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Abstract. A public key encryption scheme is said to be n-circular secure
if no PPT adversary can distinguish between encryptions of an n length
key cycle and n encryptions of zero.

One interesting question is whether circular security comes for free from
IND-CPA security. Recent works have addressed this question, show-
ing that for all integers n, there exists an IND-CPA scheme that is not
n-circular secure. However, this leaves open the possibility that for ev-
ery IND-CPA cryptosystem, there exists a cycle length [, dependent on
the cryptosystem (and the security parameter) such that the scheme is
[-circular secure. If this is true, then this would directly lead to many ap-
plications, in particular, it would give us a fully homomorphic encryption
scheme via Gentry’s bootstrapping.

In this work, we show that is not true. Assuming indistinguishability
obfuscation and leveled homomorphic encryption, we construct an IND-
CPA scheme such that for all cycle lengths [, the scheme is not l-circular
secure.

1 Introduction

Key dependent message security [9] extends the basic notion of semantic security
[22] by allowing the adversary to query for encryptions of function evaluations
on the hidden secret key. One of the most prominent examples of key depen-
dent message security is that of circular security, which addresses the following
question: “What can the adversary learn when given an encryption of the secret
key, or more generally, an encryption of a key cycle?”. An n length key cycle
consists of n ciphertexts, where the i* ciphertext is an encryption of the (i+1)"
secret key using the i*" public key.! The notion of circular security is captured
formally via a security game in which the adversary must distinguish between
an n length key cycle and n encryptions of zero (under the n different public
keys). An encryption scheme is said to be n-circular secure if no polynomial time
adversary can perform this task with non-negligible advantage.

The problem of circular security has received a considerable amount of atten-
tion recently because it is a natural question giving rise to different applications
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[14, 26, 2]. Most notably, it gives us a path to achieve fully homomorphic encryp-
tion from leveled homomorphic encryption via Gentry’s bootstrapping approach
[20].

In the past several years, there have been many interesting works [5,4, 6,
10,13,11,7,12,23,27] that have addressed the question of circular security (or
more generally, key dependent message security), leading to circular secure en-
cryption schemes under fairly standard assumptions such as bilinear decisional
Diffie Hellman assumption (BDDH) and the Learning with Errors assumption
(LWE)[29].

However, an important related question is whether any IND-CPA scheme is
also circular secure. If so, circular security would come for free and no additional
construction mechanisms would need to be designed (beyond what we already
needed for IND-CPA security). Unfortunately, this is not true. For n = 1, there
exists a trivial counterexample — an IND-CPA scheme where the encryption
of the secret key is the secret key itself. The question for n > 1 was open for
some time, and was resolved by Acar et al. [1]. They showed, under the SXDH
assumption, an IND-CPA secure encryption scheme that was not 2-circular se-
cure. A similar counterexample with additional features was proposed by Cash,
Green and Hohenberger [16], also under the SXDH assumption. In a recent work,
Bishop, Hohenberger and Waters [8] expanded the state-of-the-art for n = 2
by showing counterexamples under the k-linear assumption and the LWE as-
sumption. For arbitrary n, the first counterexamples were proposed by Koppula,
Ramchen and Waters [24], and Marcedone and Orlandi [28]. Given any fixed in-
teger n, Koppula, Ramchen and Waters showed how to construct an IND-CPA
scheme that is not n-circular secure using indistinguishability obfuscation (iO).
Marcedone and Orlandi concurrently achieved a similar result under the stronger
notion of virtual black-box obfuscation (VBB). Recently, Alamati and Peikert
[3], and Koppula and Waters [25] proved similar results using LWE assumption.

At first sight, these results might seem to shut the door on the prospect of
getting circular security automatically from IND-CPA security. However, they
miss an important distinction in the order of quantifiers. All prior works [3, 24,
25,28] show that for every integer n, there exists an IND-CPA scheme which
is not n-circular secure. In particular, the parameters of their schemes (i.e. the
size of public parameters, secret keys and ciphertexts) depend on n. However,
this leaves open the possibility that for every cryptosystem, there exists some
polynomial function «(-), particular to that cryptosystem, such that the scheme
is a(+)-circular secure. More formally, we are interested in the following question:

Is it possible that for every IND-CPA secure public key encryption scheme,
there exists an integer v such that the scheme is also a-circular secure? 2

If this were true, then this would provide an automatic path to Gentry’s boot-
strapping, and potentially other applications. For instance, suppose we have a

2 In comparison, the previous works addressed the following question: “Is it possible
that there exists an integer n such that every IND-CPA secure public key encryption
scheme is also n-circular secure?”.



bootstrappable homomorphic encryption scheme (that is, a homomorphic en-
cryption scheme for circuit class C where the decryption circuit is also in C), and
let us assume the scheme is a-circular secure. Then, in order to get a homomor-
phic encryption scheme for all circuits, one simply needs to include an « length
key cycle as part of the public key. This key cycle can be used to reduce the
amount of noise in homomorphically evaluated ciphertexts, thereby allowing us
to perform arbitrary homomorphic evaluations.

With this motivation, we study the aforementioned question. Unfortunately,
the answer is in the negative, and we show this by constructing a class of public
key encryption schemes for which there does not exist any « such that they
are a-circular secure. Our construction uses indistinguishability obfuscator (iO)
for polynomial sized circuits, coupled with a leveled homomorphic encryption
(LHE) scheme that is capable of homomorphically evaluating its own decryption
circuit®. Such LHE schemes [13,21] are realizable from the LWE assumption.
Current iO candidates [19, 32], on the other hand, rely on strong assumptions like
multilinear maps [18, 17] and therefore, the reader might question the underlying
security of current construction. However, we would like to emphasize that our
result is a counterexample and it would hold as long as some iO scheme exists,
thus the concern over reliability of current candidates is somewhat mitigated.

Our Approach. Below, we sketch an outline of our construction, which has the
feature of being very intuitive. In our system, each public key consists of an LHE
public key PKyg and an auxiliary program Prog (to be described momentarily),
whose purpose is to aid the circular security adversary. The secret key consists
of the corresponding LHE secret key SKyg. The encryption and decryption pro-
cedures are simply the LHE encryption and decryption algorithms. The program
Prog is the obfuscation of a program that on input an LHE ciphertext, under
public key PKyg, decrypts it using (hardwired) secret key SKyg and outputs 1
iff the plaintext is SKyg itself. In other words, Prog acts as a publicly available
self-cycle (1-cycle) tester.

Our idea for testing secret key cycles of any (unbounded) length is to iter-
atively reduce size of the cycle by homomorphically decrypting last ciphertext
in the chain using the second-last ciphertext to generate a fresh ciphertext that
will act as a new end of the chain. More formally, consider a key cycle of length
n in which the last two ciphertexts ct,,_1 and ct,, are encryptions of sk,, and sk;
under public keys pk,,_; and pk,, (respectively), and let Cpec,n be a circuit that
takes an input x and uses it to decrypt ct,. Our cycle tester will homomorphi-
cally evaluate circuit Cpec,,, on input ct,_;. Since ct,,_; is an encryption of sk,
the homomorphic evaluation will output a new ciphertext ct),_; which would be
an encryption of sk; under public key pk,,_;. Thus, this successfully reduces the
length of key cycle from n to n—1, and iteratively applying this procedure would

3 Recently, [15] provided constructions for LHE from sub-exponentially hard in-
distinguishability obfuscation, one-way functions, and re-randomizable encryption
schemes.



eventually reduce the cycle size to 1. At this point, we could use the program
Prog; which is part of first public key pk; to test for a self-cycle. The crucial idea
in our cycle tester is that we start slicing the cycle from the end, thus existence
of a leveled homomorphic encryption scheme suffices, and we do not require a
fully homomorphic scheme for testing unbounded length key cycles.

Now let us move on to the IND-CPA security proof. Ideally we would like
to directly leverage the IND-CPA security of LHE scheme to prove IND-CPA
security of our construction because intuitively, the obfuscated program Prog
should not reveal the hardwired LHE secret key. However, indistinguishability
obfuscation is a relatively weak notion of program obfuscation, therefore using
it directly is a bit tricky so we need to tweak our scheme slightly as in [24]. In
our modified scheme, our secret key also contains a random string s, and the
program Prog has both SKgg and ¢ hardwired, where t = PRG(s). On any input
ciphertext ct, it first decrypts using SKyg to recover (a,b) and then checks if
a = SKyg and t = PRG(b).

In order to use the IND-CPA security of the LHE scheme, we first need to
modify program Prog such that it does not contain SKyg anymore. To remove
SKpg from Prog, we make a hybrid jump in which we choose ¢t randomly instead
of setting it as t = PRG(s). This hybrid jump is indistinguishable due to the
security of the pseudorandom generator. Note that if ¢ is chosen uniformly at
random, then with high probability, this program outputs L on all inputs. As
a result, by the security of 4O, this program is indistinguishable from one that
always outputs L. In this manner, we can remove the secret key SKyg from Prog.
Once this is done, we can directly reduce a successful attack on our construction
to a successful attack on IND-CPA security of LHE scheme. Our construction is
described in detail in Section 4.

Organization In Section 2, we describe the required notations and preliminaries.
The definition of circular security can be found in Section 3. In Section 4, we
describe our counterexample scheme. The circular security attack is included in
Section 4.1 and the corresponding IND-CPA security proof in Section 4.2. Fi-
nally, in Section 5, we discuss (informally) how our construction can be modified
to achieve a stronger negative result.

2 Preliminaries

Notation. Let R be a ring, and let Cg » denote the set of circuits of size at
most poly(A\) and depth at most k, with domain and co-domain being R. For
simplicity of notation, we will skip the dependence of C ¢ on R, A when it is
clear from the context.

2.1 Public Key Encryption

A public key encryption scheme PXE with message space M consists of three
algorithms Setup, Enc and Dec with the following syntax:



— Setup(1*) — (pk, sk) The setup algorithm takes as input the security param-
eter 1* and outputs a public key pk and secret key sk.

— Enc(pk,m € M) — ct The encryption algorithm takes as input a public key
pk and a message m € M and outputs a ciphertext ct.

— Dec(sk, ct) = 2 € MU{L} The decryption algorithm takes as input a secret
key sk, ciphertext ct and outputs z € M U{L}.

Correctness: For correctness, we require that for all security parameters A,
(pk,sk) < Setup(1*) and messages m € M, Dec(sk, Enc(pk,m)) = m.

Definition 1 (IND-CPA Security). A public key encryption scheme PKE =
(Setup, Enc, Dec) is said to be IN_D—CPA secure if for all security parameters X,
stateful PPT adversaries A, Advﬂ‘f;,pcag()\) is negligible in A, where advantage of
A is defined as Adv'\'5%% (A) = | Pr[Exp-IND-CPA(PKE, A, \) = 1] — 1/2|, and
Exp-IND-CPA is defined in Figure 1.

Exp-IND-CPA(PKE, A, X)
b+ {0,1}
(pk, sk) < Setup(1*)
(mo, m1) — .A(pk)
y < Enc(pk, mp)
b« Aly)
Output (b < b)
Fig.1: IND-CPA Security Game

2.2 Homomorphic Encryption

Homomorphic encryption [30,20] is a powerful extension of public key encryp-
tion that allows one to evaluate functions on ciphertexts. In this work, we will
be using leveled homomorphic encryption schemes. Let R be a ring. A leveled
homomorphic encryption scheme HE with message space R consists of four al-
gorithms Setup, Enc, Dec, Eval with the following syntax:

1. Setup(1*,1%) — (pk,sk) The setup algorithm takes as input the security
parameter A\, bound on circuit depth ¢ and outputs a public key pk and
secret key sk.

2. Enc(pk,m € R) — ct The encryption algorithm takes as input a public key
pk, message m € R and outputs a ciphertext ct.

3. Eval(C € Cy,ct) — ct’ The evaluation algorithm takes as input a circuit
C € Cy, a ciphertext ct and outputs a ciphertext ct’.

4. Dec(sk,ct) — x The decryption algorithm takes as input a secret key sk and
ciphertext ct and outputs z € R U {L}.



We will now define some properties of leveled homomorphic encryption schemes.
Let HE be any homomorphic encryption scheme with message space R. First, we
have the correctness property, which states that the decryption of a homomor-
phic evaluation on a ciphertext must be equal to the evaluation on the underlying
message.

Definition 2 (Correctness). The scheme HE is said to be perfectly correct
if for all security parameter X, circuit-depth bound {, (pk,sk) < Setup(1*,1¢),
circuit C € Cy and message m € R, Dec(sk, Eval(C, Enc(pk,m))) = C(m).

Next, we have the compactness property which requires that the size of the
output of an evaluation on a ciphertext must not depend upon the evaluation
circuit. In particular, we require that there exists one decryption circuit such
that this circuit can decrypt any bounded-depth evaluations on ciphertexts.

Definition 3 (Compactness). The scheme HE is said to be compact if for all
A, £ there is a decryption circuit C)[\)’e[ such that for all (pk,sk) < Setup(1*,1¢),

m e R, C € Cy, CY5(sk, Eval(C, Enc(pk,m))) = C(m).

Finally, we define the notion of bootstrappability. Gentry [20] showed that if
the decryption circuit is of low depth, then a homomorphic encryption scheme
for low depth circuits can be bootstrapped to a homomorphic encryption scheme
for polynomial depth circuits where the polynomial is apriori defined. We will use
this property for constructing our unbounded circular security counterexample.
We would like to emphasize that the following notion of bootstrappability does
not directly imply fully homomorphic encryption since an FHE scheme must
successfully evaluate a ciphertext on all polynomial depth circuits, and not just
on apriori defined polynomials.

Definition 4. A compact homomorphic encryption scheme HE is said to be
bootstrappable if for all security parameters X\, there exists a depth bound D =
D()\) such that for all ¢ > D, depth(CE’e;) <.

Security: For security, we require that the underlying scheme is IND-CPA secure.

Definition 5. The scheme HE is secure if I' = (Setup, Enc, Dec) is IND-CPA
secure (as per Definition 1).

2.3 Indistinguishability Obfuscation
Next, we recall the definition of indistinguishability obfuscation from [31].

Definition 6. (Indistinguishability Obfuscation) A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cx} if it satisfies
the following conditions:

— (Preserving Functionality) For all security parameters A € N, for all C € Cj,
for all inputs x, we have that C'(x) = C(x) where C’' + iO(C).



— (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher (Samp, D), there exists a negligible function negl(-) such that
the following holds: if for all security parameters A € N,Pr[Vz,Co(z) =
C1(z) : (Co; C1;0) « Samp(1M)] > 1 — negl(N), then

| Pr[D(0,i0(Co)) = 1+ (Co; Cri ) + Samp(1)]—
Pr[D(0,iO(C1)) = 1: (Cop; Cy;0) + Samp(1M)]]| < negl(\)

[19] showed a candidate indistinguishability obfuscator for the circuit class P/poly.

3 Circular Security

In this section, we define the notion of n-circular security. At a high level, n-
circular security deals with the following question: “What additional information
can a PPT adversary learn given an n-length encryption cycle (that is, a sequence
of n ciphertexts where the i*" ciphertext is an encryption of the (i + 1) secret
key using the i*" public key)?”. In this work, we consider the following notion of
circular security, where the adversary must distinguish between an n-encryption
cycle and n encryptions of 0 (where the i*" encryption is computed using the
it" public key).

Definition 7. A public key cryptosystem PIE is said to n-circular secure if for

circ

all security parameters A\, PPT adversaries A, Advj pie (A, n) is negligible in A,
where advantage of A is defined as Adviﬁ,,cg(/\, n) = | Pr[Exp-circ(n, PKE, A, \) =
1] = 1/2|, and Exp-circ is defined in Figure 2.

Exp-circ(n, PKE, A, \)
b+ {0,1}
(pk;,sk;) « Setup(1*) for i < n
ct!” « Enc(pky, K(i mod m)+1)
ctgl) < Enc(pk;, 0)
b A({(pk,ct)})
Output (b < b)

Fig. 2: Security game for n-circular security

3.1 Separating IND-CPA and Circular Security
First, let us recall the theorem statement from [24].

Theorem 1 ([24]). If there exists a secure indistinguishability obfuscator for
polynomial size circuits (Definition 6) and a secure pseudorandom generator,
then for every positive integer n, there exists a public key encryption scheme

PKE such that



— For all PPT adversaries A, there exists a negligible function negl,(-) and A\g

such that for all security parameters X\ > Aq, Adviz‘?;,’?g()\) < negl;(N), and
— There exists a PPT algorithm Test and a negligible function negly(-) such

circ

that for all security parameters X, Advieg pice (A, n) > 1/2 — negly(N).

We observe that the counterexample provided by Koppula, Ramchen, and
Waters could be trivially extended to prove the following (slightly stronger)
statement.

Theorem 2. If there exists a secure indistinguishability obfuscator for polyno-
mial size circuits (Definition 6) and a secure pseudorandom generator, then there
exists a public key encryption scheme PKE such that

— For all PPT adversaries A, there exists a negligible function negl,(-) and Ao
such that for all security parameters A > A, Advﬂ‘f;,pcag()\) < negl;(N\), and

— There exists a PPT algorithm Test, polynomial p(-) and a negligible function
negly () such that for all security parameters X andn < p(\), Advieg, pce(A,n) >

1/2 — negly(N).

The KRW counterexample could be extended as follows — For security pa-
rameter A and polynomial p(-), instantiate p(A\) copies of KRW scheme where
each scheme is designed to be insecure for a certain length key cycle.

Our result proves a stronger statement which is not implied by the KRW
counterexample. It is formally stated below.

Theorem 3. If there exists a secure indistinguishability obfuscator for polyno-
mial size circuits (Definition 6), secure bootstrappable homomorphic encryption
scheme (Definitions 4 and 5), and a secure pseudorandom generator, then there
exists a public key encryption scheme PKE such that

— For all PPT adversaries A, there exists a negligible function negl, (-) and g

such that for all security parameters X > Ao, Advz‘?;,c,'?g()\) < negl;(N), and

— There exists a PPT algorithm Test, a negligible function negly(-) such that
for all security parameters \ and positive integers o, Advigg pre(A, ) >
1/2 — negly(N).

4 Unbounded Circular Insecure Public Key Encryption
Scheme

In this section, we prove Theorem 3 by constructing a public key encryption
scheme PKE = (Setuppkp, Encpkr, Decpkr) that breaks circular security with
unbounded length key cycles. Let HE = (Setupyy, Encug, Evalyg, Decuyr) be
a secure bootstrappable homomorphic encryption scheme, 1O be a secure indis-
tinguishability obfuscator and PRG be a secure pseudorandom generator that
maps £ bit inputs to 2¢ bit outputs. The construction is described as follows:

- Setuppig (1Y) : It runs HE setup algorithm to obtain a public and secret
key pair as (PKyg, SKug) < Setupyg(1*,17), where D is a depth such that
depth(CEeBHE) < D.* It uniformly samples s < {0, 1}, sets t = PRG(s), and

4 Note that such a depth D exists since our HE scheme is bootstrappable (Definition 4).



SelfCycleTest

Constants: Secret key SKug, Value t.
Inputs: Ciphertext ct.

1. Decrypt ct as (sk, s) = Decpkr(SKug, ct).
2. If sk = SKug and PRG(s) = ¢ output 1, otherwise output 0.

Fig.3: SelfCycleTest

computes the obfuscation of program SelfCycleTest (described in Figure 3) as
Prog < iO(SelfCycleTest). It sets the public key and secret key as PKpxg =
(PKHE, Prog), SKpkg = (SKHE, S).

- Encpkr(PKpkE, m;r) : It computes ciphertext as ct = Encyg(PKug, m;7),
where PKPKE = (PKHEa PI’Og).

- DECPKE(SKPKE, Ct) : It outputs DeCHE(SKHE, Ct), where SKpkg = (SKHE7 S)

The proof of Theorem 3 is described in two parts. First, we show a poly-
time attack on circular security of PXE in Section 4.1. Next, we prove it to be
IND-CPA secure in Section 4.2.

4.1 Attack on Unbounded Circular Security

We construct a PPT adversary A which breaks unbounded circular security of
above construction as follows:

1. Challenger generates n public and secret key pairs as {(pk;, sk;)};—; by inde-
pendently running the setup algorithm n times ((pk;, sk;) < Setuppyg(1*)
for i < n) It uniformly chooses a bit b + {0,1}, and computes cipher-
texts ct; < Encpkr(pk;,msp) for i < n, where m;o = sk(; mod n)+1 and
mi 1 = 0I™iol. Finally, it sends {(pk;,ct;)}i_, to A.
2. A receives n public key and ciphertext pairs {(pk;,ct;)};—,, and proceeds as
follows:
- Tt sets ct), = cty,.
-Fori=n—-1tot=1:
- Compute ct;, = Evalpg(C;, ct;), where C; is the HE decryption circuit
CPene with ct], , hardwired as the its second input, ie. Ci(z) =
CPeene (g ct] ).
- A runs program Prog; on input ct}, and outputs ¥’ = Prog;(ct}) as its
guess, where pk; = (pk}, Prog;).
3. A wins if its guess is correct (b = ).

Lemma 1. If PRG is a secure pseudorandom generator, then there exists a
negligible function negl(-) such that for all security parameters X\ and positive
integers n, Advy pre(A,n) > 1/2 — negl(N).

5 Actually, the circuits C; are not standard HE decryption circuits because ciphertexts
ct; are encryptions of (i + 1)th secret key and an extra element, therefore the circuit
must ignore the second element during homomorphic decryption.



Proof. We prove this lemma in two parts. First, we consider a length n key cycle
and show that adversary A always correctly guesses challenger’s bit b as 1. Next,
we show that, with all but negligible probability, A correctly guesses b as 0.

As we described earlier, the basic idea is to slice the ring structure of n
ciphertexts by iteratively reducing an n-circular attack to an (n — 1)-circular
attack and finally, reducing it to a l-circular attack. For slicing the ring of
ciphertexts, we use bootstrappability of the underlying scheme. The correctness
of the above reduction is proven by induction over cycle length n. The base case
n = 1 follows directly from the correctness of program Prog;. For the induction
step, assume that A correctly identifies a length k key cycle. To prove that 4 also
identifies length k + 1 key cycle, we only need to show that A correctly reduces
a (k + 1)-circular instance to a k-circular instance. Note that given k + 1 public
key, ciphertext pairs ({(pk;, cti)}fill). A computes ct), as ctj, = Evalug(Cy, cty).
If cty41 is an encryption of sk; under pky,,, and ct is an encryption of sky;
under pk,,, then ctj will be an encryption of sk; under pk; as the scheme HE is
bootstrappable satisfying Definition 4. Therefore, using inductive hypothesis, we
can conclude that A correctly identifies length & + 1 key cycle. Thus, the above
reduction correctly reduces circular instances with unbounded length key cycles
to 1-circular instances, and therefore A guesses the bit b as 1 with probability 1.

To conclude our proof we just need to show that if the cycle is encryption
of all zeros, then A outputs 0 with all but negligible probability. This follows
from the fact that PRG is a secure pseudorandom generator. Consider a hybrid
experiment in which the value ¢; is sampled uniformly at random instead of
being computed as t; = PRG(s1). Since PRG is a length doubling pseudorandom
generator, we can claim that in the hybrid experiment (with all but negligible
probability) Prog; outputs 0 because there does not exist any pre-image s for
t1. Therefore, if PRG is a secure pseudorandom generator, A will always output
0 with all but negligible probability. Thus, A wins the n-circular security game
with all but negligible probability.

4.2 IND-CPA Security

Lemma 2. IfiO is a secure indistinguishability obfuscator for polynomial size
circuits (Definition 6), HE is a secure bootstrappable homomorphic encryption
scheme (Definitions 4 and 5), and PRG is a secure pseudorandom generator,
then public key encryption scheme PKE is IND-CPA secure (Definition 1).

Proof. We prove above lemma by contradiction. Let A be any PPT adversary
that wins the IND-CPA security game against PXE with non-negligible ad-
vantage. We argue that such an adversary must break security of at least one
underlying primitive. To formally prove security, we construct a series of hybrid
games as follows.

Game 1: This game is the original IND-CPA security game described in Defini-
tion 1.

10



Zero

Inputs: Ciphertext ct.

1. Output 0.

Fig.4: Zero

1. Challenger runs HE setup algorithm to obtain a public and secret key pair
as (PKug, SKug) < Setupyp(1*). It uniformly samples s < {0, 1}, sets t =
PRG(s), and computes the obfuscation of program SelfCycleTest (described
in Figure 3) as Prog + iO(SelfCycleTest). It sets the public key and secret
key as PKpkg = (PKug, Prog), SKpkr = (SKug, s). Finally, it sends PKpkg to
A.

2. A receives PKpkg from challenger, and computes messages mg, m1. It sends
(mg, m1) to the challenger.

3. Challenger chooses bit b < {0, 1}, computes ct* < Encpkr(PKpkr, M), and
sends ct* to A.

4. A receives challenge ciphertext ct* from challenger, and outputs its guess b'.

5. A wins if it guesses correctly, that is if b = b'.

Game 2: Game 2 is same as Game 1, except challenger uniformly samples ¢ from
{0, 1}?¢ instead of computing it as t = PRG(s).

1. Challenger runs HE setup algorithm to obtain a public and secret key pair as
(PKug, SKug) < Setupyg(11). It uniformly samples s « {0, 1}¢, ¢ < {0,1}%,
and computes the obfuscation of program SelfCycleTest (described in Fig-
ure 3) as Prog < 1O(SelfCycleTest). It sets the public key and secret key as
PKpkg = (PKHE, PI’Og), SKpkg = (SKHE, S) Finally, it sends PKpkg to A.

2-5. Same as before.

Game 3: Game 3 is same as Game 2, except challenger computes Prog as obfus-
cation of program Zero.

1. Challenger runs HE setup algorithm to obtain a public and secret key pair as
(PKug, SKug) < Setupyp(11). It uniformly samples s « {0, 1}, ¢ + {0, 1},
and computes the obfuscation of program Zero (described in Figure 4) as
Prog <+ iO(Zero)®. It sets the public key and secret key as PKpkg = (PKug, Prog),
SKpkE = (SKHE, 5) Finally, it sends PKpkE to A.

2-5. Same as before.

We now establish via a sequence of claims that the adversary’s advantage
between each adjacent game is negligible. Let Adv; = |Pr[b’ = b] — 1/2| denote
the advantage of adversary A in Game i of guessing the bit b.

5 Note that program Zero must be padded such that it is of same size as program
SelfCycleTest.

11



Claim 1 If PRG is a secure pseudorandom generator, then for all PPT A,
|Advy — Adva| < negl(A) for some negligible function negl(-).

Proof. We describe and analyze a PPT reduction algorithm B that plays the
pseudorandom generator security game. B first receives a PRG challenge T €
{0,1}%. Tt then plays the security game with A as described in Game 1 with the
exception that in step 1 it lets ¢t = T If A wins (i.e. b’ = b), then B guesses ‘1’ to
indicate that T was chosen in the image space of PRG(-); otherwise, it outputs
‘0’ to that T was chosen randomly.

We observe that when 7' is generated as T' = PRG(r), then B gives exactly
the view of Game 1 to A. Otherwise if T' is chosen randomly the view is of Game
2. Therefore if |Adv; — Advs| is non-negligble, B must also have non-negligible
advantage against the pseudorandom generator.

Claim 2 If iO is a secure indistinguishability obfuscator, then for all PPT A,
|Adve — Advs| < negl(X) for some negligible function negl(-).

Proof. We describe and analyze a PPT reduction algorithm B that plays the
indistinguishability obfuscation security game with A. B runs steps 1 as in Game
2, except it creates two programs as Cy = SelfCycleTest and C7; = Zero. It
submits both of these to the IO challenger and receives back a program P.
It sets Prog = P and finishes step 1. It executes steps 2-5 as in Game 2. If
the attacker wins (i.e. ¥’ = b), then B guesses ‘0’ to indicate that P was and
obfuscation of Cy; otherwise, it guesses ‘1’ to indicate it was an obfuscation of
C1.

We observe that when P is generated as an obfuscation of Cy, then B gives
exactly the view of Game 2 to A. Otherwise if P is chosen as an obfuscation
of C7 the view is of Game 2. In addition, the programs are functionally equiv-
alent with all but negligible probability. The reason is that ¢ is outside the
image of the pseudorandom generator with probability at least 1 — 2¢. There-
fore if |Advy — Advs] is non-negligble, B must also have non-negligible advantage
against the indisguishability obfuscation game.

Claim 3 IfHE is a secure bootstrappable homomorphic encryption scheme, then
for all PPT A, Advs < negl(\) for some negligible function negl(-).

Proof. We describe and analyze a PPT reduction algorithm B that plays the
IND-CPA security game with HE challenger. B receives public key PKyg from
HE challenger. It runs step 1 as described in Game 3 with the exception that it
uses PKyg generated by HE challenger instead of running the setup algorithm. B
forwards the challenge messages (mg, m1) it receives from A to HE challenger as
its challenge, and receives ct* as the challenge ciphertext, which it then forwards
to A. Finally, B outputs the same bit as A.

We observe that if A wins (i.e. ¥’ = b), then B also wins because it exactly
simulates the view of Game 3 for A. Therefore if Advs is non-negligble, B must
also have non-negligible advantage against HE challenger.

12



5 Unbounded Counterexamples with Mixed
Cryptosystems

We conclude by making the following observation pertaining to our counterexam-
ple. In our construction, we started slicing the key cycle from the end, and after
every cycle length reduction iteration, the new (homomorphically) evaluated ci-
phertext is encrypted under a different public key. Concretely, if we consider an
n-length key cycle, then after i*" cycle reduction iteration, the ciphertext cth_;
generated is encrypted under public key pk,,_,. Therefore, the cycle testing algo-
rithm works in the presence of a LHE scheme. We observe that if we instantiate
our idea with an unbounded fully homomorphic encryption (FHE) scheme as
opposed to a leveled one, then the cycle testing algorithm could be alternatively
evaluated by slicing the key cycle from the start. More formally, in the first it-
eration, our new cycle tester would homomorphically evaluate circuit Cpec,2 on
cty, where Cpec,2 is a circuit that takes an input = and uses it to decrypt cts.
Since ct; and cty are encryptions of ske and sks under public keys pk; and pky
(respectively), the homomorphic evaluation would generate a new ciphertext ct}
that would be an encryption of sks under public key pk;. Note that this also
reduces the key cycle length by one, but in the forward direction and it requires
the encryption scheme to be fully homomorphic. Therefore, iteratively applying
this procedure would finally generate a ciphertext ct} which encrypts secret key
sk; under public key pk;, and as before, the self-cycle could be tested using
Prog;.

The crucial observation in the alternative cycle testing procedure is that
we require only one encryption scheme to be homomorphic encryption scheme.
This opens up the possibility of creating a counterexample for circular security
under mized public key encryption (PKE) framework, where the cycle could
comprise of distinct and variegated PKE schemes with a universal message and
key space. In particular, this shows that just one “bad” key could poison the
circular security for any arbitrary length cycle.
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