply done by enumerating over all 2d = nO(1) seeds and taking the majority.

We can try to use NW-type generators to solve our problem in a similar way.
However, the resulting scheme wouldn’t be secure – indeed, it will be determin-
istic, which means it cannot be semantically secure [GM84]. To get around this,
we use the idea of reverse randomization from [Lau83, Nao91, DN07, DNR04b].
For each possible seed i ∈ {0, 1}d for the NW-generator NWPRG, we derive
corresponding randomness

(rie, r
i
g) = NWPRG(i)⊕

(
BMYPRG(sie),BMYPRG(sig)

)
.

Here BMYPRG is a Blum-Micali-Yao (a.k.a cryptographic) pseudo-random
generator [BM82, Yao82b], and the seeds (sig, s

i
e) ∈ {0, 1}` are chosen indepen-

dently for every i, with the sole restriction that their image is sparse enough
(say, they are of total length ` = n/2). Encryption and decryption for any given
message are now done in parallel with respect to all 2d copies of the original

4 Nir Bitansky and Vinod Vaikuntanathan

scheme, where the final result of decryption is defined to be the majority of the
2d decrypted messages.

Security is now guaranteed by the BMY-type generators and the fact that
public-key encryption can be securely performed in parallel. Crucially, the pseudo-
randomness of BMY strings is guaranteed despite the fact that their image forms
a sparse set. The fact that the set of BMY string is sparse will be used to the
perfect correctness of the scheme. In particular, when shifted at random, this set
will evade the (tiny) set of “bad randomness” (that lead to decryption errors)
with high probability 1− 2`−n ≥ 1− 2−n/2.

In the actual construction, the image is not shifted truly at random, but
rather by an NW-pseudo-random string, and we would like to argue that this
suffices to get the desired correctness. To argue that NW-pseudo-randomness is
enough, we need to show that with high enough probability (say 0.51) over the
choice of the NW string, the shifted image of the BMY generator still evades “bad
randomness”. This last property may not be efficiently testable deterministically,
but can be tested non-deterministically in fixed polynomial time, by guessing the
seeds for the BMY generator that would lead to bad randomness. We accordingly
rely on NW generators that fool non-deterministic circuits. Such pseudo-random
generators are known under the worst case assumption that there exist functions
in E with non-deterministic circuit complexity 2Ω(n) [SU01].

Relation to [BOV07]. Barak, Ong, and Vadhan were the first to demonstrate
how NW-type derandomization can be useful in cryptography. They showed
how NW generators can be used to derandomize Naor’s commitments [Nao91]
and Dwork and Naor’s ZAPs [DN07]. In the applications they examined, “re-
verse randomization” is already encapsulated in the constructions of ZAPs and
commitments that they start from, and they show that “the random shift” can
be derandomized, using the fact that ZAPs and commitments are secure under
parallel repetition.

There, they were not interested in the correctness of a specific computation
per se, but rather in the existence of an “incorrect object”, namely an accepting
proof for a false statement in ZAPs, or a commitment with inconsistent open-
ings. Another difference is that in the applications they consider, it is in fact
enough to use hitting set generators (against co-non-determinism) rather than
pseudorandom generators. Intuitively, the reason is that in these applications
there is one-sided error. For example, in a ZAP system, one already assumes
that true statements are always accepted by the verifier, so when derandomizing
they only need to recognize false statements. This is analogous to having an
encryption system that is always correct on encryptions of zero, but may make
mistakes on encryptions of one.

Organization. In Section 2, we give the required preliminaries. Section 3 presents
the transformation itself. In Section 4, we discuss several examples of interest
where the transformation can be applied.

A Note on Perfect Correctness by Derandomization 5

2 Preliminaries

In this section, we give the required preliminaries, including standard computa-
tional concepts, cryptographic schemes and protocols, and the derandomization
tools that we use.

2.1 Standard Computational Concepts

We recall standard computational concepts concerning Turing machines and
Boolean circuits.

– By algorithm we mean a uniform Turing machine. We say that an algorithm
is PPT if it is probabilistic and polynomial time.

– A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N,

such that each circuit Cλ is of polynomial size λO(1) and has λO(1) input
and output bits.

– We follow the standard habit of modeling any efficient adversary strategy A
as a family of polynomial-size circuits. For an adversary A corresponding to
a family of polynomial-size circuits {Aλ}λ∈N, we often omit the subscript λ,
when it is clear from the context. For simplicity, we shall simply call such
an adversary a polynomial-size adversary.

– We say that a function f : N → R is negligible if it decays asymptotically
faster than any polynomial.

– Two ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
said to be computationally indistinguishable, denoted by X ≈c Y, if for all
polynomial-size distinguishers D, there exists a negligible function ν such
that for all λ,

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ ν(λ).

2.2 Cryptographic Schemes and Protocols

We consider a simple model of cryptographic schemes and protocols that will
allow to describe the transformation generally. In Section 4, we give several
examples of such schemes and protocols.

Executions: Let λ be a security parameter and let m = m(λ), n = n(λ), ` =
`(λ) be polynomially-bounded functions. An (honest) execution of an m-party
scheme (or protocol) Π involves interaction between m PPT parties with inputs
(x1, . . . , xm) ∈ {0, 1}n×m and randomness (r1, . . . , rm) ∈ {0, 1}`×m, at the end
of which they each produce outputs (y1, . . . , ym) ∈ {0, 1}n×m. Abstracting out,
we will think of Π as a single PPT process that runs in some fixed polynomial
time and denote it by y ← Π(1λ, x, r), where x = (x1, . . . , xm), y = (y1, . . . , ym),
and r = (r1, . . . , rm).

6 Nir Bitansky and Vinod Vaikuntanathan

Definition 2.1 ((1 − α)-Correctness). Let f : {0, 1}n×m → {0, 1}n×m be a
polynomial-time computable function. Π computes f (1−α)-correctly if for any
λ and any x ∈ {0, 1}n×m,

Pr
r←{0,1}`×m

[
y 6= f(x)

∣∣ y ← Π(1λ, x, r)
]
≤ α(λ) .

Repeated Executions: For a function k = k(λ), inputs x = (x1, . . . , xm) ∈
{0, 1}n×m and randomness r = (rij)i∈[m],j∈[k], and ri,j ∈ {0, 1}`, the repeated

execution y ← Π⊗k(1λ, x, r) consists of executing Π(1λ, x, r1), . . . ,Π(1λ, x, rk),
where rj = (r1j , . . . , rmj), in parallel and obtaining the corresponding outputs,
namely, y = (yij)i∈[m],j∈[k].

2.3 NW and BMY PRGs

We now define the basic tools required for the main transformation — NW-type
PRGs [NW94] and BMY-type PRGs [BM82, Yao82b]. The transformation itself
is given in the next section.

Definition 2.2 (Nondeterministic Circuits). A nondeterministic boolean
circuit C(x,w) takes x as a primary input and w as a witness. We define
C(x) := 1 if and only if there exists w such that C(x,w) = 1.

Definition 2.3 (NW-Type PRGs against Nondeterministic Circuits).
An algorithm NWPRG : {0, 1}d(n) → {0, 1}n is an NW-generator against non-
deterministic circuits of size t(n) if it is computable in time 2O(d(n)) and any
non-deterministic circuit C of size at most t(n) distinguishes U ← {0, 1}n from
NWPRG(s), where s← {0, 1}d(n), with advantage at most 1/t(n).

We shall rely on the following theorem by Shaltiel and Umans [SU01] re-
garding the existence NW-type PRGs as above assuming worst-case hardness
for non-deterministic circuits.

Theorem 2.4 ([SU01]). Assume there exists a function f : {0, 1}n → {0, 1}
in E = Dtime(2O(n)) with nondeterministic circuit complexity 2Ω(n). Then,
for any polynomial t(·), there exists an NW-generator against non-deterministic
circuits of size t(n) NWPRG : {0, 1}d(n) → {0, 1}n, where d(n) = O(log n).

We remark that the above is a worst-case assumption in the sense that the
function f needs to be hard in the worst-case (and not necessarily in the average-
case). The assumption can be seen as a natural generalization of the assumption
that EXP 6⊆ NP. We also note that there is a universal candidate for the
corresponding PRG, by instantiating the hard function with any E-complete
language under linear reductions. See further discussion in [BOV07].

We now define BMY-type (a.k.a cryptographic) PRGs.

A Note on Perfect Correctness by Derandomization 7

Definition 2.5 (BMY-Type PRGs). An algorithm BMYPRG : {0, 1}d(n) →
{0, 1}n is a BMY-generator if it is computable in time poly(d(n)) and any
polynomial-size adversary distinguishes U ← {0, 1}n from BMYPRG(n), where
s← {0, 1}d(n), with negligible advantage n−ω(1).

Theorem 2.6 ([HILL99]). BMY-type pseudo-random generators can be con-
structed from any one-way function.

3 The Error-Removing Transformation

We now describe a transformation from any (1 − α)-correct scheme Π for a
function f into a perfectly correct one. For a simpler exposition, we restrict
attention to the case that the error α is tiny. We later explain how this restriction
can be removed.

Ingredients. In the following, let λ be a security parameter, let m = m(λ), n =
n(λ), ` = `(λ) be polynomials, and α = α(λ) ≤ 2−λm−2. We rely on the following:

– A (1 − α)-correct scheme Π computing f : {0, 1}n×m → {0, 1}n×m where
each party uses randomness of length `.

– A BMY-type pseudo-random generator BMYPRG : {0, 1}λ → {0, 1}`.
– An NW-type pseudo-random generator NWPRG : {0, 1}d → {0, 1}`×m against

nondeterministic circuits of size t = t(λ), where t and d depend on the pa-
rameters m,n, `,Π, f,BMYPRG, t = λO(1), d(λ) = O(log λ), and will be
specified later on. We shall denote k = 2d.

The New Scheme:

Given security parameter 1λ and input x ∈ {0, 1}n×m:

1. Randomness Generation: Each party i ∈ [m]
– samples k BMY strings (rBMY

i1 , . . . , rBMY
ik), where rBMY

ij = BMYPRG(sij)

and sij ← {0, 1}λ.
– computes (all) k NW strings (rNW1 , . . . , rNWk), where rNWj = NWPRG(j),

and derives (rNWi1 , . . . , rNWik), where rij is the i-th `-bit block of rNWj .

– compute ri1, . . . , rik where rij = rBMY
ij ⊕ rNWij .

2. Emulating the Parallel Scheme:
– the parties emulate the repeated scheme Π⊗k(1λ, x, r), with randomness
r = (rij)i∈[m],j∈[k].

– each party i obtains outputs (yi1, . . . , yik), and in turn computes and
outputs yi = majority(yi1, . . . , yik).

Correctness. We now turn to show that the new scheme is perfectly correct.

Proposition 3.1. The new scheme is perfectly-correct.

Proof. We first note that had rNW been chosen at truly random (instead of using
NWPRG) then for any input, with high probability over the choice of rNW, the
corresponding scheme would have been perfectly correct.

8 Nir Bitansky and Vinod Vaikuntanathan

Claim. For any x ∈ {0, 1}n×m,

Pr
rNW←{0,1}`×m

[
∃s1, . . . , sm ∈ {0, 1}λ :

f(x) 6= Π(1λ, x, r)
r = rBMY

s ⊕ rNW
]
≤ 1

4
,

where rBMY
s = (BMYPRG(s1), . . . ,BMYPRG(sm)).

Proof. Fixing any such x and s = (s1, . . . , sm), the string r = rBMY
s ⊕ rNW is

distributed uniformly at random. In this case, the scheme is guaranteed to err
with probability at most α ≤ 2−λm/4. The claim now follows by taking a union
bound over all 2λm tuples s1, . . . , sm. ut

We now claim that a similar property holds with roughly the same probability
when rNW is pseudorandom as in the actual transformation.

Claim. For any x ∈ {0, 1}n×m,

Pr
j←{0,1}d

[
∃s1, . . . , sm ∈ {0, 1}λ :

f(x) 6= Π(1λ, x, r)
r = rBMY

s ⊕ rNWj

]
≤ 1

4
+

1

t
,

where rBMY
s = (BMYPRG(s1), . . . ,BMYPRG(sm)) and rNWj = NWPRG(j).

Proof. Assume towards contradiction that the claim does not hold for some x ∈
{0, 1}n×m. We construct a non-deterministic distinguisher that breaks NWPRG.
The distinguisher, given rNW, non-deterministically guesses s1, . . . , sm, computes
rBMY = (BMYPRG(s1), . . . ,BMYPRG(sm)), r = rNW⊕rBMY, and checks whether
f(x) 6= Π(1λ, x, r). As we just proved in the previous claim, when rNW is truly
random, such a witness s1, . . . , sm exists with probability at most 1/4, whereas,
by our assumption towards contradiction, when rNW is pseudo-random such a
witness exists with probability larger than 1

t + 1
4 .

The size of the above distinguisher is some fixed polynomial t′(λ) that de-
pends only on m,n, ` and the time required to compute Π, f,BMYPRG. Thus,
in the construction we choose t > max (t′, 8), meaning that the constructed dis-
tinguisher indeed breaks NWPRG. ut

With the last claim, we now conclude the proof of Proposition 3.1. Indeed, for
any input x, when emulating the k-fold repetition Π⊗k(1λ, x, r), the randomness
used for the j-th copy Π(1λ, x, rj) is rj = rNWj ⊕ rBMY

sj where rNWj = NWPRG(j)

and rBMY
sj = (BMYPRG(sj1), . . . ,BMYPRG(sj1)). By the last claim, for all but

a 1
4 + 1

t ≤
3
8 fraction of the NW-seeds j, any choice of BMY-seeds sj yields

the correct result yj = f(x) in the corresponding execution Π(1λ, x, rj). In
particular, it is always the case that the majority of executions results in y =
f(x), as required.

ut

Security. We now observe that the randomness generated according to the
transformation is indistinguishable from real randomness. Intuitively, this means
that if the original scheme was secure under parallel-repetition, when the honest

A Note on Perfect Correctness by Derandomization 9

parties use real randomness, it will remain as secure when using randomness
generated according to the transformation. Examples are given in the next sec-
tion.
Concretely, we consider two distributions rtra and runi on randomness for the
parties in Π⊗k:

1. In rtra =
(
rtraij : i ∈ [m], j ∈ [k]

)
, each rtraij is computed as in the above trans-

formation; namely rij = rBMY
ij ⊕ rNWij , where rBMY

i,j = BMYPRG(sij) for a

random seed sij ← {0, 1}λ and rNWij is the i-th `-bit block of NWPRG(j).

2. In runi =
(
runiij : i ∈ [m], j ∈ [k]

)
, each runiij is sampled uniformly at random;

namely runiij ← {0, 1}`.

Proposition 3.2. rtra and runi are computationally indistinguishable.

Proof. By the security of the BMY PRG, for any i, j:

rtraij = rBMY
ij ⊕ rNWij = BMYPRG(sij)⊕ rNWij ≈c runiij ⊕ rNWij ≡ runiij .

Since rtraij (respectively runiij) is generated independently from all other rtrai′j′ (re-

spectively runii′j′), the proposition follows by a standard hybrid argument.

Removing the Assumption Regarding Tiny Error. Above we assumed
that α(λ) ≤ 2−λm−2. We can start from any α ≤ 1

2 − η, for η = λ−O(1), per-
form k′ = O(λmη−2) repetitions to reduce the error, and then apply the above
transformation.

The amount of randomness `(λ), and the execution time, grow proportionally,
but are still polynomial in λ. Also, the same security guarantee as above holds,
except that we should consider the (k× k′)-fold repetition of Π, rather than the
k-fold one. This is sufficient as long as the original scheme was secure for any
polynomial number of repetitions.

4 Examples of Interest

We now discuss three examples of interest.

Public-Key Encryption. Our first example concerns public-key encryption.
We start by recalling the definition.

Definition 4.1 (Public-Key Encryption). For a message spaceM, and func-
tion α(·) ≤ 1, a triple of algorithms (Gen,Enc,Dec), where the first two are PPT
and third is deterministic polynomial-time, is said to be a public-key encryption
scheme for M with (1− α)-correctness if it satisfies:

1. (1− α)-Correctness: for any m ∈M and security parameter λ,

Pr
Gen,Enc

[
Decsk(Encpk(m)) = m

∣∣ (pk, sk)← Gen(1λ)
]
≥ 1− α(λ) .

10 Nir Bitansky and Vinod Vaikuntanathan

2. Semantic security: for any polynomial-size distinguisher D there exists a
negligible function µ(·), such that for any two messages m,m′ ∈ M of the
same size:

|Pr[D(Encpk(m)) = 1]− Pr[Encpk(m′)) = 1]| ≤ µ(λ) ,

where the probability is over the coins of Enc and the choice of pk sampled
by Gen(1λ).

Public-key encryption can be modeled as a three-party scheme Π consisting of a
generator, an encryptor, and a decryptor. The generator has no input, and uses
its randomness r1 to generate pk and sk, which are sent to the encryptor and
decryptor, respectively. The encryptor has as input a message m, and uses its
randomness r2 in order to generate an encryption Encpk(m; r2), which is sent to
the decryptor. The decryptor has no input nor randomness, it uses the secret
key to decrypt and outputs the decrypted message. (In this case the function
computed by Π is f(⊥,m,⊥) = (⊥,⊥,m).)

In the repeated scheme Π⊗k, the generator Gen(1λ; r1j) is applied k indepen-
dent times, with fresh randomness r1j for each j ∈ [k], to generate corresponding
keys pk = {pkj} , sk = {skj}. Encryption involves k independent encryptions:

Enc⊗kpk (m; r2) := Encpk1(m; r21), . . . ,Encpkk(m; r2k) .

As defined in Section 3, when applying the error-removal transformation, the
randomness r = (rij : i ∈ [2], j ∈ [k]) is sampled according to rtra instead of truly
at random according to runi. Decryption is done by decrypting each encryption
with the corresponding skj and outputting the majority.

The correctness of the new scheme given by the transformation, follows as in
Proposition 3.1. We next observe that the new scheme is also secure. Concretely,
for any (infinite sequence of) two messages m,m′ ∈M,

Enc⊗kpk (m; rtra2) ≈c Enc⊗kpk (m; runi2) ≈c Enc⊗kpk (m′; runi2) ≈c Enc⊗kpk (m′; rtra2) .

The fact that Enc⊗kpk (m; runi2) ≈c Enc⊗kpk (m′; runi2) follows from the semantic secu-
rity of the underlying encryption scheme and a standard hybrid argument. The
first and last indistinguishability relations follow from the fact that rtra2 ≈c runi2

(by Proposition 3.2).

In [DNR04b], Dwork, Naor, and Reingold show how public-key encryption where
decryption errors may even occur for a large fraction of messages, can be trans-
formed into ones that only have a tiny decryption error over the randomness of
the scheme. Applying our transformation, we can further turn such schemes into
perfectly correct ones. For the specific case

Indistinguishability Obfuscation. Our second example concerns indistin-
guishability obfuscation (IO) [BGI+12]. We start by recalling the definition.

Definition 4.2 (Indistinguishability Obfuscation). For a class of circuits
C, and function α(·) ≤ 1, a PPT algorithm O is said to be an indistinguishability
obfuscator for C with (1− α)-correctness if it satisfies:

A Note on Perfect Correctness by Derandomization 11

1. (1− α)-Correctness: for any C ∈ C and security parameter λ,

Pr
O

[
∀x : O(C, 1λ)(x) = C(x)

]
≥ 1− α(λ) .

2. Indistinguishability: for any polynomial-size distinguisher D there exists a
negligible function µ(·), such that for any two circuits C,C ′ ∈ C that compute
the same function and are of the same size:∣∣Pr[D(O(C, 1λ)) = 1]− Pr[D(O(C ′, 1λ)) = 1]

∣∣ ≤ µ(λ) ,

where the probability is over the coins of D and O.

IO can be modeled as a two-party scheme Π consisting of an obfuscator and an
evaluator. The obfuscator has as input a circuit C, and uses its randomness r1
in order to create an obfuscated circuit C̃ = O(C, 1λ; r1), which is sent to the
evaluator. The evaluator has an input x for the circuit, and no randomness, it
computes C̃(x) and outputs the result. (In this case the function computed by
Π is f(C, x) = (⊥, C(x)).)

In the repeated scheme Π⊗k, obfuscation involves k independent obfusca-
tions:

O⊗k(C, 1λ; r1) := O(C, 1λ; r11), . . . ,O(C, 1λ; r1k) .

As defined in Section 3, when applying the error-removal transformation, the
randomness r = (r1j : j ∈ [k]) is sampled according to rtra instead of truly at
random according to runi. Evaluation for input x is done by running each obfus-
cated circuit on the input x and outputting the majority of outputs.

The correctness of the new scheme given by the transformation, follows as in
Proposition 3.1. We now observe that the new scheme is also secure, which follows
similarly to the case of public-key encryption considered above. Concretely, for
any (infinite sequence of) two equal-size circuits C,C ′ ∈ C,

O⊗k(C, 1λ; rtra1) ≈c O⊗k(C, 1λ; runi1) ≈c O⊗k(C ′, 1λ; runi1) ≈c O⊗k(C ′, 1λ; rtra1) .

The fact that O⊗k(C, 1λ; runi1) ≈c O⊗k(C ′, 1λ; runi1) follows from the security of
the underlying obfuscation scheme and a standard hybrid argument. The first
and last indistinguishability relations follow from the fact that rtra1 ≈c runi1 (by
Proposition 3.2).

In [BV16], Bitansky and Vaikuntanathan show how indistinguishability obfus-
cation [BGI+12] where the obfuscated circuit may err also on a large fraction of
inputs can be transformed into one that only has a tiny error over the random-
ness of the obfuscator as required here. Applying our transformation, we can
further turn such schemes into perfectly correct ones.

MPC. Our third and last example concerns multi-party computation (MPC)
protocols. There are several models for capturing the adversarial capabilities in
an MPC protocol. Roughly speaking, our transformation can be applied when-
ever the protocol is secure against parallel repetition. In the new protocol, perfect
correctness will be guaranteed when all the parties behave honestly. The security

12 Nir Bitansky and Vinod Vaikuntanathan

guarantee given by the new protocol will be inherited from the original repeated
protocol. We stress that, in the case of corrupted parties, the transformed pro-
tocol does not provide any correctness guarantees beyond those given by the
original (repeated) protocol. In particular, if the adversary can inflict a certain
correctness error in the original (repeated) protocol, it may also be able to do
so in the transformed protocol.

We now give more details. Since we rely on standard MPC conventions, we
shall keep our description relatively light (for further reading, see for instance
[Can01, Gol04]). We consider protocols with security against static corruptions
according to the real-ideal paradigm. For simplicity of exposition, we restrict
attention to the single-execution setting. (Later, we explain how the transforma-
tion can also be applied in the setting of multiple executions, for example, in the
UC model [Can01].) In this setting, the adversary A corrupts some set of parties
C ⊆ [m], which it fully controls throughout the protocol, and can also choose the
inputs for honest parties at the onset of the computation. The adversarial view
in the protocol consists of all the communication generated by the honest parties
and their respective outputs. We denote by RealAΠ(1λ, z; r) the polynomial-time
process that generates the adversarial view and the outputs of the honest par-
ties in [m] \ C when these parties execute protocol Π for functionality f with
randomness r = (ri1 , . . . , rim−|C|), and a PPT adversary A with auxiliary input
z controlling the parties in C.

The requirement is that the output of this process can be simulated by a PPT
process IdealSf (1λ, z) called the ideal process where A is replaced by an efficient
simulator S. The simulator can only submit inputs x1, . . . , xm to f , learn the
outputs of the corrupted parties in C, and has to generate the adversarial view.
The ideal process outputs the view generated by the simulator as well as the
output generated by f for the honest parties.

As before, we denote by Π⊗k the k-fold parallel repetition of a protocol Π for
computing f⊗k(x) = (f(x))k, where each honest party i ∈ [m] \ C, given input
xi, runs k parallel copies of Π, all with the same input xi and obtains outputs
yi1, . . . , yik. We consider protocols that are secure under parallel repetition in
the following sense.

Definition 4.3. We say that an MPC protocol Π (for some functionality f) is
secure under parallel repetition with respect to an ideal process Ideal if for any
PPT adversary A and polynomial k(λ) there exists a PPT simulator S such that
for any (infinite sequence of) security parameter λ ∈ N and auxiliary input in
z ∈ {0, 1}∗,

RealAΠ⊗k
(1λ, z) ≈c IdealSf⊗k

(1λ, z) .

We denote by Π tra the protocol Π for computing f after applying the trans-
formation from Section 3 where Π is repeated in k times in parallel, the random-
ness of parties is derived as defined in the transformation, and the final output
of party i is set to majority(yi1, . . . , yik). When all the parties act honestly, the
correctness of the new protocol Π tra given by the transformation, follows as in
Proposition 3.1.

A Note on Perfect Correctness by Derandomization 13

We show that if the original protocol is secure under parallel repetition then
the transformed protocol is as secure.

Claim. Assume that Π is a protocol for f that is secure under parallel repetition
(in the sense of Definition 4.3). For any PPT adversary A against Π tra, viewing
A as an adversary against Π⊗k, let S be its simulator given by Definition 4.3.
Then for any (infinite sequence of) security parameter λ, and auxiliary input z,

RealAΠtra(1λ, z) ≈c IdealSf (1λ, z) .

Proof. Let Πmaj
⊗k be the protocol where the parties first execute the k-fold repe-

tition of Π⊗k and then each party sets its final output to be the majority of the
outputs obtained in that execution. Then we first note that

RealAΠtra(1λ, z) ≡ RealA
Πmaj
⊗k

(1λ, z; rtra) ,

where rtra is the randomness of the honest parties, generated according to our
transformation. By Proposition 3.2, it holds that:

RealAΠtra(1λ, z) ≡ RealA
Πmaj
⊗k

(1λ, z; rtra) ≈c RealAΠmaj
⊗k

(1λ, z; runi) ,

where rtra is randomness generated according to our transformation and runi is
truly random. It is left to note that

RealA
Πmaj
⊗k

(1λ, z; runi) ≈c IdealSf (1λ, z) .

Indeed, recall that by Definition 4.3,

RealΠ⊗k

A(1λ, z; runi) ≈c IdealSf⊗k
(1λ, z) ,

and each of the first two distributions can be efficiently computed from the
respective distribution in the second two, by fixing the (single) output of each
honest party to be the majority of its outputs.

Applying the Transformation in More General Models. Above, we have
considered a model with a single execution. The analysis naturally extends to
more general models such as the model of universally composable (UC) protocols
[Can01], where multiple executions controlled by an adversarial environment can
be performed. Indeed, the only feature of the model we have relied on is that
the real world view can be generated using the randomness of honest parties as
external input (regardless of how the randomness was generated), which is the
case as long corruptions are static, and the adversary is never exposed to the
randomness of honest parties, but only to the communication between parties.
This is also the case in the UC model.

Acknowledgements

We thank Stefano Tessaro for pointing out [HR05] and [LT13]. We also thank
the reviewers of EUROCRYPT 2017 for their valuable comments.

14 Nir Bitansky and Vinod Vaikuntanathan

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Frank Thomson Leighton and Peter W.
Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
284–293. ACM, 1997.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence
of extractable one-way functions. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 505–514. ACM, 2014.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of eliminating errors in cryptographic computations. J. Cryptology,
14(2):101–119, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6, 2012.

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo random bits. In 23rd Annual Symposium on Foun-
dations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982,
pages 112–117, 1982.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryp-
tography. SIAM J. Comput., 37(2):380–400, 2007.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-
ceedings, Part II, volume 9015 of Lecture Notes in Computer Science, pages
401–427. Springer, 2015.

[BV16] Nir Bitansky and Vinod Vaikuntanthan. Indistinguishability obfuscation:
from approximate to exact. In Theory of Cryptography - 13th Theory of
Cryptography Conference, TCC 2016, Tel Aviv, Israel, January 10-13, 2016,
2016.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages
136–145. IEEE Computer Society, 2001.

[CC04] Christian Cachin and Jan Camenisch, editors. Advances in Cryptology -
EUROCRYPT 2004, International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings, volume 3027 of Lecture Notes in Computer Science. Springer,
2004.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J.
Comput., 36(6):1513–1543, 2007.

[DNR04a] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption
schemes from decryption errors. In Cachin and Camenisch [CC04], pages
342–360.

A Note on Perfect Correctness by Derandomization 15

[DNR04b] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption
schemes from decryption errors. In Cachin and Camenisch [CC04], pages
342–360.

[FGM+89] Martin Furer, Oded Goldreich, Yishay Mansour, Michael Sipser, and
Stathis Zachos. On completeness and soundness in interactive proof sys-
tems. Advances in Computing Research: A Research Annual (Randomness
and Computation, S. Micali, ed.), 5:429–442, 1989.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Eliminating decryption
errors in the ajtai-dwork cryptosystem. In Burton S. Kaliski Jr., editor, Ad-
vances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceed-
ings, volume 1294 of Lecture Notes in Computer Science, pages 105–111.
Springer, 1997.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[GMS87] Oded Goldreich, Yishay Mansour, and Michael Sipser. Interactive proof
systems: Provers that never fail and random selection (extended abstract).
In 28th Annual Symposium on Foundations of Computer Science, Los Ange-
les, California, USA, 27-29 October 1987, pages 449–461. IEEE Computer
Society, 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Ap-
plications. Cambridge University Press, 2004.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[HR05] Thomas Holenstein and Renato Renner. One-way secret-key agreement and
applications to circuit polarization and immunization of public-key encryp-
tion. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes
in Computer Science, pages 478–493. Springer, 2005.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires expo-
nential circuits: Derandomizing the XOR lemma. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997, pages 220–229, 1997.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett.,
17(4):215–217, 1983.

[LT13] Huijia Lin and Stefano Tessaro. Amplification of chosen-ciphertext security.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryp-
tology - EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Sci-
ence, pages 503–519. Springer, 2013.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology,
4(2):151–158, 1991.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput.
Syst. Sci., 49(2):149–167, 1994.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

16 Nir Bitansky and Vinod Vaikuntanathan

[SU01] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. In 42nd Annual Symposium
on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las
Vegas, Nevada, USA, pages 648–657, 2001.

[Yao82a] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 80–91. IEEE
Computer Society, 1982.

[Yao82b] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 80–91, 1982.

