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Abstract. This paper gives the first bit security result for the ellip-
tic curve Diffie–Hellman key exchange protocol for elliptic curves de-
fined over prime fields. About 5/6 of the most significant bits of the
x-coordinate of the Diffie–Hellman key are as hard to compute as the
entire key. A similar result can be derived for the 5/6 lower bits. The
paper improves the result for elliptic curves over extension fields, that
shows that computing one component (in the ground field) of the Diffie–
Hellman key is as hard to compute as the entire key.
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1 Introduction

The notion of hardcore functions goes back almost to the invention of public
key cryptography. Loosely speaking, for a one-way function f , a function b is a
hardcore function for f if given f(x) it is hard to compute b(x) (while given x,
computing b(x) is easy).

The main interest is in functions b that output some bits of x, which gives
this research field the name bit security. That is, while computing x from f(x)
is computationally hard by definition, one tries to assess the hardness of com-
puting partial information about x. This can be done by providing an (efficient)
algorithm that computes b(x), or more commonly by reducing the problem of
computing x to computing b(x). That is, one provides an (efficient) algorithm
that inverts f given an algorithm that computes b on f .

For popular candidates for one-way functions, such as the RSA function
(RSAN,e(x) = xe mod N) and discrete exponentiation in a subgroup of prime
order (EXPg(x) = gx; g has prime order), all single-bit functions are known to
be hardcore. This result, which is standard these days, took more than 15 years
to achieve, where year after year small improvements were made. An important
aspect to consider is the success in computing b(x). The mentioned result ap-
plies to every algorithm that computes b(x) with a non-negligible success over
a trivial guess. See [12] for a survey on hardcore functions which presents the
developments over the years.

The notion of a hardcore function can be generalized to suit the Diffie–
Hellman key exchange protocol. Let (G, ·) be a group and let g ∈ G. For a



function b, given gu and gv, we consider the hardness of computing b(s) for
(the Diffie–Hellman key) s = guv. Proving bit security for Diffie–Hellman key
exchange has known less success than the aforementioned results. For G = Z∗p,
the multiplicative group of integers modulo a prime p, the

√
log p+log log p most

(and least) significant bits of s are hard to compute as s itself [9] (see also [14];
a similar result holds for twice as many consecutive inner bits, as a consequence
of [20, Section 5.1]). For G = F∗pm , the multiplicative group of a finite extension
field, represented as a vector space over Fp, computing a single component of s
is as hard to compute as s itself [26], which follows from the fact that a single
component of a product st is linear in all of the components of s. Moreover,
using this linearity, a result in a similar fashion to the case of G = Z∗p can be
obtained from [23] for a single component (see also [17]). These results need –
essentially – a perfect success in computing the partial information.

The case of the elliptic curve Diffie–Hellman key exchange protocol has known
even fewer results, mainly because of the inherent nonlinearity of the problem.
For elliptic curves over prime fields there are no known (non-trivial) results. For
the group of elliptic curve points over an extension field of degree 2, computing
a single component of the x-coordinate of s is as hard to compute as s itself [15,
Remark 3.1]. This result requires perfect success in computing the component.
We mention that for the case of elliptic curves over prime fields it is claimed in
[7] that computing the top (1−ε) fraction of bits of the x-coordinate of s, for ε ≈
0.02, is as hard as computing all of them, but a proof is not provided, probably
since it is a weak result, as the authors mentioned. Obtaining bit security results
for elliptic curve Diffie–Hellman keys has been an open problem for almost 20
years [6, Section 5] (see also [12, Section 5]).

Some results on hardness of bits, related to the elliptic curve Diffie–Hellman
protocol, were given by Boneh and Shparlinski [8] and by Jetchev and Venkatesan
[16] (building on [8] and assuming the generalized Riemann hypothesis). These
results differ from ours in two aspects. They do not provide hardness of bits for
the elliptic curve Diffie–Hellman protocol for a single fixed curve. Furthermore,
the techniques used to achieve these results are very different from ours, as they
reduce the problem to an easier linear problem, while we keep working with the
non-linear addition law.

In this paper we study the bit security of the elliptic curve Diffie–Hellman
key exchange protocol. Our main result is Theorem 2, where we show that about
5/6 of the most significant bits of the x-coordinate of the Diffie–Hellman key are
as hard to compute as the entire key. As above, this result holds if one assumes
a perfect success in computing these bits. This result directly follows from the
solution to the elliptic curve hidden number problem given in Theorem 1. This
solution is based on the ideas behind the solution to the modular inversion
hidden number problem given in [7] and follows the formal proof given by Ling,
Shparlinski, Steinfeld and Wang [18] (earlier ideas already appear in [2, 3]).

Additional results are given in Section 6. In Section 6.1 we show how to
derive the same result for the least significant bits. Section 6.2 addresses the
case of elliptic curves over extension fields. This problem was first studied by



Jao, Jetchev and Venkatesan [15]. We improve the known result to hold for both
coordinates of the Diffie–Hellman key and to any constant extension degree.
More details on these results appear in the full version of this paper [22].

As the literature on the elliptic curve hidden number problem is very minimal
and incomplete, short discussions – some of which are quite trivial – appear
throughout the paper in order to give a complete and comprehensive study of the
problem. We hope that this work will initiate the study of bit security of elliptic
curve Diffie–Hellman key exchange that will lead to improvements either in the
number of hardcore bits or in the required success probability for computing
them.

2 Mathematical Background

Throughout the paper p > 3 is an m-bit prime number and Fp is the field with p
elements represented by {−p−12 , . . . , p−12 }. For k > 0 and x ∈ Fp, we denote by
MSBk(x) any h ∈ Fp such that |x− h| ≤ p

2k+1 .1 We have h = MSBk(x) = x− e
for |e| ≤ p

2k+1 , which we loosely call noise.

2.1 Elliptic curves

Throughout the paper E is an elliptic curve over Fp, given in a short Weierstrass
form

y2 = x3 + ax+ b, a, b ∈ Fp and 4a3 + 27b2 6= 0 .

A point P = (x, y) ∈ F2
p that satisfies this equation is a point on the curve E.

We denote the x-coordinate (resp. y-coordinate) of a given point P by xP or Px
(resp. yP or Py). The set of points on E, together with the point at infinity O, is
known to be an abelian group. Hasse’s theorem states that the number of points
#E on the curve E(Fp) satisfies

|#E − p− 1| ≤ 2
√
p .

The (additive) inverse of a point Q = (xQ, yQ) is −Q = (xQ,−yQ). For
an integer n we denote by [n]P the successive n-time addition of a point P ;
[−n]P = [n](−P ). Addition of points P = (xP , yP ) and Q = (xQ, yQ), where

P 6= ±Q, is given by the following formula. Let s = sP+Q =
yP−yQ
xP−xQ , then

(P +Q)x = s2 − xP − xQ and (P +Q)y = −(yP + s((P +Q)x − xP )) .

1 The function MSBk is standard and thought of as providing the k most significant
bits of x. It differs from the classical definition of most-significant-bits functions by
(at most) 1 bit. For broad discussions see [4, Section 5], [5, Section 3] and [20, Section
5.1].



2.2 Lattices

Let B = {b1, . . . , br} a set of linearly independent vectors in the Euclidean space
Rs, for some integers r ≤ s. The set L =

{∑r
i=1 nibi | ni ∈ Z

}
is called an r-

dimensional lattice and B is a basis for L. The (Euclidean) norm of a vector
v ∈ Rs is denoted by ‖v‖.

For a lattice L in Rs and a real number γ ≥ 1, the γ-shortest vector problem
(γ-SVP) is to find a non-zero lattice vector v ∈ L with norm not larger than
γ times the norm of the shortest non-zero vector in L. In other words, ‖v‖ ≤
γmin{‖u‖ | 0 6= u ∈ L}.

This problem is a fundamental problem in lattice cryptography. References
to surveys and state-of-the-art algorithms for γ-SVP are given in Section 1.2 in
the work of Ling, Shparlinski, Steinfeld and Wang [18], and like their work our
result uses the γ-SVP algorithms of Schnorr [21] and Micciancio–Voulgaris [19].

3 Hidden Number Problems

The hidden number problem was introduced by Boneh and Venkatesan [9] in
order to study bit security of the Diffie–Hellman key exchange protocol in the
multiplicative group of integers modulo a prime p. This problem is formulated
as follows.

HNP: Fix a prime p, an element g ∈ Z∗p and a positive number k.
Let α ∈ Z∗p be a hidden number and let Oα,g be an oracle that on
input x computes the k most significant bits of αgx mod p. That is,
Oα,g(x) = MSBk(α · gx mod p). The goal is to recover the hidden
number α, given query access to the oracle Oα,g.

Various natural variants of this problem can be considered, such as changing
the group the elements are taken from and the function the oracle is simulating.
Moreover, one can consider oracles with different probability of producing the
correct answer. The survey [25] covers many of these generalizations as well as
different applications.

The elliptic curve equivalent, known as the elliptic curve hidden number prob-
lem, is formulated as follows for ψ ∈ {x, y}.

EC-HNPψ: Fix a prime p, an elliptic curve E over Fp, a point R ∈ E
and a positive number k. Let P ∈ E be a hidden point and let OP,R
be an oracle that on input t computes the k most significant bits of
the ψ-coordinate of P+[t]R. That is,OP,R(t) = MSBk((P+[t]R)ψ).
The goal is to recover the hidden point P , given query access to
the oracle OP,R.

The elliptic curve hidden number problem, to the best of our knowledge, was first
considered (more generally, and only for the x-coordinate) by Boneh, Halevi and
Howgrave-Graham [7], and besides being mentioned in the surveys [24, 25] there



is no other literature about it.2 We remark that there are no known solutions
to this problem, even for large k’s (except, of course, of trivial cases, i.e., k ≥
log p−O(log log p)).

A related3 non-linear problem is the modular inversion hidden number prob-
lem, which was introduced by Boneh, Halevi and Howgrave-Graham [7]. It is
formulated as follows.

MIHNP: Fix a prime p and positive numbers k, d. Let α ∈ Zp be a
hidden number and let t1, . . . , td ∈ Zp \{−α} chosen independently
and uniformly at random. The goal is to find the secret number α

given the d pairs
(
ti,MSBk

(
1

α+ti

))
.

We now explain the relation between the elliptic curve hidden number prob-
lem and bit security of the elliptic curve Diffie–Hellman key exchange protocol.

Remark 1. Given an elliptic curve E over a field Fq, a point Q ∈ E and the values
[a]Q and [b]Q, the Diffie–Hellman key P is the value P = ECDHQ([a]Q, [b]Q) =
[ab]Q. Suppose one has an oracle that on input [u]Q and [v]Q outputs some
partial information on [uv]Q. Then, one can choose an integer t and calculate
[t]Q, and by adding [t]Q and [a]Q, one gets [a]Q + [t]Q = [a + t]Q. Querying
the oracle on [b]Q and [a + t]Q, one gets partial information on [(a + t)b]Q =
[ab]Q+ [tb]Q = P + [t]([b]Q) = P + [t]R, for R = [b]Q. Repeating for several t’s,
if it is possible to solve the elliptic curve hidden number problem, one can find
the Diffie–Hellman key P = [ab]Q.

In the proof below we use the fact that one can get MSBk(xP ) for the secret
point P . This can be easily justified by taking t = 0 in EC-HNP, or equivalently
querying the oracle from Remark 1 on [a]Q and [b]Q. Moreover,

Remark 2. Similar to HNP [9, Section 4.1] and MIHNP [7, Section 2.1], EC-HNP
can be self-randomized. Indeed, given {(Qi,O((P +Qi)ψ))}1≤i≤n, for an oracle
O, choose 1 ≤ i0 ≤ n, and define a new secret P ′ := P +Qi0 . Let Q′i := Qi−Qi0 ,
then we have P + Qi = P ′ + Q′i, and so O((P ′ + Q′i)ψ) = O((P + Qi)ψ).
If one can find P ′, recovering P = P ′ − Qi0 is easy. This shows that given
{(Qi,O((P+Qi)ψ))}i, one can randomize the secret P as well as the ‘multipliers’
Qi. Alternatively, if access to the oracle is still provided, one can query on ti0 +ti
to receive O((P ′+Qi)ψ), as well as taking the approach of [9, Section 4.1]. This
self-randomization allows us to assume without loss of generality that R in EC-
HNP is a generator for 〈Q〉.

4 Main Results

The main result is Theorem 2, which gives the first bit security result for prime-
field elliptic curve Diffie–Hellman key exchange. This result follows from the

2 In [15] (a variant of) this problem is studied for elliptic curves over extension fields.
3 We show below that the technique used to solve this problem also applies to EC-

HNP. In addition, [24] reveals that obtaining bit security results for the elliptic curve
Diffie–Hellman scheme has been a primary motivation for studying this problem.



following theorem, which shows how to recover the secret point in EC-HNPx
given a γ-SVP algorithm.

Theorem 1. Let E be an elliptic curve over a prime field Fp, let n be an integer
and k a real number. Let an unknown P = (xP , yP ) ∈ E \ {O} and a known
generator R ∈ E \ {O} be points on the curve. Let O be a function such that
O(t) = MSBk((P + [t]R)x), and denote Qi := [ti]R. Then, given a γ-SVP algo-
rithm, there exists a deterministic polynomial-time algorithm that recovers the
unknown xP with 2n + 1 calls to O and a single call to the γ-SVP algorithm
on a (3n + 3)-dimensional lattice with polynomially bounded basis, except with
probability

P1 ≤
8n(6η∆+ 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆+ 1)6

p− 2
√
p− 2

+
2n+ 3

p− 2
√
p

over the choices of xQ1
, . . . , xQn , when it returns no answer or a wrong answer,

where η = 2γ
√

3n+ 1 and ∆ = d p
2k+1 e.4 If the correct x-coordinate xP has

been recovered, the algorithm determines which of the two candidates ±yP is the
correct y-coordinate, except with probability

P2 ≤
(16∆)n

(p− 2
√
p− 2)n

over the choices of xQ1
, . . . , xQn .

Remark 3. In the theorem, as in the corollary below, R is taken to be a generator
of E in order to give precise bounds on the probabilities. Both results hold even
if R is not a generator of E, as long as it generates a “large enough” subgroup.
The size of the subgroup appears in the denominator of the probabilities bounds
(see footnote 7), and so the results also hold if the subgroup’s order is greater
than p/poly(log(p)), for example. For substantially smaller subgroups, one would
need to adjust the value for k.

The following corollary shows that one can solve EC-HNPx given an oracle
for k > ( 5

6 + ε)m most significant bits (where m is the bit length of p, and
for any constant ε). Similar to Ling et al. [18], we consider two different SVP
approximation algorithms to show the influence of ε on the running time and
the minimum allowed value for p.

Corollary 1. Fix 0 < δ ≤ 3ε < 1/2. Let n0 = d 1
6εe, p be an m-bit prime,

E be an elliptic curve over Fp and k > (5/6 + ε)m. There exist deterministic
algorithms Ai, for i = 1, 2, that solve EC-HNPx (with MSBk and a generator R)
for m ≥ mi, with probability at least 1 − p−δ over the choices of xQ1 , . . . , xQn0

where

m1 = dc1ε−1 log ε−1e and m2 = dc2ε−2
(log log ε−1)2

log ε−1
e ,

4 As the matter of exact precision is not important, we set ∆ to be an integer.



for some absolute effectively computable constants c1, c2, and their running time
is Ti where

T1 = (2ε
−1

m)O(1) and T2 = (ε−1m)O(1) .

As a consequence, following Remark 1, we get a hardcore function for the
elliptic curve Diffie–Hellman problem and the following bit security result for
elliptic curve Diffie–Hellman key exchange.

Theorem 2. Fix 0 < δ ≤ 3ε < 1/2. Let p be an m-bit prime, E be an elliptic
curve over Fp, a point P ∈ E \ {O} of order at least p/poly(log(p)) and k >
(5/6 + ε)m. Given an efficient algorithm to compute MSBk

(
([ab]P )x

)
from [a]P

and [b]P , there exists a deterministic polynomial-time algorithm that computes
[ab]P with probability at least 1− pδ.

In a nutshell, the approach of solving non-linear problems like MIHNP and
EC-HNP is to form some polynomials with desired small roots, and use a lattice
basis reduction algorithm to find some of these roots. The polynomials’ degree,
the number of their monomials, and subsequently the dimension of the lattice,
play a main role in the quality of the result one can obtain.

4.1 Our approach

The first obstacle in approaching EC-HNP is the nonlinearity (over the ground
field) of the addition rule. This can be easily overcome by the “linearization”
approach of Boneh et al. [7], which we adopt, but at the cost of not being able
to use Babai’s algorithm for closest lattice point [1]. This prevents non-linear
problems, like MIHNP and EC-HNP, of achieving results as good as the result
for the linear HNP.

The second obstacle in approaching EC-HNPx (and similarly EC-HNPy) is
that while one only gets partial information of xP , the formula for (P + Q)x
also involves (the unbounded unknown) yP . Similar to the approach of [7], one
can isolate this unknown in one equation, and substitute to all of the other
equations, hence ‘losing’ one equation. Doing so will impose an extra bounded
unknown in each equation, as well as many additional monomials, coming from
the noise term of the equation we use to eliminate yP .5 This will therefore result
in a significantly large dimension of the lattice one constructs.6 Instead, we show
how one can combine two correlated equations to eliminate yP . This helps us
to define one bounded unknown (twice as large) while keeping the number of
monomials relatively small. Taking this approach we form new equations from
pairs of initial equations, causing a ‘loss’ of about half of the equations.

Formally, we proceed as follows.

5 Alternatively, once yP is isolated, one can square both sides of the equation to
eliminate yP using the elliptic curve equation. While this allows us to keep all initial
equations, doing so will result in polynomials of a larger degree with many more
monomials.

6 We speculate that this is the reason why [7] can only rigorously solve EC-HNPx

given (1− ε) fraction of the bits, for ε ≈ 0.02.



Eliminating yP For some integer t consider the pair Q = [t]R,−Q = [−t]R ∈
E, and suppose P 6= ±Q. Let P = (xP , yP ) and Q = (xQ, yQ), therefore −Q =

(xQ,−yQ), and write sP+Q =
yP−yQ
xP−xQ and sP−Q =

yP−y−Q
xP−x−Q =

yP+yQ
xP−xQ . The

following operations take place in Fp.

(P +Q)x + (P −Q)x = s2P+Q − xP − xQ + s2P−Q − xP − xQ

=

(
yP − yQ
xP − xQ

)2

+

(
yP + yQ
xP − xQ

)2

− 2xP − 2xQ

= 2

(
y2P + y2Q

(xP − xQ)2
− xP − xQ

)

= 2

(
xQx

2
P + (a+ x2Q)xP + axQ + 2b

(xP − xQ)2

)
.

(1)

Constructing polynomials with small roots Write h0 = MSBk(xP ) = xP−
e0, h = MSBk((P+Q)x) = (P+Q)x−e and h′ = MSBk((P−Q)x) = (P−Q)x−e′.
Letting h̃ = h+ h′ and ẽ = e+ e′ and plugging xP = h0 + e0 in (1) we get

h̃+ ẽ = (P +Q)x + (P −Q)x

= 2

(
xQ(h0 + e0)2 + (a+ x2Q)(h0 + e0) + axQ + 2b

(h0 + e0 − xQ)2

)
.

Multiplying by (h0+e0−xQ)2 and rearranging we get that the following bivariate
polynomial

F (X,Y ) = X2Y + (h̃− 2xQ)X2 + 2(h0 − xQ)XY

+ 2[h̃(h0 − xQ)− 2h0xQ − a− x2Q]X + (h0 − xQ)2Y

+ [h̃(h0 − xQ)2 − 2h20xQ − 2(a+ x2Q)h0 − 2axQ − 4b]

satisfies F (e0, ẽ) ≡ 0 mod p.
Repeating with n different Qi leads to n polynomials of the form

Fi(X,Y ) = X2Y +AiX
2 +A0,iXY +BiX +B0,iY + Ci , (2)

that satisfy Fi(e0, ẽi) ≡ 0 mod p. Our aim is to find “small” roots for Fi; if one
of these roots satisfies X = e0, we can substitute in h0 and recover xP .

We start with a simple argument that shows that indeed we expect to solve
EC-HNPx with more than the top 5/6 fraction of the bits. The argument is
identical to the argument given in [7, Section 3.1].

4.2 A simple heuristic argument

The solutions to the system of the n polynomials in (2) can be represented by
a lattice of dimension 4n+ 3, as follows. The lattice is spanned by the rows of a



matrix M of the following structure

M =

(
E R
0 P

)
where E and P are diagonal square matrices of dimensions 3n + 3 and n, re-
spectively, and R is a (3n + 3) × n matrix. Each of the first 3n + 3 rows of M
is associated with one of the terms in (2), and each of the last n columns is
associated with one of these equations. For example, for n = 2 we get the matrix
(m is the bit size of p and k the number of bits we get)

M =



1 0 0 0 0 0 0 0 0 C1 C2

0 2k−m 0 0 0 0 0 0 0 B0,1 0
0 0 2k−m 0 0 0 0 0 0 0 B0,2

0 0 0 2k−m 0 0 0 0 0 B1 B2

0 0 0 0 22(k−m) 0 0 0 0 A0,1 0
0 0 0 0 0 22(k−m) 0 0 0 0 A0,2

0 0 0 0 0 0 22(k−m) 0 0 A1 A2

0 0 0 0 0 0 0 23(k−m) 0 1 0
0 0 0 0 0 0 0 0 23(k−m) 0 1
0 0 0 0 0 0 0 0 0 p 0
0 0 0 0 0 0 0 0 0 0 p


.

For e0, ẽi, the last n columns give us equations over the integers:

e20ẽi +Aie
2
0 +A0,ie0ẽi +Bie0 +B0,iẽi + Ci − kip = 0 .

For the corresponding solution vector

v := 〈1, ẽ1, . . . , ẽn, e0, e0ẽ1, . . . , e0ẽn, e20, e20ẽ1, . . . , e20ẽn, k1, . . . , kn〉 ,

we get that vM =

〈1, ẽ1
2m−k

, . . . ,
ẽn

2m−k
,
e0

2m−k
,

e0ẽ1
22(m−k)

, . . . ,
e0ẽn

22(m−k)
,

e20
22(m−k)

,
e20ẽ1

23(m−k)
, . . . ,

e20ẽn
23(m−k)

, 0, . . . , 0〉.

Therefore, vM is a lattice point with 3n + 3 non-zero entries, all of which are
smaller than 1, so its Euclidean norm is smaller than

√
3n+ 3.

The determinant of the lattice is pn

2(m−k)(6n+3) . We apply the heuristic for

short lattice vectors and expect that vM is the shortest vector if
√

3n+ 3 �
√

4n+ 3
(

2(k−m)(6n+3)pn
)1/(4n+3)

. Substituting p = 2m+O(1) and ignoring lower

terms we get 2k � 25/6m, and so we expect that vM is the shortest lattice vector
when we get more than 5

6m bits. Therefore, this becomes a problem of recovering
the shortest lattice vector.

Boneh et al. [7] suggest using Coppersmith’s method [10] and construct a
lattice that leads to a smaller bound on the number of bits one needs in order
to recover the secret element in this kind of non-linear problems. This approach
has to assume linear independence of the equations involved, and therefore does



not provide a proof, but only a heuristic. Since the aim of this paper is to prove
bit security, we do not follow this path.

We now turn to a complete formal proof of Theorem 1. It follows the same
arguments as in the proof of Theorem 1 in [18], where necessary adaptations
have been made.

5 Proofs

The proof of Theorem 1 is very technical. The algorithm of recovering xP appears
in Algorithm 1, but we first lay the groundwork, so that the probability analysis
that appears after the algorithm could be understood. We first give an overview
of the key points of the proof.

Overview
In the algorithmic part:

• Using O, we construct the polynomial relations (as in (2) above)

Fi(X,Y ) = X2Y +AiX
2 +A0,iXY +BiX +B0,iY + Ci

for which Fi(e0, ẽi) ≡ 0 mod p.
• Using these relations, we construct a lattice (see (4)), such that the vector

e := (∆3, ∆2e0, ∆
2ẽ1, . . . ,∆

2ẽn, ∆e
2
0, ∆e0ẽ1, . . . ,∆e0ẽn, e

2
0ẽ1, . . . , e

2
0ẽn)

is a short lattice vector.
• We run a γ-SVP algorithm on the lattice to receive a short lattice vector

f := (∆3f ′0, ∆
2f0, ∆

2f1 . . . , ∆
2fn, ∆f0,0, ∆f0,1, . . . ,∆f0,n, f00,1, . . . , f00,n) .

As e and f are two short lattice vectors, we expect them to be a (scalar)
multiple of each other.

• Supposing this is the case, the scalar f ′0 is found by observing the first
coordinate of e and f . We then compute e0 = f0/f

′
0 provided f ′0 6= 0.

• From the relation h0 = xP − e0 we derive xP = h0 + e0.

The second part of the proof analyzes the success probability of the algorithm,
as follows:

• If e0 6= f0/f
′
0 or f ′0 = 0 the algorithm fails.

• To derive the probability of these events we form a certain family of low-
degree polynomials (see (12)), for which we are interested in their set of
zeros. The number of polynomials in the family is a function of ∆ = d p

2k+1 e,
and so a function of k.

• Claim 5.1 shows that if yP 6= 0, then the polynomials are not identically
zero.

• We show that these events occur if the points xQi are roots of some of these
polynomials. Thus, we derive an exact expression of the probability of these
events to hold.

The last part of the proof shows how one can determine the correct value for yP
using a consistency check with all of the given values.



5.1 Proof of Theorem 1

Assume without loss of generality 3η∆ ≤ 3η∆3 < p, as otherwise the bound
on the probability makes the claim trivial, and that the unknown P is chosen
uniformly at random (see Remark 2). Throughout, unless stated otherwise, i, j
are indices such that 1 ≤ i ≤ n and 0 ≤ j ≤ n. Set t0 = 0, choose ti ∈ [1,#E−1]
independently and uniformly at random, and query the oracle O on ±tj to
get the 2n + 1 values O(±tj) denoted by h0 = MSBk(Px) = xP − e0, hi =
MSBk((P+Qi)x) = (P+Qi)x−ei and hi′ = MSBk((P−Qi)x) = (P−Qi)x−ei′ ,
for some integers −∆ ≤ ej , ei′ ≤ ∆. Denote h̃i = hi + hi′ and ẽi = ei + ei′ , and
suppose P 6= ±Qi.

The following has been shown in Section 4.1. For every 1 ≤ i ≤ n, one has

h̃i + ẽi = hi + ei + hi′ + ei′ = (P +Qi)x + (P −Qi)x

≡ 2

(
xQi(h0 + e0)2 + (a+ x2Qi)(h0 + e0) + axQi + 2b

(h0 + e0 − xQi)2

)
(mod p) .

Consider the polynomials

Fi(X,Y ) := X2Y +AiX
2 +A0,iXY +BiX +B0,iY + Ci ,

where (all congruences hold mod p)

Ai ≡ h̃i − 2xQi ,

Bi ≡ 2[h̃i(h0 − xQi)− 2h0xQi − a− x2Qi ] ,

Ci ≡ h̃i(h0 − xQi)2 − 2((h20 + a)xQi + (a+ x2Qi)h0 + 2b) .

A0,i ≡ 2(h0 − xQi) ,
B0,i ≡ (h0 − xQi)2, and

It holds that F (e0, ẽi) ≡ 0 (mod p) for every 1 ≤ i ≤ n. As e0, ẽi are relatively
small, one hopes that finding a small solution to one of these polynomials would
allow to recover e0 and subsequently P . To achieve this goal, we use these rela-
tions to construct a lattice and apply the γ-SVP algorithm.

Formally, we start by ‘balancing’ the coefficients (as lattice basis reduction
algorithms work better where all the coefficients are of similar size). For every
1 ≤ i ≤ n, set

ai ≡ ∆−1Ai (mod p) , a0,i ≡ ∆−1A0,i (mod p) ,

bi ≡ ∆−2Bi (mod p) , b0,i ≡ ∆−2B0,i (mod p) , and

ci ≡ ∆−3Ci (mod p) .

(3)

The vector

e = (∆3, ∆2e0, ∆
2ẽ1, . . . ,∆

2ẽn, ∆e
2
0, ∆e0ẽ1, . . . ,∆e0ẽn, e

2
0ẽ1, . . . , e

2
0ẽn)

belongs to the lattice L consisting of solutions

x = (x′0, x0, x1, . . . , xn, x0,0, x0,1, . . . , x0,n, x00,1, . . . , x00,n) ∈ Z3n+3



of the congruences

cix
′
0 + bix0 + b0,ixi + aix0,0 + a0,ix0,i + x00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

x′0 ≡ 0 (mod ∆3) ,

xj ≡ 0 (mod ∆2) 0 ≤ j ≤ n , and

x0,j ≡ 0 (mod ∆) 0 ≤ j ≤ n .

The lattice L is generated by the rows of a (3n+ 3)× (3n+ 3) matrix M of
the following structure:

M =

∆2 0 M1

0 ∆ M2

0 0 P

 (4)

where ∆2, ∆ and P are diagonal square matrices of dimensions n+2, n+1 and
n, respectively, such that the diagonal of P consists of the prime p, the matrix
∆ consists of ∆ and the matrix ∆2 of ∆2, except of the first diagonal entry
which is ∆3; and the matrices M1 and M2 are of dimensions (n + 2) × n and
(n+ 1)× n respectively, given by

M1 =



−C1 −C2 . . . −Cn
−B1 −B2 −Bn
−B0,1 0 0

0 −B0,2

... 0
. . .

...
0 0 −B0,n


, M2 =



−A1 −A2 . . . −An
−A0,1 0 0

0 −A0,2

...
... 0

. . .
...

0 0 −A0,n


.

As |ẽi| = |ei + ei′ | ≤ 2∆ for every 1 ≤ i ≤ n, we have

‖e‖ ≤
√

3∆6 + 12n∆6 =
√

3 + 12n∆3 ≤ 2∆3
√

3n+ 1 .

Run the γ-SVP algorithm and denote the vector it outputs by

f = (∆3f ′0, ∆
2f0, ∆

2f1 . . . , ∆
2fn, ∆f0,0, ∆f0,1, . . . ,∆f0,n, f00,1, . . . , f00,n) , (5)

where f ′0, fj , f0,j , f00,i ∈ Z. Notice that

‖f‖ ≤ γ‖e‖ ≤ 2γ∆3
√

3n+ 1 = η∆3 for η = 2γ
√

3n+ 1 ,

and also that

|f ′0| ≤ ‖f‖∆−3 ≤ η ,
|fj | ≤ ‖f‖∆−2 ≤ η∆ ,

|f0,j | ≤ ‖f‖∆−1 ≤ η∆2 , and

|f00,i| ≤ ‖f‖ ≤ η∆3 .



As e, f are both short lattice vectors, we expect them to be scalar multiples of
each other. Therefore, let

d = f ′0e− f = (0, ∆2d0, ∆
2d1, . . . ,∆

2dn, ∆d0,0, ∆d0,1, . . . ,∆d0,n, d00,1, . . . , d00,n),

where

d0 = f ′0e0 − f0 , |d0| = |f ′0e0 − f0| ≤ η|e0|+ |f0| ≤ η∆+ η∆ = 2η∆ ,

di = f ′0ẽi − fi , |di| = |f ′0ẽi − fi| ≤ η|ẽi|+ |fi| ≤ η2∆+ η∆ = 3η∆ ,

d0,0 = f ′0e
2
0 − f0,0 , |d0,0| = |f ′0e20 − f0,0| ≤ η|e0|2 + |f0,0|

≤ η∆2 + η∆2 = 2η∆2 , (6)

d0,i = f ′0e0ẽi − f0,i , |d0,i| = |f ′0e0ẽi − f0,i| ≤ η|e0ẽi|+ |f0,i|
≤ η2∆2 + η∆2 = 3η∆2 , and

d00,i = f ′0e
2
0ẽi − f00,i , |d00,i| = |f ′0e20ẽi − f00,i| ≤ η|e20ẽi|+ |f00,i|

≤ η2∆3 + η∆3 = 3η∆3 .

Notice that if f ′0 6= 0 and also one of the coordinates of d (except of the first one)
is zero, we can recover some previously unknown information. More precisely,
suppose f ′0 6= 0, then

If d0 = 0, then e0 = f0/f
′
0 ; (7)

If di = 0, then ẽi = fi/f
′
0 , 1 ≤ i ≤ n ; (8)

If d0,0 = 0, then e20 = f0,0/f
′
0 ; (9)

If d0,i = 0, then e0ẽi = f0,i/f
′
0 , 1 ≤ i ≤ n ; (10)

If d00,i = 0, then e20ẽi = f00,i/f
′
0 , 1 ≤ i ≤ n . (11)

As ẽi = ei + ei′ it is unclear how to use these values in general to recover the
secret xP . We therefore focus on e0, from which we derive xP . Although there
are several ways to recover e0 from these equations, for the sake of the proof we
only focus on (7), thus in case f ′0 6= 0 we take h0 + f0/f

′
0 as the candidate for

xP , and if f ′0 = 0, we fail. We remark that a more involved approach can be
taken (to determine e0 and in the case f ′0 = 0), using the consistency check in
Appendix A.

A pseudocode for the algorithm that recovers xP is the following.

Algorithm 1: Find xP

1: Construct a lattice, generated by the rows of the matrix M as in (4).
2: Run the γ-SVP algorithm on the lattice to get the vector f as in (5).
3: if f ′0 6= 0 then

return h0 + f0/f
′
0

else
Fail



Probability of failure

We now define the following events:

(E-1) yP = 0;

(E-2) d0 6= 0 and (E-1) does not hold;

(E-3) f ′0 = 0 and (E-1) and (E-2) do not hold.

It is clear that if none of the events hold, one can recover xP . The requirement
yP 6= 0 will be made clear in Claim 5.1 below.

As there are at most 3 values for xP ∈ Fp that satisfy the equation x3P +
axP +b ≡ 0 (mod p), and since P is assumed to be chosen uniformly at random,
the probability that (E-1) holds satisfies

Pr[(E-1)] ≤ 3

#E − 1
≤ 3

p− 2
√
p
.

In order to derive a bound on the probability of the other events we form
some useful equations. As

ci∆
3 + bi∆

2e0 + b0,i∆
2ẽi + ai∆e

2
0 + a0,i∆e0ẽi + e20ẽi ≡ 0 (mod p), 1 ≤ i ≤ n ,

and

ci∆
3f ′0+bi∆

2f0+b0,i∆
2fi+ai∆f0,0+a0,i∆f0,i+f00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

we get (by the definition of d)

bi∆
2d0 + b0,i∆

2di + ai∆d0,0 + a0,i∆d0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

and therefore (using (3) above)

Bid0 +B0,idi +Aid0,0 +A0,id0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n .

Multiplying by (xP −xQi)2 and using the definitions for Ai, A0,i, Bi and B0,i we
get for every 1 ≤ i ≤ n

(xP − xQi)2
(

2[h̃i(h0 − xQi)− 2h0xQi − a− x2Qi ]d0 + (h20 − 2h0xQi + x2Qi)di

+ (h̃i − 2xQi)d0,0 + 2(h0 − xQi)d0,i + d00,i

)
≡ 0 (mod p) ,

which simplifies, as a polynomial in xQi , to

Uix
4
Qi − Vix

3
Qi +Wix

2
Qi + YixQi + Zi ≡ 0 (mod p), 1 ≤ i ≤ n , (12)



where (all congruences hold mod p)

Ui ≡ di − 2d0 ,

Vi ≡ 2(2xP − 2e0 − ẽi)d0 + (4xP − 2e0)di + 2d0,0 + 2d0,i ,

Wi ≡ 2(3x3P − 6e0xP − 3ẽixP + e0ẽi − 3a)d0 + (6x2P − 6e0xP + e20)di

+ (6xP − ẽi)d0,0 + (6xP − 2e0)d0,i + d00,i ,

Yi ≡ 2(3ẽix
2
P − 2e0ẽixP + 2axP − 2ae0 − 4b)d0 − 2(2x3P − 3e0x

2
P + e20xP )di

+ (2ẽixP + 2a)d0,0 − (6x2P − 4e0xP )d0,i − 2xP d00,i , and (13)

Zi ≡ 2(−ẽix3P + e0ẽix
2
P + ax2P − 2ae0xP + 4bxP − 4be0)d0

+ (x4P − 2e0x
3
P + e20x

2
P )di + (−ẽix2P + 2axP + 4b)d0,0

+ (2x3P − 2e0x
2
P )d0,i + x2P d00,i .

We now show that if for some 1 ≤ i ≤ n the left hand side of (12) is the
constant zero polynomial, then d0 = 0 = d0,0. We conclude that if d0 6= 0 or
d0,0 6= 0, then the left hand side of (12) is a non-constant polynomial in xQi (of
degree at most 4) for every 1 ≤ i ≤ n.

Claim. Let 1 ≤ i ≤ n, and assume yP 6= 0. The left hand side of (12) is constant
if and only if d0 = d0,0 = di = d0,i = d00,i = 0.

Proof. The first implication is clear from (13). Suppose that the left hand side
of (12) is constant for some 1 ≤ i ≤ n. Then Ui ≡ Vi ≡ Wi ≡ Yi ≡ Zi ≡ 0
(mod p). One can express the latter as a system of 5 equations in the 5 variables
d0, di, d0,0, d0,i and d00,i. A non-zero solution exists if and only if the system is
singular. We show that the system is nonsingular if and only if yP 6= 0, which
completes the proof.

We use the first 4 equations to eliminate di, d0,i, d00,i and remain with the
“global” variables d0, d0,0. One then has

−2(2x3P + 3e0x
2
P + 2axP + ae0 + 2b)d0 + (3x2P + a)d0,0 ≡ 0 (mod p) ,

which simplifies to

−4yP d0 − 2e0(3x2P + a)d0 + (3x2P + a)d0,0 ≡ 0 (mod p) .

If 3x2P + a ≡ 0 (mod p), then yP d0 ≡ 0 (mod p). Otherwise, one can express
d0,0 in terms of d0. Plugging this value, with the other recovered variables, to
the last equation, one gets

(x6P + 2ax4P + 2bx3P + a2x2P + 2abxP + b2)d0 ≡ y4P d0 ≡ 0 (mod p) .

In both cases, since yP 6= 0, we have d0 ≡ d0,0 ≡ di ≡ d0,i ≡ d00,i ≡ 0
(mod p), and since all of these values are of size smaller than p (as we suppose
3η∆ < 3η∆3 < p), the claim follows.



We use this claim to bound the probabilities of (E-2) and (E-3), which will
prove the first claim in the theorem. The probability of events (E-2) and (E-3)
is taken over the choice of the points Qi for 1 ≤ i ≤ n. That is, we consider the
number of n-tuples

(xQ1
, . . . , xQn) ∈

(
Ex \ {xP }

)n
such that (E-2) holds or (E-3) holds, where Ex := {z ∈ Fp | ∃Q ∈ E,Qx = z}.7
Note that #E − 1 ≤ 2|Ex| ≤ #E + 2.

Probability of event (E-2). Assume (E-2) holds, that is d0 6= 0 and yP 6= 0,
and fix some values of dj , d0,j for 0 ≤ j ≤ n and d00,i for 1 ≤ i ≤ n. Let us
consider the number of n-tuples

(xQ1
, . . . , xQn) ∈

(
Ex \ {xP }

)n
satisfying (12).

Since d0 6= 0 Claim 5.1 shows that the left hand side of (12) is nonconstant
for all 1 ≤ i ≤ n. Thus, as all the relations in (12) are satisfied, there are at most
4 values xQi that satisfy each relation, and so there are at most 4n n-tuples that
satisfy these n non-constant polynomials.

From (6) above we get: as d0 6= 0 it can take at most 4η∆ values, each di
can take at most 6η∆ + 1 values, d0,0 can take at most 4η∆2 + 1 values, each
d0,i can take at most 6η∆2 + 1 values, and each d00,i can take at most 6η∆3 + 1
values. Therefore, there are at most

4n4η∆(6η∆+ 1)n(4η∆2 + 1)(6η∆2 + 1)n(6η∆3 + 1)n <

4n4η∆(6η∆+ 1)n(4η∆+ 1)2(6η∆+ 1)2n(6η∆+ 1)3n < 4n(6η∆+ 1)6n+3

n-tuples (xQ1
, . . . , xQn) for which event (E-2) happens. Denote them by Q. The

probability that d0 6= 0 (given yP 6= 0) satisfies

Pr[(E-2)] ≤ |Q|∣∣Ex \ {xP }∣∣n < 4n(6η∆+ 1)6n+3(
1
2 (#E − 1)− 1

)n ≤ 8n(6η∆+ 1)6n+3

(p− 2
√
p− 2)n

.

Probability of event (E-3). Assume (E-3) holds, that is f ′0 = 0, d0 = 0 and
yP 6= 0. We may suppose that for all the n-tuples in Q event (E-3) holds, and
thus consider the remaining n-tuples which are not in Q. We first notice that
d0,0 = 0. Indeed, if d0,0 6= 0, then by Claim 5.1 the left hand side of (12) is
nonconstant for all 1 ≤ i ≤ n. In that case, the only n-tuples that satisfy (12)
are in Q. We therefore have f0 = f ′0e0 − d0 = 0 = f ′0e

2
0 − d0,0 = f0,0.

Consider the set S = {i ∈ {1, . . . , n} | di = d0,i = d00,i = 0}. Let l = |S|, and
notice that if l = n then f0 = fi = f0,0 = f0,i = f00,i = 0, and since f ′0 = 0 by
assumption then f = 0. As f is a non-zero vector by construction, l < n.

7 In the case that R is not a generator of E, one would define Ex := {z ∈ Fp | ∃Q ∈
〈R〉, Qx = z}. Proving the theorem for any R boils down to proving that the roots
of (12) are not restricted to Ex.



Fix some values of di, d0,i, d00,i for 1 ≤ i ≤ n. We now consider the number
of n-tuples

(xQ1 , . . . , xQn) /∈ Q

satisfying (12). If i ∈ S then the left hand side of (12) is the constant zero, and
so there are |Ex| − 1 possible values for xQi satisfying (12). If i /∈ S then either
di 6= 0 or d0,i 6= 0 or d00,i 6= 0 and by Claim 5.1 the left hand side of (12) is
nonconstant, so there are at most 4 solutions xQi to the corresponding equation
in (12).

Overall, there are at most 4n−l(|Ex| − 1)l n-tuples (xQ1
, . . . , xQn) /∈ Q that

satisfy (12). The possible values for each di, d0,i, d00,i for each i /∈ S are given
above. So overall there are at most

4n−l(|Ex| − 1)l(6η∆+ 1)n−l(6η∆2 + 1)n−l(6η∆3 + 1)n−l

< 4n−l(|Ex| − 1)l(6η∆+ 1)n−l(6η∆+ 1)2(n−l)(6η∆+ 1)3(n−l)

= 4n−l(|Ex| − 1)l(6η∆+ 1)6(n−l)

n-tuples (xQ1
, . . . , xQn) /∈ Q for which event (E-3) happens. Denote them by

Q′. Over these tuples (not in Q), the probability that f ′0 = 0 (given d0 = 0 and
yP 6= 0) is bounded by

|Q′|∣∣Ex \ {xP }∣∣n ≤
n−1∑
l=0

(
4(6η∆+ 1)6

|Ex| − 1

)n−l
≤

n∑
l=1

(
4(6η∆+ 1)6

1
2 (#E − 1)− 1

)l
=

n∑
l=1

(
1

2

16(6η∆+ 1)6

#E − 3

)l
≤

n∑
l=1

(
1

2

)l(
16(6η∆+ 1)6

p− 2
√
p− 2

)l
.

If 16(6η∆+1)6

p−2√p−2 < 1, then the latter is smaller than 16(6η∆+1)6

p−2√p−2 . In any case we get

that this probability is bounded by

16(6η∆+ 1)6

p− 2
√
p− 2

.

We finally get that the probability that event (E-3) happens satisfies

Pr[(E-3)] ≤ |Q|∣∣Ex \ {xP }∣∣n +
|Q′|∣∣Ex \ {xP }∣∣n < 8n(6η∆+ 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆+ 1)6

p− 2
√
p− 2

.

Notice that the probability that Qi = ±P for some 1 ≤ i ≤ n is

2

#E − 1
≤ 2

p− 2
√
p
.

Thus, the probability that Qi = ±P for any 1 ≤ i ≤ n is bounded by

2n

p− 2
√
p
.



This concludes the first claim in the theorem.
Now suppose xP has been recovered. To determine which of the two values

±
√
x3P + axP + b is the correct y-coordinate of P , we run the consistency check,

which is presented in Appendix A, on both candidates. It is clear that the correct
candidate will pass the test. If both candidates pass the consistency check then
we cannot determine the point P . We analyze the probability of the event in
which the incorrect candidate −P = (xP ,−yP ) passes the test.

We consider how many Qi lead the system to be consistent with both ±yP .
Recall that

hi+ei =

(
yQi − yP
xQi − xP

)2

−xP−xQi =
xPx

2
Qi

+ (a+ x2P )xQi + axP + 2b− 2yQiyP

(xQi − xP )2
.

If −P passes the test, then there exist ēi with |ēi| ≤ ∆ such that hi = (P −
Qi)x − ēi, for all 1 ≤ i ≤ n. We therefore have

hi+ēi =

(
yQi + yP
xQi − xP

)2

−xP−xQi =
xPx

2
Qi

+ (a+ x2P )xQi + axP + 2b+ 2yQiyP

(xQi − xP )2
.

Subtracting one from the other and multiplying by (xP − xQi)2 we get

(ei − ēi)(xP − xQi)2 = −4yP yQi .

Squaring both sides and rearranging results in

(ei − ēi)2(xP − xQi)4 − 16y2P (x3Qi + axQi + b) ≡ 0 (mod p) .

This is a non-constant polynomial in xQi of degree 4 and therefore for every ēi
there are at most 4 values for xQi that satisfy this equation. Since there are at
most 2∆ possible values for each ēi, and since we can form n such equations,8 we
conclude that the probability that the point (xP ,−yP ) passes the consistency
check is bounded by

4n(2∆)n

(|Ex| − 1)n
≤ (16∆)n

(p− 2
√
p− 2)n

.

This concludes the proof.

5.2 Proof of Corollary 1

Consider the bounds on P1 and P2 in Theorem 1. One needs 1−P1−P2 ≥ 1−p−δ,
therefore P1 + P2 ≤ p−δ, for the claim to hold. As P2 is smaller than the first

8 Notice that we can also form n equations from the values hi′ . For each i each solution
xQi should satisfy an additional equation (ei′ − ēi′)(xP −xQi)2 = 4yP yQi . However,
adding the two equations results in the condition ei + ei′ − ēi − ēi′ = 0. While this
condition can be always satisfied (e.g. ēi′ = ei, ēi = ei′), the probability it holds
depends on the model for the oracle, i.e. how the noise terms ei, ei′ are generated.



bound on P1 in Theorem 1 we get that P1 + P2 is bounded by

2
8n(6η∆+ 1)6n+3

(p− 2
√
p− 2)n

+
16(6η∆+ 1)6

p− 2
√
p− 2

+
2n+ 3

p− 2
√
p
. (14)

It is sufficient to bound the latter by p−δ.
Consider the third term in (14). For the claim to hold, one needs

2n0 + 3

p− 2
√
p
<

1

pδ
,

from which it is easy to derive the minimal p (thus the minimal bit size m of
p) for the condition to hold. We therefore let δ′ such that p−δ

′
= p−δ − 2n0+3

p−2√p
(assuming the later is positive) and bound each of the other terms in (14) by
p−δ
′

2 . Notice that δ′ > δ.

Plugging p = 2m+O(1) and ∆ = 2m−k+O(1) in the first term (14), and since
k > (5/6 + ε)m, we have

2 · 8n(6η∆+ 1)6n+3

(p− 2
√
p− 2)n

=
23n+1(2O(1)η2m−k+O(1) + 1)6n+3

(2m+O(1) − 2m/2+O(1) − 2)n

= η6n+32(6n+3)(m−k+O(1))−(m+O(1))n

≤ η6n+32(6n+3)(m/6−mε+O(1))−(m+O(1))n

= 2(6n+3)(log η−mε)+m/2+O(n) .

The latter is smaller than p−δ
′

2 = 2−δ
′(m−1+O(1)) if (6n+ 3)(log η− εm) +m/2 +

O(n) ≤ −δ′(m+ O(1)), which simplifies to (for some sufficiently large absolute
constant C0)

(6n+ 3)(ε−m−1(log η + C0)) ≥ δ′ + 1

2
> δ +

1

2
. (15)

Using 3ε ≥ δ and n ≥ n0, it is easy to verify that (for a sufficiently large absolute
constant C1)

m > ε−1(2 log η + C1) (16)

implies (15).

Similarly, to show that the second term in (14) is bounded by p−δ
′

2 one gets
the condition (for some sufficiently large absolute constant C2)

6(ε−m−1(log η + C3)) ≥ δ′ > δ ,

which can be shown to hold when (for a sufficiently large absolute constant C3)

m > (6 log η + C3)(6ε− δ)−1 .

The latter is implied by (15), therefore by (16), provided C0 is large enough.
For A1 we apply the 1-SVP algorithm (with running time Õ(22d)) of Mic-

ciancio and Voulgaris [19] to a lattice of dimension d = 3n0 + 3, which gives

η = 2
√

3n0 + 1. For A2, we use the 2O(d(log log d)2/ log d)-SVP algorithm (with
running time Õ(d)) of Schnorr [21] for the dimension d = 3n0 + 3, which gives
η = 2n0+2

√
3n0 + 1. Using n0 = d 1

6εe, the bounds mi follow.



6 Additional results

The techniques presented in the previous sections can be used to show some
additional results, which we briefly sketch here. Considering EC-HNP with the
LSBk function, similar results can be derived for the least significant 5/6 bits
of the x-coordinate as we show in Section 6.1. In Section 6.2 we address the
bit security of the Diffie–Hellman key exchange protocol in elliptic curves over
extension fields Fq. We refer to the full version of this paper [22] for more details.

6.1 EC-HNP with least significant bits

As we allow k to take any (positive) real value, we define LSBk by LSBk(x) := x
(mod d2ke). In other words, LSBk(x) gives x mod l for 2 ≤ l = d2ke ≤ p, not
necessarily a power of 2.

Let h = LSBk((P +Q)x) = (P +Q)x mod l = (s2P+Q − xP − xQ − qp)− le
for some q and |e| < p

2l ≤
p

2k+1 . For u = l−1 ∈ Z∗p we have (were the operations
are in Fp)

h := hu =

( yP − yQ
xP − xQ

)2

− xP − xQ − qp− le

u

= u

( yP − yQ
xP − xQ

)2

− xP − xQ

− q′p− e ≡ u
( yP − yQ

xP − xQ

)2

− xP − xQ

− e .
Now let h0 = LSBk(xP ) = xP − le0 and h′ = LSBk((P − Q)x) = (P − Q)x

mod l = (s2P−Q− xP − xQ− rp)− le′ for some r and |e0|, |e′| < p
2l ≤

p
2k+1 . Then

h′ := h′u ≡ u

( yP + yQ
xP − xQ

)2

− xP − xQ

− e′ (mod p) .

Letting h̃ = h + h′ and ẽ = e + e′ and plugging xP = h0 + le0 in (1) above we
get

h̃+ ẽ = u
(
(P +Q)x + (P −Q)x

)
≡ 2u

(
xQ(h0 + le0)2 + (a+ x2Q)(h0 + le0) + axQ + 2b

(h0 + le0 − xQ)2

)
(mod p) .

Multiplying by (h0+le0−xQ)2 results in a bivariate polynomial in e0, ẽ of degree
3, similar to (2) above. We expect to get a similar result to the one presented
above.



6.2 Bit security of elliptic curve Diffie–Hellman over extension
fields

The field Fq = Fpd is a d-dimensional vector space over Fp. We fix a basis
{b1, . . . ,bd} for Fq, and represent points x ∈ Fq with respect to that basis:

for x =
∑d
i=1 x

ibi we write x = (x1, . . . , xd). We consider E(Fq), the group of
elliptic curve points over Fq.

For the elliptic curve hidden number problem in this setting, a natural ques-
tion is whether the ability to recover one component allows to recover the entire
secret point. This problem, in the elliptic curve context, was studied by Jao,
Jetchev and Venkatesan (JJV) [15]. They consider the following hidden num-
ber problem for elliptic curves, which they call multiplier elliptic curve hidden
number problem: Given an oracle O that computes a single component of the
x-coordinate of the map r → [r]P , that is O(r) = ([r]P )ix, recover the point P .

The algorithm given by JJV to this problem is polynomial in log(p) but not
in d, and therefore suits problems where one fixes the degree d and let log p
grow. That is, for extension fields Fpd of a constant degree. However, there is a
drawback in JJV’s approach: they can only work with small multipliers r. As
a consequence, it is not clear that by considering only small multipliers, this
hidden number problem has a unique solution, or a small set of solutions.9

This leads them to give precise statements only for degrees 2 and 3 (Propo-
sitions 3.1 & 3.2), but to leave the constant degree case (Section 3.3) with a
description of a general approach, and so a proof of bit security cannot be de-
rived in this case. Moreover, we show that the solution for d = 3 is incomplete.
The approach presented here overcomes this drawback, and therefore gives a
complete solution to any constant extension degree. Moreover, the solution holds
for the y-coordinate as well. Our solution is based on (a generalization of) the
algorithm given by JJV.

In a nutshell, the essence of the solution is to construct a system of (small
degree) polynomials for which xP = (x1P , . . . , x

d
P ) is a simultaneous solution,

which will result in some small number of candidates for P .

Improved results Our approach overcomes the drawback in the previous work,
as the ‘multipliers’ Q are not restricted to any (short) interval. As already men-
tioned in [15], in the case of random multipliers, it is easy to argue for unique-
ness.10

Proposition 1. Let E be an elliptic curve over an extension field Fpd . There
exists an algorithm, polynomial in log p, that solves EC-HNP given an oracle
that outputs a complete component of either the x or y coordinates.

9 For comparison, it is easy to show that restricting to small multipliers in HNP in F∗
p

yields exponentially many solutions.
10 We note that the multipliers here and in [15] have different context, as the elliptic

curve hidden number problem is defined differently. However, the arguments for
uniqueness stay the same.



Proof (sketch). Consider the x-coordinate case. Similar to the solution of EC-
HNP over a prime field, one queries the oracle O on ±t to get one component of
(P + [t]R)x and (P − [t]R)x. Denote Q := [t]R, and let {b1, . . . ,bd} be a basis
for Fdp. It holds that

(P+Q)x+(P−Q)x = 2

(
xQx2

P + (a + x2
Q)xP + axQ + 2b

(xP − xQ)2

)
=
R1(x1P , . . . , x

d
P )

R2(x1P , . . . , x
d
P )
,

where R1, R2 are polynomials (depending on xQ) of degree 2 in Fdp[x1, . . . , xd].
Rewrite

R1(x1, . . . , xd)

R2(x1, . . . , xd)
=
R1

1b1 + . . .+Rd1bd
R1

2b1 + . . .+Rd2bd
,

where for 1 ≤ j ≤ d each polynomial Rj1(x1, . . . , xd), Rj2(x1, . . . , xd) has coeffi-
cients in Fp. We “rationalize” the denominator to express

R1(x1, . . . , xd)

R2(x1, . . . , xd)
= r1(x1, . . . , xd)b1 + . . .+ rd(x1, . . . , xd)bd ,

where rj are rational functions with coefficients in Fp, of degree at most 2d.
We suppose to have access to component i, that is, we know (P + Q)ix and

(P −Q)ix. We have

O(t) +O(−t) = (P +Q)ix + (P −Q)ix = ri(x1P , . . . , x
d
P ) =

riQ,1(x1P , . . . , x
d
P )

riQ,2(x1P , . . . , x
d
P )

.

Multiplying by riQ,2(x1, . . . , xd) and rearranging we get the following polynomial

gQ(x1, . . . , xd) := riQ,1(x1, . . . , xd)− riQ,2(x1, . . . , xd)
(

(P +Q)ix + (P −Q)ix

)
,

where gQ(xP ) = gQ(x1P , . . . , x
d
P ) = 0, and gQ is of degree at most 2d.

We repeat with different points Q and look for a simultaneous solution to the
system {gQ = 0}. When choosing the Q’s uniformly and independently, standard
arguments (like the root counting above) can be used to show that a sufficiently
large system {gQ} is expected to have a unique (simultaneous) root.

The case of the y-coordinate is a simple adaptation of the method, where
one takes the third-degree polynomial

(P +Q)y − (P −Q)y = 2yQ

(
x3
P + 3xQx2

P + 3axP + axQ + 4b

(xP − xQ)3

)
.

Corollary 2. For an elliptic curve defined over a constant-degree extension
field, computing a single component of the Diffie–Hellman key (for either the
x or y coordinates) is as hard as computing the entire key.

We refer to the full version of this paper [22] for a general method and a com-
parison between JJV’s approach and our approach. We finish with a correction
to JJV’s work.



Correction. We finish with a couple of remarks regarding the solution for d = 3 in
[15, Section 3.2]. In this case JJV take the resultant of two bivariate polynomials
of degree 10, 25 in each variable. First, as we show in Appendix B, this resultant
is a univariate polynomial of degree at most 500, not 250 as written there. More
importantly, while the resultant’s degree is bounded by a constant value, in
general it can also be identically zero, which will then not yield a constant-sized
set of possible solutions (as the zero polynomial is satisfied by every point).
This point is important, especially because the authors identify a problem with
showing uniqueness of the solution, or the existence of a small set of solutions.
However, the paper [15] does not treat this point.

7 Comments

It is desirable to get bit security results also in the case of an imperfect oracle.
The main obstacle in achieving such a result is that the lattice constructed by
the algorithm has to be of an exact shape, which will not be achieved in general
if some equations are not of the right form. It should be noted that like other
problems (see for example [9, Section 4.1] for HNP) one can consider an imperfect
oracle which is very likely to answer all the queries correctly, when its inputs
are random. In addition, one can consider the approach suggested in [13] for
imperfect oracles.

A natural question is whether a similar strong bit security result can be shown
for the y-coordinate of the elliptic curve Diffie–Hellman key. Unfortunately, the
trick presented in this paper, using 2 correlated equations to eliminate one vari-
able, seems out of reach when one works with the y-coordinate. We remark that
one can still get some results using the approaches described in Section 4.1, but
they ought to be weak results.

Moreover, while Weierstrass equations are normally used to represent elliptic
curves, Edwards curves are also of interest. The y-coordinate in Edwards curves
is considered analogous to the x-coordinate in Weierstrass curves. One therefore
expects to have analogous equations for (P + Q)y + (P − Q)y and for the y-
coordinate of point multiplication, i.e. ([r]P )y. It is of interest to get solutions
for the elliptic curve hidden number problem using Edwards curves as well.

Acknowledgements Many thanks to my supervisor Steven Galbraith for his
help and guidance.
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14. González Vasco, M.I., and Shparlinski, I.E. (2001) “On the Security of Diffie-
Hellman Bits,” in Lam, K.-Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Proc.
Workshop on Cryptography and Computational Number Theory 1999. Progress in
Computer Science and Applied Logic, vol. 20, pp. 257–268. Birkhäuser, Basel.
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A Consistency check – filtering impossible secrets.

We introduce a test that takes a candidate P ′ for the secret point P , and deter-
mines whether P ′ is not the secret. That is, after running the test, P ′ is either
guaranteed not to be P or it is potentially the secret point P . We give a bound
on the probability that the outcome of the test is inconclusive, for P ′ 6= P (it is
clear that if P ′ = P the test is inconclusive). Specifically, given the candidate for
xP from Theorem 1, one can test which value (if any) is the correct y-coordinate
yP . Moreover, one can test whether yP 6= 0 or P 6= ±Qi.

Given a candidate P ′ = (xP ′ , yP ′), the consistency check goes over the pairs
(Q, h = MSBk((P + Q)x)) and checks if these values are consistent with the
problem’s settings. That is, we use h to derive a candidate ē for the noise e, and
check if |ē| ≤ ∆. Formally, using h0 = xP − e0 we compute

ē0 := xP ′ − h0 mod p ,

and check if |ē0| ≤ ∆. If so then for every 1 ≤ i ≤ n using hi = MSBk((P +Qi)x)
we compute

ēi :=

(
yP ′ − yQ
xP ′ − xQ

)2

− xP ′ − xQ − hi mod p ,

and check if |ēi| ≤ ∆. We do the same process with hi′ . If at any point this
inequality does not hold, we can stop the test and determine that P ′ 6= P .
Otherwise, P ′ passes the consistency check and is potentially the secret point P .



For completeness, we analyze the probability (over the samples Qi) of the
event in which a candidate P ′ 6= P passes the consistency check. Hence, suppose
that P ′ = (xP ′ , yP ′) passed the consistency check.
Probability of xP ′ 6= xP . Given hi, hi′ , from Section 4.1 above we have

hi + hi′ = 2

(
xPx

2
Qi

+ (a+ x2P )xQi + axP + 2b

(xP − xQi)2

)
− ei − ei′ .

Since P ′ passed the consistency check there exist |ēi|, |ēi′ | ≤ ∆ such that

hi + hi′ = 2

(
xP ′x

2
Qi

+ (a+ x2P ′)xQi + axP ′ + 2b

(xP ′ − xQi)2

)
− ēi − ēi′ .

Subtracting these two equations and multiplying by (xP −xQi)2(xP ′ −xQi)2 we
get

(ei + ei′ − ēi − ēi′)(xP − xQi)2(xP ′ − xQi)2 =

2
(

(xPx
2
Qi + (a+ x2P )xQi + axP + 2b)(xP ′ − xQi)2

− (xP ′x
2
Qi + (a+ x2P ′)xQi + axP ′ + 2b)(xP − xQi)2

)
.

By rearranging we get a polynomial in xQi of degree 4. By simple algebra one
can check that this polynomial is identically zero if and only if xP ′ = xP (thus
ei + ei′ − ēi − ēi′ = 0). We assume xP ′ 6= xP . Therefore for every ēi, ēi′ there
are at most 4 values for xQi that satisfy this equation. Since there are 2∆ + 1
possible values for each ēi, ēi′ we conclude that the probability that xP ′ 6= xP is
bounded by

4n(2∆+ 1)2n

(|Ex| − 1)n
≤ 2n(4∆+ 2)2n

(p− 2
√
p− 2)n

.

Probability of xP ′ = xP and yP ′ 6= yP . The probability that P ′ = (xP ,−yP )
passes the consistency check, is analyzed at the end of the proof of Theorem 1,
and shown to be bounded by

4n(2∆)n

(|Ex| − 1)n
≤ (16∆)n

(p− 2
√
p− 2)n

.

Remark 4. Although the aim of this paper is to give a bit security result and not
a practical algorithm, for completeness purposes we consider a matter of practice.
In the case in which the value d0 6= 0, the recovered value e := f0/f

′
0 6= e0, and

therefore xP ′ := h+ e 6= xP . Running the consistency check on P ′ might reveal
that indeed P ′ 6= P . One can derive from equations (8)-(11) other candidates
for e0 and subsequently candidates for xP , and apply the consistency check on
them. If none of these candidates pass the consistency check, then one can test
P ′ where yP ′ = 0 and P ′ = ±Qi. We analyze the probability that there exists
P ′ 6= P that is consistent with all 2n+ 1 samples.



We use the analysis above which shows that the probability that a candidate
P ′ with xP ′ 6= xP passes the test with the 2n equations is bounded by

(4∆+ 2)2n

(|Ex| − 1)n
≤ 2n(4∆+ 2)2n

(p− 2
√
p− 2)n

.

We also have xP ′− ē0 = h0 = xP −e0, so xP ′ = xP −e0 + ē0 can take 2∆ values.
Thus, the probability that any P ′ with xP ′ 6= xP passes the consistency check
is bounded by

2n+1∆(4∆+ 2)2n

(p− 2
√
p− 2)n

.

With the above bound for yP ′ 6= −yP we get that the probability that there
exists P ′ 6= P that passes the consistency check is bounded by

2n+1∆(4∆+ 2)2n

(p− 2
√
p− 2)n

+
(16∆)n

(p− 2
√
p− 2)n

.

B Resultant’s degree

Claim. Let p, q ∈ k[x, y] be two polynomials with

degx p = nx , degy p = ny ,

degx q = mx , degy q = my .

Then the degree (in x) of the resultant of p and q in variable y is at most
mynx + nymx.

Proof. The Sylvester matrix of p and q with respect to y is a (my+ny)×(my+ny)
matrix. The first my rows, coming from the coefficients of p, contain polynomials
in x of degree at most nx. Similarly, the last ny rows contain polynomials in x
of degree at most mx. The resultant of p and q in variable y is given by the
determinant of this matrix, which is formed by summing products of an entry
from each row. The first my rows contribute at most mynx to the degree of x,
and the last ny rows contribute at most nymx.


