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Abstract. Known-key distinguishers for block ciphers were proposed
by Knudsen and Rijmen at ASIACRYPT 2007 and have been a major
research topic in cryptanalysis since then. A formalization of known-key
attacks in general is known to be difficult. In this paper, we tackle this
problem for the case of block ciphers based on ideal components such
as random permutations and random functions as well as propose new
generic known-key attacks on generalized Feistel ciphers. We introduce
the notion of known-key indifferentiability to capture the security of such
block ciphers under a known key. To show its meaningfulness, we prove
that the known-key attacks on block ciphers with ideal primitives to date
violate security under known-key indifferentiability. On the other hand,
to demonstrate its constructiveness, we prove the balanced Feistel cipher
with random functions and the multiple Even-Mansour cipher with ran-
dom permutations known-key indifferentiable for a sufficient number of
rounds. We note that known-key indifferentiability is more quickly and
tightly attained by multiple Even-Mansour which puts it forward as a
construction provably secure against known-key attacks.
Keywords. Block ciphers, known-key security, known-key distinguish-
ers, indifferentiability.

1 Introduction

Known-key attacks and our approach. Known-key distinguishers for block
ciphers were introduced by Lars Knudsen and Vincent Rijmen at ASIACRYPT
2007 [25]. In the classical single secret-key setting, the attacker does not know the
randomly generated key and aims to recover it or build another distinguisher for
the cipher. The security model in known-key attacks is quite different though: the
attacker knows the randomly drawn key the block cipher operates with and aims
to find a structural property for the cipher under the known key – a property
which an ideal cipher (a permutation drawn at random) would not have. An
example of such a structural property from [25] is as follows. For an n-bit block
cipher with a known key, the goal is to find a plaintext/ciphertext pair with the
least s < n/2 significant bits zero. For the ideal cipher, the adversary needs to
invest about 2s encryptions. A cipher that allows one to find such a pair with



much less effort than 2s encryptions is considered insecure in the known-key
model. The seminal work [25] proposes a distinguisher for a permutation-based
7-round Feistel cipher and for 7 rounds of AES.

Since their introduction, known-key attacks have been a major research topic
in the symmetric-key community. In explicit terms, there has been a great deal
of effort towards refining and extending the distinguishers proposed by Knudsen
and Rijmen, including generalizations to Rijndael [34, 44], SP-based Feistel ci-
phers [45–47] and some other constructions [17,35,37]. More importantly though,
implicitly, known-key attacks have drawn attention to the security of block ci-
phers in the open key model where the adversary knows or even chooses keys.
We think it is to some extent this renewed attention that eventually has given
rise to a recent line of cryptanalytic results for the full AES: chosen-key distin-
guishers [7], related-key attacks [5–7] and single-key biclique meet-in-the-middle
attacks [8] — all essentially exploiting the weaknesses of AES in the open key
model.

Despite this cumulative impact in the symmetric-key community over the last
years, known-key attacks have been known to be difficult to formalize since, for-
mally speaking, it is not clear what an exploitable structural property of a block
cipher under a known key is. There have been several attempts to solve the prob-
lem in general but we are not aware of any published results here. In this work, we
take a slightly different approach to the problem: we focus on known-key distin-
guishers for block ciphers based on idealized primitives such as randomly drawn
functions or permutations (examples of such constructions are balanced Feistel
ciphers, generalized Feistel ciphers, and (multiple) Even-Mansour ciphers). For
such block ciphers, we formulate the new notion of known-key indifferentiability
which we believe captures the known-key security. To demonstrate its mean-
ingfulness, we prove that the existing known-key attacks on block ciphers with
idealized primitives actually lead to the violation of this notion. To demonstrate
its constructiveness, we prove Feistel and Even-Mansour known-key indifferen-
tiable for a sufficient number of rounds.

Indifferentiability framework. Traditionally, block ciphers have been ex-
amined under the classical notion of indistinguishability. In that setting a block
cipher C is claimed secure if it is (computationally) indistinguishable from a fixed
random permutation R with the same domain and range as C. In other words, an
attacker has to distinguish between C and R when placed in either real or ideal
worlds, respectively. The seminal paper [27] of Luby and Rackoff showed that
three (four) rounds of the Feistel construction, with independent pseudorandom
functions in each round, yield a pseudorandom permutation (strong pseudoran-
dom permutation) where the distinguisher does not have access to the internal
functions. This result was followed by a number of works [21, 30, 36, 38–41, 52].
On the other hand, the indistinguishability of Even-Mansour cipher was only
analyzed by [9, 18, 51]. Indistinguishability has been established as the de facto
security notion for block ciphers because in the encryption setting the intended



use of the cipher key is in a secret manner; a fact comfortably accommodated
by the notion of indistinguishability.

However, block ciphers find numerous and important uses beyond encryp-
tion. Block ciphers have been used as a building block for hash functions [19,23,
26,31,33,42,50].3 Here, the block cipher should work towards achieving the de-
sired property of the higher level structure, and the cipher key is not necessarily
secret, but known or easy to manipulate by a distinguisher. Clearly, indistin-
guishability cannot provide strong security guarantees in the open key model:
a distinguisher’s task becomes trivial once the key is known or chosen. Even
more, if for example we decide to examine the indistinguishability “security” of
a block cipher built out of an ideal underlying primitive (by explicitly giving
to the distinguisher additional access to the internal primitive) in the open key
setting, then again the notion indistinguishability falls short. A straightforward
distinguishability attack here is possible in only two queries: one (K,M) query
to the cipher C to obtain Y and one message and/or public key dependant x
input to the underlying primitive P to help him compute Y ′ as a function of
CK . The distinguisher needs to only verify if Y equals Y ′, which is true for the
real construction C and false with high probability for a random permutation
R. The weakness of such an indistinguishability notion that allows access to the
internal primitives lays in the fact that there is an obvious “constructive” gap
in the ideal world where no communication between R and P is provided (as
opposed to the real world where C evaluates on P).

It is here where the notion of indifferentiability of Maurer et al. [29] comes into
use to allow for: (i) arguing security in the open key model and (ii) enabling the
distinguisher to gain access to the input/output behavior of the underlying prim-
itive. The notion of indifferentiability argues the security of an idealized system
built upon ideal underlying components, such as random functions or permuta-
tions. Initially, indifferentiability was used to analyze hash functions [1–4,11,20],
more recently results for block ciphers have also appeared. In [15], Dodis and
Puniya proved that the Feistel construction with a super-logarithmic number
of rounds (random functions) is indifferentiable from an ideal permutation in
the honest-but-curious indifferentiability model, where the adversary can only
query the global Feistel construction and get all the intermediate results. The
work of Coron et al. [10] attempted an indifferentiability proof for the Feistel
construction with 6 rounds to obtain a fixed random permutation. But it were
Holenstein et al. [22] who succeeded in proving a 14 round Feistel construc-
tion indifferentiable from a fixed random permutation. Weaker variants of the
indifferentiability notion have appeared also in [16,28,53].

In its essence, indifferentiability, similarly to indistinguishability, aims at es-
timating the adversarial distinguishing advantage between the cipher C and R in
the real and ideal worlds, respectively. Indifferentiability allows the adversary to
access the underlying primitive(s) where the underlying ideal primitive(s) in the
ideal world is replaced by a simulator S, which aims to both mimic the behavior

3 Many hash functions based on a fixed-key block cipher (also called permutation
based hash functions) have also been proposed [32,43,48].



of the ideal primitive(s) and provide for responses that evaluate correctly when
computed under the cipher composition. To fulfill the latter task the simulator
is given access to the idealized system R. That functionality of S allows for
overcoming the existing “constructive” gap in the indistinguishability definition.

In fact, indifferentiability was introduced as the right notion to argue security
of a block cipher as an ideal cipher, where each key names a new randomly chosen
permutation. This theoretical treatment of block ciphers allows one to argue
security results in a setting where the adversary freely chooses the key and each
chosen key namely fixes a new random permutation. But while this interpretation
might accommodate the analysis of block ciphers in the chosen key setting, it
appears to be too strong for the case when the key is actually fixed but publicly
known and thus the permutation is fixed. This brings us to our newly proposed
notion of known-key indifferentiability (iff-KK), which examines the security of
a block cipher as a composition from ideal primitives under a known key. Notice
that an indifferentiability related view was already taken in the work of Mandal,
Patarin and Seurin [28], who introduced the notion sequential indifferentiability
and then relate it to that of correlation intractability in the ideal model to
argue known key security. Our iff-KK notion is however more general and differs
by the fact that it does not limit the adversary to make queries first to the
underlying primitive and then to the cipher. Moreover, iff-KK explicitly provides
the distinguisher with a public key which directly influences the queries to the
block cipher and potentially the ones to the underlying primitives (whenever
that is required by composition).

Our Contributions. The contributions of this paper are as follows:

Known-key attacks on type-I generalized Feistel networks. Knudsen-Rijmen [25]
proposed known-key distinguishers on 7 rounds of the 2-line (balanced) Feistel
network: GFN(2,7) with any permutations and explicit key addition at the begin-
ning of the round function. We propose a known-key attack on 4`− 1 rounds of
an `-line permutation-based type-I generalized Feistel network: GFN(`,4`−1) also
with explicit key addition at the beginning of the round function. See Sect. 3.

Known-key indifferentiability. We propose a way to formalize the known-key se-
curity of block ciphers based on ideal primitives via the indifferentiability frame-
work and put forward the notion of known-key indifferentiability in Sect. 4. By
no means we claim to have formalized what a known-key attack is for all block
ciphers and all existing attacks, but we do believe to have found an appropriate
notion when the underlying components of the cipher are ideal (e.g. random
permutations or random functions).

Meaningfulness of known-key indifferentiability. To show that our notion of
known-key indifferentiability is useful and meaningful, we prove that the known-
key attacks proposed to date on block ciphers with ideal components and ex-
plicit key input (namely, the attack by Knudsen-Rijmen on 7-round Feistel with



permutations, our attack on (4`−1)-round `-line type-I Generalized Feistel con-
struction, and an attack by Coron et al. and Mandal et al. [10, 28]) imply the
known-key differentiability bound computed in Sect. 5.

Constructiveness of known-key indifferentiability. To demonstrate the construc-
tiveness of our known-key indifferentiability notion, we prove two popular generic
block cipher constructions known-key indifferentiable in Sect. 6. First, regarding
the general indifferentiability result of [22], we prove that 14 rounds of bal-
anced Feistel with random functions are known-key indifferentiable with a secu-
rity bounds of O(q16/2n/2). Second, we prove that the multiple Even-Mansour
construction instantiated with random permutations is perfectly known-key in-
differentiable for any number of rounds starting from 1. As opposed to Feistel
ciphers, this puts forward the Even-Mansour construction as particularly suit-
able for building known-key resistant ciphers.

2 Block Cipher Constructions

In this work, we mainly focus on known-key security of generalized Feistel net-
works and multiple Even-Mansour constructions.
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Fig. 1: For 1 ≤ i ≤ r, round i of GFN(`,r) with ` input lines (left) and EMr

(right, with XOR of previous key additionally included).

2.1 Generalized Feistel Networks

Feistel networks are very common block cipher designs, dating back to the design
of Lucifer [49], and many generalizations of this design appeared in literature.
In our work, we focus on type-I networks, as described by Zheng, Matsumoto
and Imai [54], simply referring to it as generalized Feistel networks.

The generalized Feistel network GFN(`,r) : {0, 1}k×{0, 1}n → {0, 1}n consists
of r evaluations of a fixed random permutation π on n/` bits, and it uses ` lines.
For i ∈ {1, . . . , r}, the i-th round ψi of GFN(`,r) is defined as

ψi(p1, . . . , p`) = (p2 ⊕ π(p1 ⊕ ki), p3, . . . , p`, p1) ,

where k1, . . . , kr denote the round keys derived from the master key K using
some key schedule. The function ψi is depicted in Fig. 1. In this work, we also



consider a slightly modified variant of GFN(`,r), where no keys are XORed with
the inputs to the primitive, but instead, r different random functions f1, . . . , fr
are employed. We refer to this construction as GFNR(`,r), where the i-th round is
defined as ψi(p1, . . . , p`) = (p2⊕fi(pi), p3, . . . , p`, p1). Note that by construction,
GFNR(`,r) does not have an explicit key input. However, one can append an n-
bit subkey to the input of function fi if explicit key input is needed. In this case,
random function fi maps (1 + 1/`)n bits to n/` bits.

Luby and Rackoff showed in the setting where independent pseudorandom
functions are used, three (four) rounds of the balanced Feistel construction (that
is, GFNR(2,3) and GFNR(2,4)) yield a pseudorandom permutation (strong pseu-
dorandom permutation) where the distinguisher does not have access to the
internal functions. This research line was followed up by a number of works
[21,30,36,38–41,52].

2.2 Multiple Even-Mansour

The multiple Even-Mansour construction relates to the notion of key-alternating
ciphers, which itself goes back to Daemen [12–14] and was used in the design of
AES. However, it was Knudsen [24] who proposed to instantiate multiple-round
key-alternating ciphers with randomly drawn, fixed and public permutations.
The single-round key-alternating construction or EM1 was proposed by Even-
Mansour [18].

Multiple Even-Mansour constructions EMr : {0, 1}k × {0, 1}n → {0, 1}n
consist of r evaluations of a fixed permutation π on n bits, which are separated
by key addition. In other words,

EMr(K, p) = kr ⊕ π(· · ·π(k1 ⊕ π(k0 ⊕ p)) · · · ) ,

where k0, . . . , kr denote the round keys derived from the master keyK using some
key schedule. For i ∈ {1, . . . , r}, round i of EMr (together with the addition of
the previous key) is depicted in Fig. 1.

In the setting where the r permutations are distinct and the round keys are
independently generated and secret, Bogdanov et al. [9] recently proved that EMr

is indistinguishable from a randomly drawn permutation with less than 22n/3

queries for r ≥ 2, and Steinberger [51] improved this result to indistinguishability
up to 23n/4 queries for r ≥ 3.

3 Known-Key Attacks on GFN(`,r)

Consider GFN(`,4`−1) based on r = 4`− 1 calls to a random invertible function
π. Label the incoming lines as p = (p1, . . . , p`) and the outgoing ones as c =
(c1, . . . , c`). Denote by K the random, but known, master key, and let k1, . . . , kr
be the r round keys. Denote the inputs to the i-th π-evaluations by si⊕ki. Note
that there is a one-to-one correspondence between p and (s1, . . . , s`), as well as
between c and (sr−`+1, . . . , sr). Following the idea of Knudsen and Rijmen [25],



the goal is to find tuples p, p′ with corresponding c, c′ that satisfy p1⊕c2 = p′1⊕c′2.
Note that c2 = sr−`+2 by construction, and in our analysis we refrain from
computing (sr−`+3, . . . , sr) if not needed.

Before describing the inputs p, p′ chosen by the attacker, we first explain
the attack. Let x be an arbitrary value, and consider z, α, β, γ, δ variables to be
determined later. Distinguisher D aims at the following intermediate state values

s`+1 = x⊕ k`+1 s′`+1 = x⊕ α⊕ k`+1

s`+2 = x⊕ k`+2 s′`+2 = x⊕ β ⊕ k`+2

s`+3 = x⊕ k`+3 s′`+3 = x⊕ k`+3

...
...

s2`−1 = x⊕ k2`−1 s′2`−1 = x⊕ k2`−1

s2` = z ⊕ k2` s′2` = z ⊕ γ ⊕ k2`

s2`+1 = x⊕ δ ⊕ k2`+1 s′2`+1 = x⊕ k2`+1 .

Here, we point out two exceptions from this general (otherwise) description of the
attack. Firstly, for ` = 2, s4 and s′4 adapt the value of s2` and s′2`, and similarly
for s5 and s′5. Secondly, for ` = 3, s6 and s′6 follow the notation of s2` and s′2`,
and similarly for later state values. For ` > 3 the description is non-ambiguous.
Then, s`, . . . , s1 and s2`+2, . . . , sr are computed in the straightforward way (i.e.
using si = si+`⊕f(si+`−1⊕ki+`−1)), and similar for the s′-values. For ` > 3, the
general attack is depicted in Fig. 2. By construction, z and γ need to be such that
π(z) = δ⊕k`+1⊕k2`+1 (from s`+1, s2`, and s2`+1) and π(z⊕γ) = α⊕k`+1⊕k2`+1

(from s′`+1, s′2`, and s′2`+1). For the rest of the attack, we distinguish among
` = 2, ` = 3, and ` > 3.

` = 2. Starting with ` = 2 (this is in fact the attack of Knudsen and Rijmen [25]).
Note that β does not occur in the analysis. We simply set γ = 0, and thus δ = α
and we require π(z) = α⊕k3⊕k5. It remains to determine the value α. We have:

p1 = s1 = x⊕ k3 ⊕ π(z ⊕ k2 ⊕ k4 ⊕ π(x))

c2 = s7 = x⊕ α⊕ k5 ⊕ π(z ⊕ k4 ⊕ k6 ⊕ π(x⊕ α))

p′1 = s′1 = x⊕ α⊕ k3 ⊕ π(z ⊕ k2 ⊕ k4 ⊕ π(x⊕ α))

c′2 = s′7 = x⊕ k5 ⊕ π(z ⊕ k4 ⊕ k6 ⊕ π(x)) .

As demonstrated in [25], p1⊕ c2 = p′1⊕ c′2 holds if α = x⊕ π−1(π(x)⊕ k2⊕ k6).
The tuples p and p′ queried by D are easily derivable and not discussed.

` = 3. Next we consider ` = 3. This case turns out to require a special treatment.
We have:

p1 = s1 = x⊕ k4 ⊕ π(z ⊕ k3 ⊕ k6 ⊕ π(x))

c2 = s10 = x⊕ δ ⊕ k7 ⊕ π(z ⊕ k6 ⊕ k9 ⊕ π(x⊕ k5 ⊕ k8 ⊕ π(x⊕ δ)))
p′1 = s′1 = x⊕ α⊕ k4 ⊕ π(z ⊕ γ ⊕ k3 ⊕ k6 ⊕ π(x⊕ β))

c′2 = s′10 = x⊕ k7 ⊕ π(z ⊕ γ ⊕ k6 ⊕ k9 ⊕ π(x⊕ β ⊕ k5 ⊕ k8 ⊕ π(x))) .



Note that

p1 ⊕ c2 = π(z)⊕ π(z ⊕ k3 ⊕ k6 ⊕ π(x))⊕
π(z ⊕ k6 ⊕ k9 ⊕ π(x⊕ k5 ⊕ k8 ⊕ π(x⊕ δ)))

p′1 ⊕ c′2 = π(z ⊕ γ)⊕ π(z ⊕ γ ⊕ k3 ⊕ k6 ⊕ π(x⊕ β))⊕
π(z ⊕ γ ⊕ k6 ⊕ k9 ⊕ π(x⊕ β ⊕ k5 ⊕ k8 ⊕ π(x))) .

Our goal is these values to satisfy p1 ⊕ c2 = p′1 ⊕ c′2, but the same approach
as for ` = 2 (and [25]) does not work here. However, if we take δ such that
π(x⊕ k5⊕ k8⊕π(x⊕ δ)) = k6⊕ k9, and β such that π(x⊕β⊕ k5⊕ k8⊕π(x)) =
k6 ⊕ k9, and γ = π(x) ⊕ π(x ⊕ β), the desired equation is satisfied. Then, by
construction, z = π−1(δ⊕ k4⊕ k7) and α = π(z⊕ γ)⊕ k4⊕ k7. The tuples p and
p′ queried by D are easily derivable and not discussed.

` > 3. Remains to consider the general case, ` > 3. This attack is visualized
in Fig. 2. In this case, we simply set γ = 0, and thus δ = α and we require
π(z) = α⊕ k`+1 ⊕ k2`+1. It remains to determine the values α and β. We find:

p1 = s1 = x⊕ k`+1 ⊕ π(z ⊕ k` ⊕ k2` ⊕ π(x))

c2 = s3`+1 = x⊕ α⊕ k2`+1 ⊕ π(z ⊕ k2` ⊕ k3` ⊕ π̃(K,x, α))

p′1 = s′1 = x⊕ α⊕ k`+1 ⊕ π(z ⊕ k` ⊕ k2` ⊕ π(x))

c′2 = s′3`+1 = x⊕ k2`+1 ⊕ π(z ⊕ k2` ⊕ k3` ⊕ π̃′(K,x, α, β)) ,

where

π̃(K,x, α) = π(x⊕ k2`−1 ⊕ k3`−1 ⊕ · · ·π(x⊕ k`+2 ⊕ k2`+2 ⊕
π(x⊕ k`+1 ⊕ k2`+1 ⊕ π(x⊕ α))) · · · )

π̃′(K,x, α, β) = π(x⊕ k2`−1 ⊕ k3`−1 ⊕ · · ·π(x⊕ β ⊕ k`+2 ⊕ k2`+2 ⊕
π(x⊕ α⊕ k`+1 ⊕ k2`+1 ⊕ π(x))) · · · ) .

Note that

p1 ⊕ c2 ⊕ p′1 ⊕ c′2 = π(z ⊕ k2` ⊕ k3` ⊕ π̃(K,x, α))⊕
π(z ⊕ k2` ⊕ k3` ⊕ π̃′(K,x, α, β)) .

We now put α to satisfy π̃(K,x, α) = k2`⊕ k3` (note that by the construction of
π̃ this is really possible), and β to satisfy π̃′(K,x, α, β) = k2`⊕k3` for this given
α. This choice is well-defined: α is defined as a function of K and x, while β
and z are a function of K,x, and α. The tuples p and p′ queried by D are easily
derivable and not discussed.

Conclusion of the attack. Once x is arbitrarily chosen, z, α, β, γ, δ are easily com-
putable from K and x. For GFN(`,4`−1), the resulting plaintexts and ciphertexts
satisfy p1 ⊕ c2 = p′1 ⊕ c′2 with probability 1. This equation is, however, satisfied
by an ideal cipher R with probability at most 1/2n/`. This completes the attack.
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s3ℓ+1 = c2
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Fig. 2: Attack of Sect. 3 for ` > 3. Parameter x can be freely chosen, parameters
α (= β), γ, and z depend on x and the round keys, and are explained in the
text.



4 Known-Key Indifferentiability for Block Ciphers

Consider a composed system C : {0, 1}k × {0, 1}n → {0, 1}n based on an un-
derlying idealized primitive P : {0, 1}κ × {0, 1}x → {0, 1}y. Here, C is always a
keyed primitive (i.e., a block cipher), but P may or may not be keyed, and the
key space may differ from that of C. Furthermore, depending on C, P denotes
either a single or a composition of multiple idealized primitives Pi.

Where the classical notion of indistinguishability is established to provide
strong security guarantees in the secret key setting, this is not true in the open
key model where chosen or known keys come into play. In the latter setting, one
can benefit from the known indifferentiability definition introduced in the work of
Maurer et al. [29] and adapted for the case of hash functions by Coron et al. [11].
Building upon these results, we propose a new definition of known-key security.
Our definition differs from earlier weaker versions of indifferentiability [11, 16,
28,53] by its generality and the fact that it explicitly provides the distinguishing
adversary with a public key under which it queries both the block cipher and
potentially the underlying primitives (if that is required by composition). It
moreover, does not limit the adversary’s type of queries, as is the case for leaky,
public, and sequential indifferentiability.

We thus propose the following formalization:

Definition 1. Let C be a composed primitive with oracle access to an ideal prim-
itive P. Let R be an ideal primitive with the same domain and range as C. Let
S be a simulator with the same domain and range as P with oracle access to
R and making at most qS queries, and let D be a distinguisher making at most
qD queries. The known-key indifferentiability advantage Adviff-KK

C,S (D) of D is
defined as∣∣∣Pr

(
K

$← {0, 1}k;DC
P ,P(K) = 1

)
− Pr

(
K

$← {0, 1}k;DR,S
R

(K) = 1
)∣∣∣ .

By Adviff-KK
C,S (qD) we denote the maximum advantage of any distinguisher mak-

ing at most qD queries to its oracles. Primitive C is said to be (qD; qS ; ε) indif-
ferentiable from R if Adviff-KK

C,S (qD) < ε.

In this indifferentiability experiment, the distinguisher is provided with access
to either of two worlds: left (real) and right (ideal). In the left world the distin-
guisher D has a query access to the composed construction C and the primitive
P, while in the right world D accesses the ideal primitive R and the simulator S,
respectively. In case the composed primitive C is invertible, D obtains access to
it in both forward and backward (inverse) direction. We refer to C and R as the
“composed” oracles O1, and these oracles always respond under the known-key
K. Hence, D can forward query a message input M to receive C = C(K,M) in
the left world and C = R(M) in the right world (here the randomly chosen key
K implicitly fixes an instance of R), or D can also backward query C to receive
M = C−1(K,C) and M = R−1(M) in the left and right worlds, respectively.
We refer to P and S as the “small” oracles O2, to which D has full access (i.e.,
even if C is designed to query P only on the key K), but we note that S knows



this public key K. From a practical point of view, the full access to the small
oracles makes perfect sense, as the original idea of indifferentiability is that the
distinguisher may know the underlying structure, and thus, use the underlying
primitive as it wishes.

The particular way of allowing the key input to the composed primitive to be
always the known key K but the key input to the small primitive to be anything,
sets this known-key indifferentiability definition apart from existing versions of
indifferentiability like [11,16,28,53]. In more detail, in Table 1, we compare the
interfaces in Def. 1 with the ones used in the indifferentiability definition (see
[10,22] for its block cipher instantiation). As it turns out, this change makes our
definition particularly suitable for analyzing known-key security. In Prop. 1, we
prove that iff implies iff-KK. Moreover, in Sect. 6 we also show a counterexample
that an implication in the opposite direction does not hold.

Table 1: Interface of D with the composed oracle O1 (C in the left world, R
in the right world) in the standard indifferentiability setting and in Def. 1. For
both security definitions, the interface with the right oracle O2 is the same: D
has full access to O2.

Indifferentiability forward O1 query inverse O1 query

Indifferentiability (iff) (K,M) −→ C = O1(K,M) (K,C) −→M = O−1
1 (K,C)

Known-key indiff. (iff-KK)

(K
$← {0, 1}k fixed, public)

M −→ C = O1(K,M) C −→M = O−1
1 (K,C)

Proposition 1. If C is (qD; qS ; ε) iff-secure block cipher, then it is (qD; qS ; ε)
iff-KK-secure.

Proof. Let S be a simulator such that for any distinguisher D making at most
qD queries, the iff advantage is at most ε. We define S ′ = S to be the simulator
for the iff-KK security. We prove that for any iff-KK distinguisher D′ making at
most qD queries, we have Adviff-KK

C,S′ (D′) < ε.
Let D′ be any such distinguisher. We build an iff distinguisher D using D′ that

has the same advantage in breaking C. Distinguisher D simulates the environment

for D′ as follows: firstly, it selects uniformly at random a key K
$← {0, 1}k and

runs D′ on input K; then it forwards all queries by D′ to its own oracles. If
D′ succeeds in distinguishing the left and right worlds, D succeeds as well. In
particular, we have Adviff-KK

C,S′ (D′) = Adviff
C,S(D) < ε.

5 Known-Key Indifferentiability is Meaningful

Consider any known-key distinguishing attack on a block cipher C with idealized
primitive P. Let K ∈ {0, 1}k be a known key. A classical known-key distinguisher



for a function C(K, ·) based on ideal primitive P operates as follows: it makes q
queries to its primitives, and then it outputs 1 if the queries show some “unex-
pected” relation, which means that such relation should not hold for a random
primitive R with the same domain and range of C. We formalize and translate
such known-key distinguisher D to a distinguisher for the indifferentiability no-
tion iff-KK as follows. Let S be a simulator. In advance of making any queries,
this distinguisher fixes a predicate ϕ(Q), where Q is a list of query tuples. Then,
the distinguisher makes qD queries to its left and right oracles, to obtain a query
history QqD of size qD. If ϕ(QqD) holds, it outputs 1, and otherwise it outputs 0.
Clearly, D bases its decision solely on the predicate ϕ(QqD), and by Def. 1:

Adviff-KK
C,S (qD) ≥ Adviff-KK

C,S (D)

=
∣∣Pr

(
ϕ(QqD) for CP ,P

)
− Pr

(
ϕ(QqD) for R,SR

)∣∣ . (1)

Now, in classical known-key distinguishing attacks, the first probability is (close
to) 1, while the second probability is significantly smaller. Note that for the
second probability, the distinguisher may ask queries to the simulator S, but in
order for S to be successful, it will try to consult R as often as possible and
queries to S can consequently be seen as indirect queries to R.

We demonstrate this approach using the attack of Sect. 3 on GFN(`,4`−1) and
an attack on GFNR(2,5) by Coron et al. and Mandal et al. [10, 28], therewith
demonstrating that this approach applies to any known-key distinguishing attack
known in literature.

Theorem 1. Let C be GFN(`,r) : {0, 1}k ×{0, 1}n → {0, 1}n for r = 4`− 1 with

oracle access to an ideal primitive P = π : {0, 1}n/` → {0, 1}n/` (cf. Sect. 3).
Let R denote an ideal cipher with the same domain and range as C. For any
simulator S that makes at most qS ≤ 2n−1 − 1 queries to R, there exists a
distinguisher D that makes at most 2r + 2 queries to its oracles, such that

Adviff-KK
C,S (D) ≥ 1− q2

S + 2

2n/`
.

Proof. Let S be any simulator making at most qS queries to R. Let K
$← {0, 1}k

be the given key, and k1, . . . , kr be the round keys. We construct a distinguisher
D that differentiates (C,P) from (R,S) with high probability. Define predicate
ϕ(Q) as follows:

∃ (p1 . . . p`; c1 . . . c`), (p
′
1 . . . p

′
`; c
′
1 . . . c

′
`) ∈ Q such that p1 ⊕ c2 = p′1 ⊕ c′2 . (2)

The distinguisher makes 2r queries to P as explained in Sect. 3. Then, it makes
its two corresponding queries to the left oracle, which results in Q2r+2 containing
exactly two left oracle queries. By construction,

Pr
(
ϕ(Q2r+2) for GFNP(`,r),P

)
= 1 .



Remains to consider the probability ϕ(Q2r+2) holds in the other game. Suppose
the simulator makes qS queries, denote by QS the query history of S to R. By
basic probability theory:

Pr
(
ϕ(Q2r+2) for R,SR

)
= Pr

(
ϕ(Q2r+2) for R,SR | ϕ(QS)

)
Pr

(
ϕ(QS)

)
+

Pr
(
ϕ(Q2r+2) for R,SR | ¬ϕ(QS)

)
Pr

(
¬ϕ(QS)

)
≤ Pr

(
ϕ(QS)

)
+ Pr

(
ϕ(Q2r+2) for R,SR | ¬ϕ(QS)

)
.

We first consider Pr
(
ϕ(QS)

)
. Any two queries the simulator makes to R satisfy

p1 ⊕ c2 = p′1 ⊕ c′2 with probability at most 2n−n/`

2n−qS , as any query is randomly
drawn from a set of size at least 2n − qS . Consequently, as the simulator makes
qS queries, and any couple may result in a collision,

Pr
(
ϕ(QS)

)
≤

(
qS
2

)
2n−n/`

2n − qS
.

Regarding the second probability: conditioned on ¬ϕ(QS), (2) may still hold
if the two queries the distinguisher makes to R accidentally satisfy it. As the
second oracle query is drawn from a set of size at least 2n− (qS + 1), the queries

satisfy p1⊕c2 = p′1⊕c′2 with probability at most 2n−n/`

2n−(qS+1) . Concluding, we find

Pr
(
ϕ(Q2r+2) for R,SR

)
≤

((
qS
2

)
+ 1

)
2n−n/`

2n − (qS + 1)
≤ q2

S + 2

2n/`
.

where we use that 2n − (qS + 1) ≥ 2n−1 for qS + 1 ≤ 2n−1. Hence, we find

Adviff-KK
C,S (2r + 2) ≥ 1− q2S+2

2n/` . ut

Next we consider a distinguishing attack described in [10] and [28, App. C].
1 Fgen

ff1 f2 f3 f4 f5

Fig. 3: GFNR(2,5) (see Thm. 2).

Theorem 2. Let C be GFNR(2,5) : {0, 1}n → {0, 1}n with oracle access to 5

ideal primitives P = (f1, . . . , f5) with fi : {0, 1}n/2 → {0, 1}n/2 (see Fig. 3).
Let R denote an ideal permutation with the same domain and range as C. For
any simulator S that makes at most qS ≤ 2n−1 − 1 queries to R, there exists a
distinguisher D that makes at most 24 queries to its oracles, such that

Adviff-KK
C,S (D) ≥ 1− q4

S + 2

2n/2
.



Proof. Denote the inputs of a GFNR(2,5) evaluation by (p, r) and the outputs
by (c, d). The attack of [10] and [28, App. C] describes a way to find 4 plaintext-
ciphertext pairs that satisfy p1 ⊕ p2 ⊕ p3 ⊕ p4 = d1 ⊕ d2 ⊕ d3 ⊕ d4 = 0. As in
Thm. 1, predicate ϕ(Q) is defined as follows:

∃ (p1, r1; c1, d1), . . . , (p4, r4; c4, d4) ∈ Q such that

p1 ⊕ p2 ⊕ p3 ⊕ p4 = d1 ⊕ d2 ⊕ d3 ⊕ d4 = 0 . (3)

The distinguisher makes 20 queries to P (as in the proof of Thm. 1), and the four
corresponding queries to the left oracle, which results in Q24. By construction,
ϕ(Q24) holds for GFNP(2,5),P with probability 1, and it remains to consider the
probability ϕ(Q24) holds in the other game. Similar to the proof of Thm. 1, we
find

Pr
(
ϕ(Q24) for R,SR

)
≤

(
qS
4

)
2n/2

2n − qS
+

2n/2

2n − (qS + 1)
,

and hence we obtain Adviff-KK
C,S (24) ≥ 1− q4S+2

2n/2 , for qS + 1 ≤ 2n−1. ut

6 Known-Key Indifferentiability is Constructive

The next obvious question then is, whether there exist block cipher constructions
that are known-key indifferentiable from an ideal cipher. In this section, we prove
that this is indeed the case.

First, we consider generalized Feistel networks. In [22], Holenstein et al. con-
sidered GFNR(2,14), a variant of GFN(2,14) where the keys are not XORed to
get the input to the primitives, but are used to obtain 14 different random func-
tions (see also Sect. 2), and proved that this construction has indifferentiable
advantage from an ideal cipher of O(q16/2n/2). Here, we refer to standard indif-
ferentiability (see Table 1 for the interfaces in this notion). Using this result, we
obtain the following theorem.

Theorem 3. Let C be GFNR(2,14) with oracle access to an ideal primitive P
consisting of 14 random functions (and where no round keys are XORed). Let
D be an arbitrary distinguisher making at most q queries. Then there exists a
simulator S such that

Adviff-KK
C,S (D) = O(q16/2n/2) ,

where S makes at most 1400q8 queries to R and runs in time O(q8).

Proof. Holenstein et al. [22] proved that for C being GFN(2,14) any distinguisher

making at most q queries, has indifferentiability an advantage of Adviff
C,S(D) =

O(q16/2n/2). Their simulator makes at most 1400q8 queries to R and runs in
time O(q8). From Prop. 1, we conclude that the same bound holds for the iff-KK-
security of GFN(2,14), which completes the proof. ut



Next, we consider multiple Even-Mansour, and show that already with one
round, this construction turns out to be optimally known-key indifferentiable
secure.

Theorem 4. Let for r ≥ 1, Cr be EMr with oracle access to an ideal primitive P
consisting of r random permutations. Let D be an arbitrary distinguisher making
at most q queries. Then there exists a simulator S such that

Adviff-KK
C,S (D) = 0 ,

where S makes at most q queries to R and runs in time O(q).

Proof. First, consider r = 1. Let k0‖k1
$← {0, 1}2n be the public key. Intuitively,

as soon as k0‖k1 is fixed, C behaves perfectly as a random permutation as P is.
Formally, simulator S uses oracle R to respond with Y = R(X ⊕ k0)⊕ k1 on a
forward query X; and uses its oracle R to respond with X = R−1(Y ⊕ k1)⊕ k0

on an inverse query Y . By construction, all queries made by the distinguisher
to S are exactly in correspondence with the random primitive R and D cannot
distinguish.

Now, for r > 1, the proof is not much different, although the simulator needs
to do some more bookkeeping. It responds randomly at every query, except
when it completes a chain, an evaluation EMr(K, p), in which case it adapts
its response to fit the random oracle. Note that, as the key is fixed, it can be
considered constant, and different EMr evaluations never collide somewhere in
the middle. In other words, for any i ∈ {1, . . . , r} the following holds: if πi
denotes the permutation in the i-th round, then one input-output-tuple of πi
corresponds to exactly one C(K, ·) evaluation, and vice versa. ut

We note that EM1 is not iff-secure. Briefly, let S be any simulator making at
most qS queries. We construct a distinguisher D as follows. Here, O1 denotes
its composed oracle (C or R) and O2 its primitive oracle (P or S). Firstly, D
chooses arbitrary key k0‖k1 and message M , and queries Y ← O2(M ⊕ k0) and
C ← O1(k0‖k1,M). Then, if C = Y ⊕k1, then D outputs 1, otherwise it outputs
0. Note that C = Y ⊕ k1 holds with probability 1 in the real world, and with
probability 1/2n in the ideal world (as in this setting the simulator does not
know k1). Using Thm. 4, this renders a separation between iff-KK and iff, as
already mentioned in Sect. 4.
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