
Circuit-Private Multi-Key FHE

Wutichai Chongchitmate1 and Rafail Ostrovsky ?2

1 Department of Computer Science, University of California, Los Angeles CA, USA
wutichai@cs.ucla.edu

2 Department of Computer Science and Department of Mathematics, University of
California, Los Angeles CA, USA

rafail@cs.ucla.edu

Abstract. Multi-key fully homomorphic encryption (MFHE) schemes
allow polynomially many users without trusted setup assumptions to
send their data (encrypted under different FHE keys chosen by users in-
dependently of each other) to an honest-but-curious server that can com-
pute the output of an arbitrary polynomial-time computable function on
this joint data and issue it back to all participating users for decryption.
One of the main open problems left in MFHE was dealing with mali-
cious users without trusted setup assumptions. We show how this can
be done, generalizing previous results of circuit-private FHE. Just like
standard circuit-private FHE, our security model shows that even if both
ciphertexts and public keys of individual users are not well-formed, no
information is revealed regarding the server computation— other than
that gained from the output on some well-formed inputs of all users.
MFHE schemes have direct applications to server-assisted multiparty
computation (MPC), called on-the-fly MPC, introduced by López-Alt
et al. (STOC ’12), where the number of users is not known in advance.
In this setting, a poly-time server wants to evaluate a circuit C on data
uploaded by multiple clients and encrypted under different keys. Cir-
cuit privacy requires that users’ work is independent of |C| held by the
server, while each client learns nothing about C other than its output.
We present a framework for transforming MFHE schemes with no cir-
cuit privacy into maliciously circuit-private schemes. We then construct
3-round on-the-fly MPC with circuit privacy against malicious clients in
the plain model.

Keywords: Multi-key, fully homomorphic encryption, computing on en-
crypted data, malicious setting, server-assisted MPC

? Research supported in part by NSF grant 1619348, US-Israel BSF grant 2012366, by
DARPA Safeware program, OKAWA Foundation Research Award, IBM Faculty Re-
search Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed-Martin Corporation Research Award. The
views expressed are those of the authors and do not reflect position of the Depart-
ment of Defense or the U.S. Government.

1 Introduction

The multi-key fully homomorphic encryption scheme (MFHE), introduced by
López-Alt et al. [17], allows homomorphic computation on inputs encrypted with
different public keys. They construct a MFHE under the ring learning with errors
(RLWE) assumption, the decisional small polynomial ratio (DSPR) assumption,
and circular security of a multi-key homomorphic encryption scheme ESH based
on a variant of NTRU homomorphic encryption. In this paper we construct a
MFHE scheme that satisfies circuit privacy in the malicious setting, where public
keys and ciphertexts are not guaranteed to be well-formed. We also present a
framework for transforming multi-key homomorphic encryption schemes without
circuit privacy or fully homomorphic property into maliciously circuit-private
MFHE. We then demonstrate an instantiation of this framework using a modified
scheme based on MFHE in [17] without adding further assumptions.

As in [21], we only consider the plain model. In the common reference string
(CRS) model, the malicious case can be reduced to the semi-honest case by
adding non-interactive zero-knowledge (NIZK) arguments that public key and
ciphertext pairs are well-formed. Though, even in this case, difficulties can arise,
as the security needs to hold when the pairs are in the support of honestly
generated ones, but with different distributions—as discussed in [11].

In [17], the MFHE scheme is used to construct on-the-fly multiparty compu-
tation (MPC), which can perform arbitrary, dynamically chosen computation on
arbitrary sets of users chosen on-the-fly. This construction allows each client user
to encrypt data without knowing the identity or the number of other clients in
the system. The server can select any subsets of clients, and perform an arbitrary
function on the encrypted data without further input from the selected clients
(and without learning clients’ inputs). The encrypted result is then broadcast
to the clients who cooperate in the retrieval of the output using (short) MPC
protocol. Thus, most computation is done by the server while the decryption
phase is independent of both the function computed and the total number of
parties in the system. The resulting protocol is a five-round on-the-fly MPC
secure against semi-malicious users [3], which follows the protocol but chooses
random coins from an arbitrary distribution. The protocol can be strengthened
against malicious adversaries in the CRS model using NIZK arguments without
an increase in the number of rounds.

In this paper we construct a three-round on-the-fly MPC with circuit privacy
against malicious users in the plain model. Specifically, all players send their
inputs to the server, which performs the computation and sends the results back
to all users, who then decrypt the result in one round. Since there is no way
to enforce which function the server will compute, we assume that the server
is honest but curious. As with our MFHE, the circuit privacy is guaranteed
against unbounded malicious adversaries corrupting any number of clients. We
also note that a variant of circuit privacy can be achieved in [17] construction
by allowing the server to participate in the decryption phase MPC described
above with its encrypted result as an input. However, our construction allows
the server to minimize its interaction with the clients to only two rounds (i.e.,

2

one message from client to server and one broadcast back to client). After the
server sends its output back to the clients, the clients communicate with one
another in only one additional round in order to decrypt the output. Since we
use multi-key homomorphic encryption from [17] as the base of our construction,
we also require the number of key pairs or users to be known is advance as in
their protocol.

To summarize, our main theorems are as follows:

Theorem 1. (informal) Assuming that there exists a privately expandable multi-
key homomorphic encryption scheme, then there exists a maliciously circuit-
private multi-key fully homomorphic encryption scheme.

Theorem 2. (informal) Assuming RLWE and DSPR assumptions, and circular
security of ESH , there exists a maliciously circuit-private multi-key fully homo-
morphic encryption scheme.

Theorem 3. (informal) Assuming the preconditions of Theorem 1 or Theorem 2
hold, there exists a three-round on-the-fly MPC protocol where each client i ∈ [U]
in the system holds xi, and the server chooses a circuit C with N < U inputs
and a subset V ⊆ [U] with |V | = N . Only the clients in V learn C({xi}i∈V) (but
nothing else, not even |C|), and the server learns nothing about {xi}i∈[U].

1. The privacy guarantee for clients is indistinguishability-based computational
privacy against malicious adversaries corrupting t < N clients and honest-
but-curious servers.

2. The privacy guarantee for the server is based on unbounded simulation (against
possibly unbounded clients).

We note that condition 2 is incomparable with standard simulation framework as
it requires stronger (i.e., information-theoretic) guarantees, but also unbounded
simulation. As discussed in [21], this is unavoidable, even for single maliciously
circuit-private FHE.

1.1 Previous Work

Multi-key FHE. As stated above, [17] introduces the concept of MFHE and con-
structs this scheme based on a variant of the NTRU encryption scheme under
the RLWE and DSPR assumptions. The work of [7] gives an alternate construc-
tion based on [12], the FHE scheme under the LWE assumption. While their
construction only relies on standard assumption such as LWE, it requires an
additional set up step, equivalent to the CRS model. A recent work of [20] sim-
plifies the construction of [7], and adds a threshold decryption protocol which is
used to construct two-round MPC in the CRS model.

Circuit privacy in FHE. In the semi-honest setting, where public keys and ci-
phertexts are supported by properly generated pairs, circuit privacy has been
considered in [10, 25], with the latter using Yao’s garbled circuit. The generaliza-
tion in [11] combines two HE schemes—one compact fully homomorphic and the

3

other semi-honestly circuit-private—into compact semi-honestly circuit-private
FHE.

The malicious setting has been addressed in the context of oblivious transfer
(OT) [1, 13]. The work of [15] constructs maliciously circuit-private HE for a class
of depth-bounded branching programs by iteration from leaves of a branching
program.

Finally, the work of [21] devises a framework for transforming single-key FHE
schemes with no circuit privacy into maliciously circuit-private ones. They use
techniques akin to Gentry’s bootstrapping [10] and semi-honestly circuit-private
HE constructions [1, 11] combining FHE schemes with maliciously circuit-private
HE schemes.

One-Round OT. Several definitions of OT security have been suggested—such
as a general framework for defining two-party computation [5]. The work of [1]
proposes a definition for one-round (2 messages) OT using unbounded simula-
tion, which implies information theoretic security for sender, and demonstrates a
construction based on the DDH assumption. In [15], Ishai and Paskin construct
a one-round OT with perfect sender privacy based on the DJ homomorphic
encryption scheme [8] in the semi-honest setting.

On-the-Fly MPC. In standard MPC protocols, the computational and commu-
nication complexities of each party depend on the circuit being computed. Thus,
it is difficult to construct on-the-fly MPC, where only the server performs most
of the computation, while the clients compute very little and do so independent
of the circuit. This idea is explored in the work of [16, 14]. However, the com-
plexity of clients in the former protocol is still proportional to the size of the
circuit, while the latter is only for a small class of functions.

A line of work uses single-key FHE schemes [3, 10] by running a short MPC
protocol to compute a joint public key and secretly shared corresponding secret
key. However, this approach does not capture the dynamic and non-interactive
properties of on-the-fly MPC. As mentioned above, López-Alt et al. [17] con-
structed on-the-fly MPC from multi-key FHE. However, their version is only se-
cure against semi-malicious adversaries unless additional trusted setup assump-
tions are made.

Circuit Privacy in MPC. Private function evaluation (PFE) is a special case
of MPC, where one party holds a function or circuit as an input. PFE follows
immediately from MPC by evaluating a universal circuit and taking a circuit one
wants to compute as an input. However, the known universal circuits have high
complexity, namely, O(g5) for arithmetic circuits [23] and O(g log g) for Boolean
circuits [24] for the class of circuits with at most g gates. This approach also does
not hide the size of the circuits evaluated. Previous work [18, 19] has constructed
more efficient implementation of PFEs, even against an active adversary [19].

Comparison of MPC Protocols from MFHE. The following table illustrates the
comparison between our results and other MPC protocols constructed from

4

MFHE. Note that their securities are in different models, and thus are not di-
rectly comparable.

Construction Round Adversary Setup Server-Assisted Circuit Privacy

[17] 5 semi-honest no yes no
[17] 5 malicious yes yes no
[20] 2 malicious yes no no

This work 3 malicious no yes yes

Table 1. Comparison of MPC protocols from MFHE

1.2 Our Techniques

We now give an overview of our main construction of circuit-private MFHE in
three steps:

Step 1. The first step is to define the main new ingredient of our construction, the
privately expandable multi-key homomorphic encryption scheme. It is a multi-key
HE together with efficient algorithms Expand such that, given a list of public keys
and an encryption with respect to one of the keys, the output is a homomorphic
encryption that does not depend on which key it was previously encrypted with.
We note that in a standard construction of MFHE, a ciphertext may reveal which
key is used to encrypt it. This information may persist even after homomorphic
evaluation, thus revealing the structure of the evaluating program. Our new
property allows the scheme to hide the source of the encryption used at each
node of the branching program from an adversary, therefore hiding the branching
program itself when combined with the technique in [15].

We show how to construct a privately expandable multi-key HE scheme from
the multi-key somewhat homomorphic encryption scheme defined in [17]. The
main idea is as follows: first, we re-randomize a given ciphertext to be statisti-
cally indistinguishable from a fresh ciphertext using algebraic properties of the
scheme. We then show how to add encryptions of zero with respect to each of
the other keys, and show how to homomorphically decrypt the result to get
a “low-level” ciphertext. In fact, we note that our techniques are applicable to
other known multi-key FHE schemes as well, such as in [20] to obtain a privately
expandable multi-key FHE.

Step 2. The next step is to construct maliciously circuit-private multi-key HE for
a class of depth-bounded branching programs. A (deterministic binary) branch-
ing program is represented by a directed acyclic graph whose nonterminal nodes
with outdegree 2 are labeled with indices in [n], while terminal nodes with out-
degree 0 and edges are labeled with 0 or 1. An input x ∈ {0, 1}n naturally
induces a unique path from a distinguished initial node to a terminal node,

5

whose label determines P (x). Any logspace or NC function can be computed
by polynomial size branching programs. We inductively compute a ciphertext
for each node from terminal nodes upward. Given a ciphertext of each bit of
x ∈ {0, 1}n, encrypted with different public keys, we expand the ciphertexts to
hide public keys it was originally encrypted with. We use private expandability to
homomorphically compute ciphertext at each node with a key-hiding ciphertext
indistinguishable from a fresh one. Thus, each ciphertext reveals nothing about
the path leading to its corresponding node along the branching program, includ-
ing which bit each node uses to decide its path. Therefore, the output, which
is the ciphertext corresponding to the root, contains no information about the
program.

The protocol above is secure against semi-honest adversaries. We then show
how to modify the protocol to achieve security against malicious adversaries. We
use single-key malicious circuit-private FHE and a modified validation circuit
from [21], generalizing their techniques. The server (homomorphically) verifies
that public keys and ciphertexts received are well-formed. This guarantees that
each corrupted party uses proper public key and ciphertext, independent of other
parties. Since we can verify before expanding the ciphertexts, we can use single-
key FHE instead of multi-key.

Step 3. In this step we finally combine the protocol from the previous step with
compact MFHE with no circuit privacy to get maliciously circuit-private MFHE.
We modify the framework in [21] and obtain a framework for multi-key HE. To
evaluate a given circuit, we first use MFHE with no circuit privacy to evaluate.
Then we homomorphically decrypt the output using maliciously circuit-private
HE that can evaluate the decryption function. Then we homomorphically de-
crypt to the original compact MFHE output, and only return it if public keys
and ciphertexts are well-formed. This can be checked homomorphically similarly
to the previous step. Using MFHE from [17] for instantiation, we get a mali-
ciously circuit-private MFHE scheme based on RLWE and DSPR assumptions.

Application. Finally, we construct an on-the-fly MPC with circuit privacy from
the result of the last step. Unlike [17], we consider the plain model with no
setup assumptions and malicious adversaries corrupting an arbitrary number of
clients. Along the way, we also construct a one-round 1-out-of-2 OT that is secure
against malicious receivers with information theoretic security by augmenting a
known construction that is only secure against semi-honest receivers with circuit-
private FHE. Finally, by using a garbling scheme and our OT protocol, we can
reduce the number of rounds from the construction in [17] to three rounds, which
is optimal even against semi-honest adversaries in the plain model. The idea of
the third round is as follows: Instead of having the clients run an MPC protocol
to decrypt the output, the server constructs a collection of garbled circuits that
decrypts the output for each user. The clients create an OT query for each bit
of their secret keys and send it to the server along with the ciphertext in the
first round. The server then answers those queries with corresponding garbled
input for the garbled circuit. Finally, each client decrypts and broadcasts their

6

garbled inputs to all other clients to compute the final output from the garbled
circuits by each client.

The security of our protocol is based on unbounded simulation for the server,
which is necessary for circuit privacy as discussed in [15, 21]. We note that it is
impossible to obtain ideal functionality definition due to the impossibility of any
computationally bounded simulators extracting the input in one round (without
trusted setup assumptions). Instead, we show the security for honest clients
based on indistinguishability of the view of the malicious adversaries corrupting
clients and the view of the honest-but-curious server.

2 Background

2.1 Notation

For positive integer n ∈ N, let [n] = {1, . . . , n}. For a string x ∈ {0, 1}∗, let
|x| denote its length. Let ⊕ denote bitwise XOR operation or bitwise addition
modulo 2. For a distribution A, let x ← A denote x is chosen according to a
distribution A. For a finite set S, let x ← S denote x is chosen uniformly from
the set S. Let λ denote the security parameter. A function f : N → R+ is neg-
ligible if for every constant c > 0, there exists λ0 ∈ N such that f(λ) ≤ λ−c

for all λ ≥ λ0. Algorithms may be randomized unless stated otherwise. A PPT
algorithm runs in probabilistic polynomial-time; otherwise, it is unbounded. For
an algorithm A, let y ← A(x; r) denote running A on input x with random coins
r. If r is chosen uniformly at random, we denote y ← A(x). For two distributions
X,Y , X 's Y means X and Y are statistically closed, i.e. ∆(X,Y) is negligible.
For two distributions X,Y , X 'c Y means X and Y are computationally indis-
tinguishable, i.e. for any PPT algorithm D, |Pr[D(X) = 1] − Pr[D(Y) = 1]| is
negligible.

Setup vs. Plain Model. We say a protocol is in the setup model or the common
reference string (CRS) model if every party has access to a common random
string r that was ideally drawn from some publicly known distribution prior to
the beginning of the protocol. Without such setup, we say a protocol is in the
plain model.

Malicious vs. Honest-but-Curious Party. We say a party participating in a pro-
tocol is honest-but-curious if it follows the protocol, but may perform additional
computation to learn more information than it should. We say a party is (fully)
malicious if it deviates from the protocol arbitrarily.

Representation Models. In order to use a function or a program as an input of
our algorithm, we consider a function represented by a string representation C.
The correspondence between a program C and a function f it represents must
be universally interpreted by an underlying representation model U . Formally,
a representation model U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a PPT algorithm that
takes a input (C, x) and returns f(x) for a function f represented by C. If

7

(C, x) is syntactically malformed, we let U(C, x) = 0 for completeness. We let
|C| denote the size of program C as a string representation as opposed to the
number of gates as a Boolean circuit.

2.2 Multi-Key Homomorphic Encryption

We use the definition similar to the one defined in [17] with some modifications
from [20] and [21]. We fix the order of public keys in Eval and secret keys in Dec,
and allow the number of keys to be different from input size of the circuit. This
definition better suits our definition of circuit privacy that we will define in the
next section.

Definition 1 (Multi-Key (Leveled) (U, C)-Homomorphic Encryption).
Let C be a class of circuits. A multi-key (leveled) (U, C)-homomorphic scheme
E = (KeyGen,Enc,Eval,Dec) is described as follows:

– (pk, sk) ← KeyGen(1λ, 1d): Given a security parameter λ (and the circuit
depth d), outputs a public key pk and a secret key sk.

– c← Enc(pk, µ): Given a public key pk and a message µ, outputs a ciphertext
c.

– ĉ← Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)): Given a (description of) a
boolean circuit C (of depth ≤ d) along with a sequence of N public keys and
n couples (Ii, ci), each comprising of an index Ii ∈ [N] and a ciphertext ci,
outputs an evaluated ciphertext ĉ.

– b := Dec(sk1, . . . , skN , ĉ): Given a sequence of N secret keys sk1, . . . , skN
and a ciphertext ĉ, outputs a bit b.

has the following properties:

– Semantic security: (KeyGen,Enc) satisfies IND-CPA semantic security.

– Correctness: Let (pki, ski) ← KeyGen(1λ, 1d) for i = 1, . . . , N . Let x =
x1 . . . xn ∈ {0, 1}n and C ∈ C be a boolean circuit of depth ≤ d, C : {0, 1}n →
{0, 1}. For i = 1, . . . , n, let ci ← Enc(pkIi , xi) for some Ii ∈ [N]. Let ĉ ←
Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)). Then

Dec(sk1, . . . , skN , ĉ) = U(C, (x1, . . . , xn)).

E is compact if there exists a polynomial p such that |ĉ| ≤ p(λ, d,N) independent
of C and n. If a scheme is multi-key (U, C)-homomorphic for the class C of all cir-
cuits (of depth ≤ d), we call it a multi-key (leveled) fully homomorphic (MFHE).
A scheme E is somewhat homomorphic if it is leveled (U, C)-homomorphic for
d ≤ dmax(λ,N). A scheme E is multi-hop if an output of Eval can be used as an
input as long as the sum of the depths of circuits evaluated does not exceed d.

8

2.3 López-Alt, Tromer and Vaikuntanathan’s Multi-Key FHE
Scheme

In [17], López-Alt et al. construct a multi-key compact leveled fully homomorphic
encryption scheme. They first construct a multi-key leveled somewhat HE scheme
ESH , then apply Gentry’s bootstrapping [10]. The security of the scheme is
based on the ring learning with error (RLWE) assumption, the decisional small
polynomial ratio (DSPR) assumption, and the weak circular security of ESH .

Let q = q(λ) be an odd prime integer. Let the ring R = Z[x]/〈φ〉 for poly-
nomial φ ∈ Z[x] of degree m = m(λ) and Rq = R/qR. Let χ be the B-bounded
truncated discrete Gaussian distribution over R for B = B(λ).

Definition 2 (Ring Learning With Error (RLWE) Assumption [4]).
The (decisional) ring learning with error assumption RLWEφ,q,χ states that for
any l = poly(λ),

{(ai, ai · s+ ei)}i∈[l] 'c {(ai, ui)}i∈[l]

where s, ei ← χ and ai, ui are sampled uniformly at random over Rq.

Definition 3 (Decisional Small Polynomial Ratio (DSPR) Assump-
tion [17]). The decisional small polynomial ration assumption DSPRφ,q,χ says
that it is hard to distinguish the following two distributions:

– a polynomial h := [2gf−1]q, where f ′, g ← χ such that f := 2f ′ + 1 is
invertible over Rq and f−1 is the inverse of f in Rq.

– a polynomial u sampled uniformly at random over Rq.

We describe the multi-key leveled somewhat HE scheme here as follows.

KeyGenSH(1λ, 1d):

1. For i = 0, 1, . . . , d,

(a) Sample f̃ i, gi ← χ and compute f i := 2f̃ i + 1. If f i is not invertible in
Rq, resample f̃ i.

(b) Let (f i)−1 be the inverse of f i in Rq.
(c) Let hi := [2gi(f i)−1]qi ∈ Rqi .
(d) For i ≥ 1, sample siγ , e

i
γ , s

i
ζ , e

i
ζ ← χdlog qie.

(e) Let γi :=
[
hisiγ + 2eiγ + Pow(f i−1)

]
qi
∈ Rdlog qieqi

and ζi :=
[
hisiζ + 2eiζ + Pow

(
(f i−1)2

)]
qi
∈ Rdlog qieqi .

2. Output pk = (h0, γ1, . . . , γd, ζ1, . . . , ζd) and sk = fd ∈ Rqd .

EncSH(pk, µ):

1. Parse pk = h. Sample s, e← χ.
2. Output c = [hs+ 2e+ µ]q0 ∈ Rq0 .

9

EvalSH(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)):

1. For i ∈ [N], parse pki = (hi, γ
1
i , . . . , γ

d
i , ζ

1
i , . . . , ζ

d
i)

2. Given two ciphertexts c, c′ ∈ Rqi associated with subsets of the public keys
K,K ′, respectively. Let c0 = [c + c′] ∈ Rqi and K ∪K ′ = {pki1 , . . . , pkit}.
For j = 1, . . . , t, compute

cj =
[
〈Bit(cj−1), γiij 〉

]
qi
∈ Rqi

Then let cadd be the integral vector closest to (qi+1/qi) · ct such that cadd =
ct (mod 2). Output cadd ∈ Rqi+1 and the associated subset K ∪K ′.

3. Given two ciphertexts c, c′ ∈ Rqi associated with subsets of the public keys
K,K ′, respectively. Let c0 = [c · c′] ∈ Rqi and K ∪K ′ = {pki1 , . . . , pkit}. For
j = 1, . . . , t,

(a) If pkij ∈ K ∩K ′, compute

cj =
[
〈Bit(cj−1), ζiij 〉

]
qi
∈ Rqi

(b) Otherwise, compute

cj =
[
〈Bit(cj−1), γiij 〉

]
qi
∈ Rqi

Then let cmult be the integral vector closest to (qi+1/qi)·ct such that cmult =
ct (mod 2). Output cmult ∈ Rqi+1 and the associated subset K ∪K ′.

DecSH(sk1, . . . , skN , c):

1. For i ∈ [N], parse ski = fi.
2. Let µ0 = [f1 . . . fN · c]qd ∈ Rqd .
3. Output µ′ = µ0 (mod 2).

Remarks

1. In [17], a different notation for EvalSH(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))
is used, namely, EvalSH(C, (pk1, c1), . . . , (pkn, cn)). These two notations are
equivalent when N = n and Ij = j for j = 1, . . . , n. For brevity, we also use
this notation under such conditions.

2. We also denote the evaluation on intermediate ciphertexts c̃1, . . . , c̃n asso-
ciated with nonempty subsets of public keys K1, . . . ,Kn, respectively, by
EvalSH(C, (K1, c̃1), . . . , (Kn, c̃n)).

Theorem 4 ([17]). Assuming the DSPR and RLWE assumptions, and that
the scheme ESH = (KeyGenSH ,EncSH ,EvalSH ,DecSH) described above is weakly
circular secure, then there exists a multi-key compact leveled fully homomorphic
encryption scheme for N keys for any N ∈ N, obtained by bootstrapping ESH .

10

2.4 Circuit-Private Homomorphic Scheme

We describe the circuit privacy of single-key homomorphic encryption defined
in [15, 21]. In the next section we will define our multi-key variant based on this
definition.

Definition 4. Let E = (KeyGen,Enc,Eval,Dec) denote a (U, C)-homomorphic
encryption scheme. We say E is (maliciously) circuit-private if there exist un-
bounded algorithms Sim(1λ, pk∗, c∗1, . . . , c

∗
n, b) and deterministic Ext(1λ, pk∗, c∗)

such that for all λ, pk∗, c∗1, . . . , c
∗
n, and all programs C : {0, 1}n → {0, 1} ∈

(U, C), the following holds:

– for i = 1, . . . , n, x∗i := Ext(1λ, pk∗, c∗i)
– Sim(1λ, pk∗, c∗1, . . . , c

∗
n, U(C, x∗1, . . . , x

∗
n)) 's Eval(1λ, C, pk∗, c∗1, . . . , c∗n)

We say the scheme is semi-honestly circuit-private if the above holds only for
well-formed pk∗ = pk, c∗i = ci, i.e. (pk, sk)← KeyGen(1λ) and ci ← Enc(pk, xi)
for some xi ∈ {0, 1}, i = 1, . . . , n.

Theorem 5 ([21]). Assume an FHE scheme with decryption circuits in NC1

exists. There exists a maliciously circuit-private single-key fully homomorphic
encryption scheme.

2.5 Branching Program

Definition 5. A (binary) branching program P over x = (x1, . . . , xn) is a tuple
(G = (V,E), v0, T, ψV , ψE) such that

– G is a connected directed acyclic graph. Let Γ (v) denote the set of children
of v ∈ V .

– v0 is an initial node of indegree 0.
– T ⊆ V is a set of terminal nodes of outdegree 0. Any node in V \ T has

outdegree 2.
– ψV : V → [n] ∪ {0, 1} is a node labeling function with ψV (v) ∈ {0, 1} for
v ∈ T , and ψV (v) ∈ [n] for v ∈ V \ T .

– ψE : E → {0, 1} is an edge labeling function, such that outgoing edges from
each vertex is labeled by different values.

The height of v ∈ V , denoted height(v), is the length of the longest path from v
to a node in T . The length of P is the height of v0.

On input x, P (x) is defined by following the path induced by x from v0 to a
node vl ∈ T , where an edge (v, v′) is in the path if xψV (v) ∈ ψE(v, v′). By the
last property, such v′ is unique. Then P (x) = ψV (vl). Similarly, we also define
Pv(x) by following that path from any node v ∈ V instead of v0.

Definition 6. A layered branching program of length l is a branching program
P = (G = (V,E), v0, T, ψV , ψE) such that for any e = (v, v′) ∈ E, height(v) =
height(v′) + 1.

11

Every path from an initial node to a terminal node in a layered branching
program has the same length. Every branching program can be efficiently trans-
formed into a layered branching program of the same length [22]. For simplicity,
we assume all branching programs are layered.

3 Privately Expandable Multi-Key Homomorphic
Encryption

In this section we will define the properties of multi-key homomorphic encryp-
tion which are required for the construction of multi-key circuit private HE for
branching programs discussed in the next section. Informally, private expand-
ability allows masking of a ciphertext encrypted under a public key using other
public keys in order to hide the key it was originally encrypted with. We then
show how to modify the multi-key HE from [17] to achieve such property. We
note that the multi-key HE from [20] can be modified to have this property in a
similar way.3 However, since it only works in the setup model, we cannot get a
meaningful result in circuit privacy.

3.1 Private Expandability

We define an “expanded” ciphertext as one that associates with all public keys
to be used in the evaluation algorithm. This notion is also used in [20]. However,
expanded ciphertexts in [20] do not hide the original public key it is encrypted
with. In both our construction and the one in [20], an expanded ciphertext can
be thought of as a single-key homomorphic encryption ciphertext that can be
decrypted with some function of all secret keys. In our case, it is the product of
all secret keys; in the [20] case, it is the appending of all secret keys.

Definition 7. A multi-key HE scheme (KeyGen,Enc,Eval,Dec) is privately ex-

pandable if there exist polynomial time algorithms Ẽxpand, Ẽval, D̃ec such that,
for i = 1, . . . , N , (pki, ski)← KeyGen(1λ),

– Let c← Enc(pki, µ). Then for any j ∈ [N],

c̃ := Ẽxpand(pk1, . . . , pkN , i, c) 's Ẽxpand(pk1, . . . , pkN , j,Enc(pkj , µ))

and D̃ec(sk1, . . . , skN , c̃) = µ

– if for i = 1, . . . , N , D̃ec(sk1, . . . , skN , c̃i) = bi, then

D̃ec(sk1, . . . , skN , Ẽval(P, pk1, . . . , pkN , c̃1, . . . , c̃l)) = P (b1, . . . , bl).

We sometimes replace Eval and Dec with Ẽval and D̃ec, respectively, and denote
(KeyGen,Enc,Expand,Eval,Dec) a privately expandable HE scheme if Expand,
Eval and Dec satisfy the above conditions.

3 See the full version [6] of this paper for details.

12

3.2 Privately Expandable Multi-key HE based on LTV Encryption
Scheme

In [17], Lopez et al. constructed a multi-key FHE scheme with security based
on ring learning with error assumption (RLWE) and decisional small polyno-
mial ration assumption (DSPR) by further assuming circular security. We will
show that we can modify the scheme to be privately expandable by constructing

Ẽxpand, Ẽval, D̃ec without additional assumption.
Let ESH = (KeyGenSH ,EncSH ,EvalSH ,DecSH) be the multi-key somewhat

homomorphic scheme given in [17] defined in the previous section.
A ciphertext of ESH is a polynomial in Rq = Zq[x]/(xn + 1) which can be

represented by a vector in Znq . In this scheme, N must be known in advance. We

choose n = N1/ε′ , q = 2n
ε

for some ε′ < ε. Thus, q = 2N
δ

for δ > 1. We need to
use a bootstrappable somewhat homomorphic version instead of a bootstrapped
FHE as we need its multi-hop property while we only need to evaluate low depth
circuits. Let t ∈ N and Ut be a discrete uniform distribution on {0, . . . , t}, which
can be sampled in time O(log t). We define

Ẽxpand
t

(pk1, . . . , pkN , i, c):

1. For each j ∈ {1, . . . , N}
– Parse pkj = hj .
– Let sj , ej ← Unt .
– Let cj = hjsj + 2ej

2. Output ĉ = c+
N∑
j=1

cj .

The following lemma is a variant of the smudging lemma in [3]:

Lemma 1. Let a1, a2 ∈ Zn be B-bounded. Then ∆(a1+b, a2+b) ≤ 4nB/t where
b← Unt . If t is superpolynomial in λ, then they are statistically indistinguishable.

Proof. Let c1, c2 ∈ Z be corresponding entries in a1 and a2, respectively. Then
|c1 − c2| ≤ 2B. Thus, ∆(c1 + Ut, c2 + Ut) ≤ 4B/t. Therefore, ∆(a1 + b, a2 + b) ≤
4nB/t. Since n and B are polynomial in λ, ∆(a1 + b, a2 + b) is negligible for
superpolynomial t. ut

We apply the above lemma to get the following result.

Lemma 2. Let (pkk, skk) ← KeyGenSH(1λ, 1d) for k = 1, . . . , N . For i ∈ [N],
let c← EncSH(pki, µ). Let t ≤ 1

18 (q
N(nB)N

). Then

ĉ := Ẽxpand
t

(pk1, . . . , pkN , i, c) 's Ẽxpand
t

(pk1, . . . , pkN , j,EncSH(pkj , µ))

for any j ∈ [N], and DecSH(sk1, . . . , skN , ĉ) = µ.

13

Proof. Suppose t is superpolynomial. Then for any s, e ← χ and si, ei ← Unt ,
[s+ si] 's [si] and [e+ ei] 's [ei] by Lemma 1. Thus, for c = his+ 2e+m, we
have [c+ (hisi + 2ei)] 's [m+ (hisi + ei)]. Then

Ẽxpand
t

(pk1, . . . , pkN , i, c) 's [m+
∑
k∈[N]

(hksk + 2ek)].

By the same reason,

Ẽxpand
t

(pk1, . . . , pkN , j,EncE(pkj , µ)) 's [m+
∑
k∈[N]

(hksk + 2ek)].

Therefore, they are statistically indistinguishable.
Now let ĉ = m +

∑
j∈[N](hjsj + 2ej) where sj , ej bounded by t. For each

j ∈ [N], fj(hjsj+2ej) = 2(gjsj+fjej) is bounded by E := 2nBt+2nB(2t+1) =
2nB(3t+ 1) ≤ 8nBt. Then for f = f1 . . . fN ,

f ĉ = fm+
∑
j∈[N]

(
∏

k∈[N]\{j}

fk)fj(hjsj + 2ej)

is bounded by (nB)N + N(nB)N−1E ≤ 9N(nB)N t, which can be decrypted if
it is less than q/2. Thus, for t ≤ 1

18 (q
N(nB)N

), the correctness follows from that

of LTV scheme. Note that as q = 2N
δ

= (2N
δ−1

)N , t is still superpolynomial in
N and thus λ. ut

Lemma 3 (implied from [17]). For any C > 0, for sufficiently large λ,N =
N(λ) ∈ N, there exists a multi-key somewhat homomorphic encryption scheme
for N keys and circuits of depth d ≥ CdDec where dDec is the depth of its decryp-
tion circuit.

The depth of circuits that can be evaluated is important here because the
construction in the next section will require that the scheme can perform eval-
uation twice.

Now let t satisfy the above condition. Let d0 = dDec and d ≥ 3d0 + 2. We
define a scheme F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) as follows:

KeyGenF (1λ, 1d):

1. Let (pk0, sk0)← KeyGenSH(1λ, 1d0) and (pkE , skE)← KeyGenSH(1λ, 1d+d0)
2. Let fsk = EncSH(pkE , sk0)
3. Output pk = (pk0, pkE , fsk) and sk = skE .

EncF (pk, µ):

1. Parse pk = (pk0, pkE , fsk).
2. Output EncSH(pk0, µ).

14

ExpandF (pk1, . . . , pkN , i, c):

1. Parse pkj = (pk0,j , pkE,j , fsk,j).

2. Let ĉ = Ẽxpand
t

(pk0,1, . . . , pk0,N , i, c)
3. Output c̃ = EvalSH(DecSH(·, ĉ), (pkE,1, fsk,1), . . . , (pkE,N , fsk,N)).

EvalF (P, pk1, . . . , pkN , c̃1, . . . , c̃n):

1. Parse pkj = (pk0,j , pkE,j , fsk,j).
2. Let K = {pk1, . . . , pkN}
3. Output c̃ = EvalSH(P, (K, c̃1), . . . , (K, c̃n)).

DecF (sk1, . . . , skN , c̃):

1. Parse skj = skE,j .
2. Output µ′ = DecSH(skE,1, . . . , skE,N , c̃).

Note that DecF has the same size as DecSH .

Lemma 4. The scheme F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) above is
a privately expandable multi-key compact somewhat homomorphic scheme that
can evaluate circuits up to a depth of 2d0 + 2.

Proof. The security and compactness of F follows directly from that of E . By
Lemma 2, for c = EncF (pki, µ), c̃ = ExpandF (pk1, . . . , pkN , i, c) is a level-d0
encryption of µ associated with K = {pkE,1, . . . , pkE,N} under scheme E . Thus,
the correctness of evaluation and decryption of F follows from that of E .

Also, by Lemma 2, ĉ 's Ẽxpand
t

(pk1, . . . , pkN , j,EncE(pkj , µ)). Then the re-

sult of homomorphically decrypting both sides gives c̃ 's ẼxpandF (pk1, . . . , pkN ,
j,Enc(pkj , µ)). Since each fsk,j are level 1 encryption under E , the output of

ẼxpandF is of level d0. Thus, we can further evaluate circuits up to depth 2d0 +2
as required. ut

Remarks

1. Recent results of Albrecht et al. [2] give a sub-exponential (in λ) attack on
DSPR assumption when q is super-polynomial, which is required in [17].

2. Since our protocol is also based on ESH with super-polynomial q, security
parameter and other variables involved need to be chosen carefully to remain
secure under such attack.

3. Another possible solution is to use the recent technique in [9] to construct a
privately expandable scheme without adding superpolynomial-size errors to
the ciphertexts. However, careful application of this technique is required in
order to guarantee that the resulting scheme is both privately expandable
and correctly decryptable. We leave this as an open problem.

15

4 Circuit-Private Multi-Key HE for Branching Programs

We first define the multi-key version of circuit privacy given in the previous
section.

Definition 8. Let E = (KeyGen,Enc,Eval,Dec) denote a multi-key (U, C)-homo-
morphic encryption scheme. We say E is (maliciously) circuit-private if there
exist unbounded algorithms Sim(1λ, (pk∗1 , c

∗
1), . . . , (pk∗n, c

∗
n), b) and deterministic

Ext(1λ, pk∗, c∗) such that for all λ, pk∗1 , . . . , pk
∗
N , I1, . . . , In, c∗1, . . . , c

∗
n, and all

programs C : {0, 1}n → {0, 1} ∈ (U, C), the following holds:

– for i = 1, . . . , n, x∗i := Ext(1λ, pk∗Ii , c
∗
i)

– Sim(1λ, (pk∗1 , . . . , pk
∗
N), (I1, c

∗
1), . . . , (In, c

∗
n), U(C, x∗1, . . . , x

∗
n))

's Eval(1λ, C, (pk∗1 , . . . , pk∗N), (I1, c
∗
1), . . . , (In, c

∗
n))

We say the scheme is semi-honestly circuit-private if the above holds only
for well-formed pk∗Ii = pkIi , c

∗
i = ci pairs, i.e. (pkIi , skIi) ← KeyGen(1λ) and

ci ← Enc(pkIi , xi).

In this section we construct a circuit-private multi-key HE for a class C of
(depth bound) branching programs. As discussed above, the difficulty in the
multi-key setting is that each decision one makes while traversing a branching
program is dependent on its corresponding input bit, which in turn is dependent
on which public key it is encrypted with. Using such encryption may reveal
bit positions of the path it takes to reach a terminal node. Using a privately
expandable multi-key HE scheme (previous section) solves this problem. Another
implication of private expandability is that we can generate a fresh expanded
encryption of bit b that is indistinguishable from an expanded encryption of any
given encryption of b. This allows us to construct a simulator for circuit privacy,
given an output bit.

We first give a construction that is secure against semi-honest adversaries
where each pair of public key and ciphertext is correctly generated. The intuition
behind this construction is as follows: given a branching program P , we assign
to each node of P a ciphertext that multi-key decrypt to an output computed
with that node as a root. Thus, the ciphertext assigned to the actual root will
decrypt to the actual output. In order to construct such a ciphertext (called label
below), we privately expand the input corresponding to a position given by ψV
of that node in order to hide the position. We then homomorphically construct a
ciphertext encrypting each bit of its child that is specified by the encrypted input
(without knowing the input bit). Note that this result will be an encryption of
an encryption of the output. Finally, we homomorphically decrypt it twice using
HE evaluation. We show that, in this case, the output can be simulated knowing
the public keys, ciphertext, and the output; it is thus independent of the program
being evaluated.

We then show that we can augment this construction to handle malicious
public key and ciphertext pairs using a single-key circuit-private FHE since the
evaluated output does not depend on the branching program, unlike in the gen-
eral case.

16

4.1 Semi-Honest Model

Let F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) be a privately expandable multi-
hop multi-key compact somewhat homomorphic scheme that can evaluate cir-
cuit up to depth 2d0 + 2 where d0 is the depth of DecF . Let l be the length of
branching programs, and let p(λ, l) be a polynomial to be specified later. Let
Dec2F (sk1, . . . , skN , c) = DecF (sk1, . . . , skN ,DecF (sk1, . . . , skN , c)). We describe

ES = (KeyGenS ,EncS ,EvalS ,DecS) together with Expand and Ẽnc, an expanded
encryption under a random public key. Note that [1] is an encryption of 1 with
no randomness.

KeyGenS(1λ, 1l):

1. Let d = p(λ, l).
2. Let (pkF , skF)← KeyGenF (1λ, 1d).
3. Output pk = (pkF , fsk := EncF (pkF , skF)) and sk = skF .

EncS(pk, µ):

1. Parse pk = (pkF , fsk)
2. Let cα ← EncF (pkF , µ)
3. Output c

Expand(pk1, . . . , pkN , i, c):

1. For j = 1, . . . , N , parse pkj = (pkF,j , fsk,j).
2. Let cα = c and cγ = [1]− c
3. Compute c̃α = ExpandF (pkF,1, . . . , pkF,N , i, cα)

and c̃γ = ExpandF (pkF,1, . . . , pkF,N , i, cγ)
4. Output c̃ = (c̃α, c̃γ).

Ẽnc(pk1, . . . , pkN , µ):

1. Let i← [N] and compute c← Enc(pki, µ).
2. Output c̃ = Expand(pk1, . . . , pkN , i, c).

EvalS(P, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. Let P = (G = (V,E), v0, T, ψV , ψE).
2. For j = 1, . . . , N , parse pkj = (pkF,j , fsk,j).

Let f̃sk,j = ExpandF (pkF,1, . . . , pkF,N , j, fsk,j)
3. For i = 1, . . . , n, Let (c̃α,i, c̃γ,i) = Expand(pk1, . . . , pkN , i, ci).
4. For each v ∈ T , let label(v) := ψV (v).
5. For each v ∈ V \T with both children labeled, let h := height(v), i := ψV (v)

(a) For t = 1, . . . , s = |label(u0)| where Γ (v) = {u0, u1}, ψE(v, u0) = 0,
ψE(v, u1) = 1

i. Let r0 = label(u0)[t] and r1 = label(u1)[t].

ii. Let z1, z2 ← Ẽnc(pk1, . . . , pkN , 0)

17

iii. Consider 4 cases:
A. if r0 = r1 = 0, at := z1 + z2
B. if r0 = 0; r1 = 1, at := c̃α,i + z1
C. if r0 = 1; r1 = 0, at := c̃γ,i + z1
D. if r0 = r1 = 1, at := c̃α,i + c̃γ,i

(b) av = a1 . . . as; if h = 1, label(v)← av
(c) otherwise, label(v)← EvalF (Dec2F , pkF,1, . . . , pkF,N , f̃sk,1, . . . , f̃sk,N , av)

6. Output c̃ = label(root)

DecS(sk1, . . . , skN , ĉ)

1. Parse ski = skF,i.
2. Output µ′ := DecF (skF,1, . . . , skF,N , ĉ)

4.2 Correctness and Security Against Semi-Honest Adversaries

The correctness is a direct result of the following lemma:

Lemma 5. Let x = x1 . . . xn. For i = 1, . . . , N , (pki, ski) ← KeyGen(1λ, 1l).
For i = 1, . . . , n, ci = Enc(pkIi , xi) for some Ii ∈ [N]. Then for any branching
program P = (G = (V,E), v0, T, ψV , ψE) and for each v ∈ V \T with i = ψV (v),

1. DecF (skF,1, . . . , skF,N , av) = label(uxi);
2. DecF (skF,1, . . . , skF,N , label(v)) = Pv(x);
3. DecS(sk1, . . . , skN , ĉ) = P (x).

Proof. Let Γ (v) = {u0, u1}. For each t ∈ [s], consider the value µ = xi that
c̃α,i encrypts. If µ = 0, we get a sum of two encryptions of 0 in the first two
cases, and a sum of an encryption of 1 and an encryption of 0 in the last two
cases. If µ = 1, we get a sum of two encryptions of 0 in the first case and third
case, and a sum of an encryption of 1 and an encryption of 0 in the second
case and the last case. All of which are correct with respect to r0, r1. Thus,
DecF (skF,1, . . . , skF,N , av) = label(uxi).

For v with height(v) = 1, we have label(v) = av. Thus, DecF (skF,1, . . . , skF,N ,
label(v)) = label(uxi) = Pv(x) as uxi ∈ T . Now assume that height(v) > 1. Since
label(v) ← EvalF (Dec2F , f̃sk,1, . . . , f̃sk,N , av), inductively, by part 1, we have
DecF (skF,1, . . . , skF,N , label(v)) = Dec2F (skF,1, . . . , skF,N , av) = DecF (skF,1,
. . . , skF,N , label(uxi)) = Pv(x).

Applying part 2 to the case v = v0, we get

DecS(sk1, . . . , skN , ĉ) = DecF (skF,1, . . . , skF,N , label(v0)) = Pv0(x) = P (x).

ut

Now we prove circuit privacy against semi-honest adversaries, i.e., when each
public key and ciphertext pair is generated correctly.

Lemma 6. Assuming F is privately expandable HE scheme with circular se-
curity. Then the scheme ES is a semi-honestly circuit-private HE scheme for
branching programs.

Proof. We construct a simulator SimS as follows:

18

SimS(1λ, 1l, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn), b):

1. For i = 1, . . . , N , parse pki = (pkF,i, fsk,i).

2. Let out0 = b.

3. For h = 1, . . . , l,

(a) For t = 1, . . . , s = |outh−1|, we construct outh[t] as follows:

i. Let y0, y2 ← Ẽnc(pk1, . . . , pkN , 0) and y1 ← Ẽnc(pk1, . . . , pkN , 1).
ii. Consider 2 cases:

A. If outh−1[t] = 0, outh[t] := y0 + y2.
B. If outh−1[t] = 1, outh[t] := y1 + y2.

(b) If h ≥ 2, replace outh with EvalF (Dec2F , pkF,1, . . . , pkF,N , f̃sk,1, . . . , f̃sk,N , outh)

4. Output out = outl

Let P = (G = (V,E), vr, T, ψV , ψE). For h = 1, . . . , l, let vh ∈ V be the
vertex at height h along the path indicated by x. We have b = U(P, x∗1, . . . , x

∗
n) =

ψV (v0) and vl = v0. The result follows from the following claim when h = l:

Claim. For h = 0, . . . , l, outh 's label(vh).

Proof. Clearly, out0 = label(v0) = U(P, x1, . . . , xn) = b. Suppose outh−1 =
label(vh−1). Let i = ψV (vh). For each bit b = outh−1[t], if b = 0, we have
outh[t] = y0 + y2 and

at =

{
z1 + z2 or c̃α,i + z1 if xi = ψE(vh, vh−1) = 0;
c̃γ,i + z1 if xi = ψE(vh, vh−1) = 1

Clearly, z1 and y0 have the same distribution as both are Ẽnc(pk1, . . . , pkN , 0).
By private expandability, c̃α,i, c̃γ,i are statistically indistinguishable from y2
when xi = ψE(vh, vh−1) = 0 and xi = ψE(vh, vh−1) = 1, respectively. We have
at 's outh[t]. Similarly, if b = 1, we have outh[t] = y1 + y2 and

at =

{
c̃γ,i + z1 if xi = ψE(vh, vh−1) = 0;
c̃α,i + z1 or c̃α,i + c̃γ,i if xi = ψE(vh, vh−1) = 1

By private expandability, c̃γ,i, c̃α,i are statistically indistinguishable from y1
when xi = ψE(vh, vh−1) = 0 and xi = ψE(vh, vh−1) = 1, respectively, while
c̃γ,i is statistically indistinguishable from y2 and z1 when xi = ψE(vh, vh−1) =
1. Again, we have at 's outh[t]. Now average over the choice of outh−1 's
label(vh−1), we have at 's outh, and the result follows by applying EvalF (Dec2F ,
f̃sk,1, . . . , f̃sk,N , ·) to both. ut

We have SimS((pk1, . . . , pkN), (I1, c1), . . . , (In, cn), b) 's EvalS(P, (pk1, . . . , pkN),
(I1, c1), . . . , (In, cn)). ut

19

4.3 Handling Malicious Inputs

Once we have an evaluation algorithm that can hide a branching program when
public keys and ciphertexts are well-formed, we then consider the case when
they are not properly generated. We use a single-key FHE with circuit privacy
in Theorem 5 (such as one constructed in [21]) to homomorphically check the
validity of each multi-key public key and ciphertext pair. If the check fails, we
”mask” the output using a random string. The simulator can be constructed
using the extractor guaranteed by the circuit privacy of single-key FHE to extract
random coins and verify directly. If the check fails, it returns a random string
with the same distribution as the masked output.

Let P be a circuit-private single-key FHE. We a define a circuit verifying
each public key and corresponding ciphertexts:

Validateλ,d,n(pk, sk, rk, (c1, r1), . . . , (cn, rn), out) =

out if (pk, sk)← KeyGenF (rk)

and for each i ∈ [n],
ci = EncF (pk, µi; ri)
for some µi ∈ {0, 1};

0 otherwise

We add a random string S ∈ {0, 1}s, where s = s(λ, d) = |label(root)|, to the
output of Eval and return an encryption of S only if the verification passes. The
original output can be computed if S can be recovered; otherwise, it is uniformly
distributed. We define

vj = EvalP(Validate(pkj , ·, ·, {(ci, ·)}Ii=j , Sj), pkP,j , psk,j , pkr,j , {pre,i}Ii=j)

where pkr,j = EncP(pkP,j , rk,j), psk,j = EncP(pkP,j , skj) and pre,i = EncP(pkP,i, re,i),
all of which are included in the new public key pk or the new ciphertext c.
We also include skP in the new secret key sk. Finally, the new Eval returns
(label(root)⊕ (S1 ⊕ . . .⊕ SN), v1, . . . , vN).

We describe EM = (KeyGenM ,EncM ,EvalM ,DecM) using the above Expand

and Ẽnc.

KeyGenM (1λ, 1l):

1. Let d = p(λ, l).
2. Let (pkF , skF)← KeyGenF (1λ, 1d; rk).
3. Let (pkP , skP)← KeyGenP(1λ).
4. Compute fsk := EncF (pkF , skF ; re), pkr := EncP(pkP , rk)

and psk = EncP(pkP , skF).
5. Output pk = (pkF , fsk, pkr, psk) and sk = (skF , skP).

EncM (pk, µ):

1. Parse pk = (pkF , fsk, pkP , pkr, psk).
2. Let cF ← EncF (pkF , µ; re)
3. Compute pre = EncP(pkP , re)
4. Output c = (cF , pre).

20

EvalM (P, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. Let P = (G = (V,E), v0, T, ψV , ψE).
2. For j = 1, . . . , N ,

(a) Parse pkj = (pkF,j , fsk,j , pkP,j , pkr,j , psk,j).
(b) Let Sj ← {0, 1}s and vj = EvalP(Validate(pkj , ·, ·, {(ci, ·)}Ii=j , Sj), pkP,j ,

psk,j , pkr,j , {pre,i}Ii=j).
(c) Let f̃sk,j = ExpandF (pkF,1, . . . , pkF,N , j, fsk,j)

3. For i = 1, . . . , n,
(a) Parse ci = (cF,i, pre,i).
(b) Let (c̃α,i, c̃γ,i) = Expand(pk1, . . . , pkN , i, cF,i).

4. For each v ∈ T , let label(v) := ψV (v).
5. For each v ∈ V \T with both children labeled, let h := height(v), i := ψV (v)

(a) For t = 1, . . . , s = |label(u0)| where Γ (v) = {u0, u1}, ψE(v, u0) = 0,
ψE(v, u1) = 1

i. Let r0 = label(u0)[t] and r1 = label(u1)[t].

ii. Let z1, z2 ← Ẽnc(pk1, . . . , pkN , 0)
iii. Consider 4 cases:

A. if r0 = r1 = 0, at := z1 + z2
B. if r0 = 0; r1 = 1, at := c̃α,i + z1
C. if r0 = 1; r1 = 0, at := c̃γ,i + z1
D. if r0 = r1 = 1, at := c̃α,i + c̃γ,i

(b) av = a1 . . . as; if h = 1, label(v)← av
(c) otherwise, label(v)← EvalF (Dec2F , pkF,1, . . . , pkF,N , f̃sk,1, . . . , f̃sk,N , av)

6. Output ĉ = (label(root)⊕ (S1 ⊕ . . .⊕ SN), v1, . . . , vN)

DecM (sk1, . . . , skN , ĉ)

1. Parse ĉ = (c̃, vk,1, . . . , vk,N).
2. For j = 1, . . . , N ,

(a) Parse skj = (skF,j , skP,j).
(b) Let Sj = DecP(skP,j , vk,j).

3. Let c̃′ = c̃⊕ (S1 ⊕ . . .⊕ SN)
4. Output µ′ := DecF (skF,1, . . . , skF,N , c̃

′)

4.4 Security Against Malicious Adversaries

We now prove that the above construction is secure against malicious adversaries
as defined in Definition 8 by constructing a pair of algorithms ExtM and SimM .

Theorem 6. Assume F is a privately expandable multi-key HE scheme with
circular security and P is maliciously circuit-private FHE. Then the above con-
struction is a maliciously circuit-private HE scheme for the branching program.

Proof. Let ExtP and SimP be as defined in Definition 4. We construct ExtM and
SimM as follows:

21

ExtM (1λ, 1l, pk∗, c∗):

1. Parse pk∗ = (pk∗F , f
∗
sk, pk

∗
P , p

∗
kr, p

∗
sk). If it is malformed, output 0.

2. Let r∗e = ExtP(pk∗P , p
∗
re) and sk∗F = ExtP(pk∗P , p

∗
sk).

3. If (pk∗F , sk
∗
F) 6= KeyGenF (1λ, 1d; r∗e), return 0.

4. If c∗ = EncF (pk∗F , µ; r∗e) for some µ ∈ {0, 1}, output µ.
5. Otherwise, output 0.

SimM (1λ, 1l, (pk∗1 , . . . , pk
∗
N), (I1, c

∗
1), . . . , (In, c

∗
n), b):

1. For i = 1, . . . , n,
(a) Parse c∗i = (c∗F,i, p

∗
re,i).

(b) Let c̃∗i = Expand(pk∗1 , . . . , pk
∗
N , i, c

∗
i).

2. For j = 1, . . . , N ,
(a) Parse pk∗j = (pk∗F,j , f

∗
sk,j , pk

∗
P,j , p

∗
kr,j , p

∗
sk,j).

(b) Do the same test as in Ext for pk∗j and {c∗i }Ii=j . If any of the test fails,
let vk,j = SimP(pk∗P,j , p

∗
sk,j , p

∗
kr,j , {p∗re,i}Ii=j , 0).

(c) Otherwise, let Sj ← {0, 1}s and vj = SimP(pk∗P,j , p
∗
sk,j , p

∗
kr,j , {p∗re,i}Ii=j , Sj).

(d) Let f̃∗sk,j = ExpandF (pk∗F,1, . . . , pk
∗
F,N , j, f

∗
sk,j)

3. If any of the tests above fail, let out be a random string of length s and skip
to the last step.

4. Otherwise, let out0 = b.
5. For h = 1, . . . , l,

(a) For t = 1, . . . , s = |outh−1|, we construct outh[t] as follows:
i. Let y0, y2 ← Ẽnc(pk1, . . . , pkN , 0) and y1 ← Ẽnc(pk1, . . . , pkN , 1).
ii. Consider 2 cases:

A. If outh−1[t] = 0, outh[t] := y0 + y2.
B. If outh−1[t] = 1, outh[t] := y1 + y2.

(b) If h ≥ 2, replace outh with EvalF (Dec2F , pk
∗
F,1, . . . , pk

∗
F,N , f̃

∗
sk,1, . . . , f̃

∗
sk,N , outh)

6. Output out = (outl ⊕ (S1 ⊕ . . .⊕ SN), vk,1, . . . , vk,N)

We show that they satisfy the Definition 8.
Assume there exists j ∈ [N] such that Validate(pk∗F,j , sk

∗
F,j , r

∗
k,j , {(c∗i , r∗e,i)}Ii=j ,

Sj) = 0 for sk∗F,j = ExtP(1λ, pk∗P,j , p
∗
sk,j), r

∗
k,j = ExtP(1λ, pk∗P,j , p

∗
kr,j) and

r∗e,i = ExtP(1λ, pk∗P,j , p
∗
re,i) for Ii = j. Then by circuit privacy of P, vi is statis-

tically indistinguishable from SimP(1λ, pk∗P,j , p
∗
sk,j , p

∗
kr,j , {p∗re,i}Ii=j , 0) indepen-

dent from Sj . Thus, out has the same distribution as a random string of length
s in both Eval and SimM .

Now suppose that all Validate’s are not zero, then pk∗F,i and c∗F,i are generated
correctly. Since outl is computed the same way as in SimM , the result follows
from Lemma 6. ut

Combining the above result with Lemma 4 results in the following theorem:

Theorem 7. Let F be a privately expandable multi-hop multi-key compact some-
what homomorphic encryption scheme that can evaluate a circuit up to depth
2d + 2 where d is the depth of DecF . Then the scheme described above is a
maliciously circuit-private multi-key HE scheme for branching programs.

Corollary 1. Assuming RLWE and DSPR assumptions, and circular security
for ESH , there exists a maliciously circuit-private multi-key HE scheme for branch-
ing programs.

22

5 Circuit-Private Multi-Key FHE

In this section we devise a framework turning a compact MFHE scheme and
a circuit-private multi-key HE scheme into a circuit-private MFHE. This is a
multi-key variant of the framework in [21]. As we discussed earlier, it is difficult
to turn a single-key circuit-private HE scheme and a MFHE scheme into a circuit-
private MFHE in the plain model. When both homomorphic encryption schemes
are multi-key, each pair of public key and secret key can be generated together,
thus allowing homomorphic decryption between two schemes. We use MFHE
evaluation to evaluate a given circuit. We then switch to the circuit-private
scheme to verify the input. Finally, we switch it back to the original scheme for
compactness. Unlike the single-key case, we cannot verify all public keys and
ciphertexts at once as it would lead to a larger verification circuit. We rely on
thefully homomorphic property of the former to combine the result.

Let F = (KeyGenF ,EncF ,EvalF ,DecF) be a leveled compact multi-key FHE
scheme and P = (KeyGenP ,EncP ,EvalP ,DecP) be a leveled multi-key circuit-
private homomorphic scheme. Define the following programs:

KValidateλ,dpkF ,out(skF , rFK) =

{
out if (pkF , skF) = KeyGenF (1λ, 1d; rFK)
0 otherwise.

CValidateλ,dpkF ,cF ,out(rFE) =

{
out if cF = EncF (pkF , bi; rFE) for some bi ∈ {0, 1}
0 otherwise.

CombineDec(skP,1, . . . , skP,N , c1, . . . , cN+n) =

m if DecP(skP,1, . . . , skP,N , ci) = m
for ∀i = 1, . . . , N + n

0 otherwise.

5.1 Construction

KeyGen(1λ, 1d):

1. Let (pkF , skF) = KeyGenF (1λ, 1d; rFK) and (pkP , skP)← KeyGenP(1λ, 1d0)

where d0 is the maximum between the depth of KValidateλ,dpkF ,out, CValidate
λ,d
pkF ,cF ,out

and DecF .
2. Let pskF = EncP(pkP , skF), prFK = EncP(pkP , rFK) and fskP = EncF (pkF , skP).
3. Output pk = (pkP , pkF , pskF , prFK , fskP), sk = skF .

Enc(pk, µ):

1. Parse pk = (pkP , pkF , pskF , prFK , fskP).
2. Let cF = EncF (pkF , µ; rFE) and prFE ← EncP(pkP , rFE).
3. Output c = (cF , prFE).

23

Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. For i = 1, . . . , N , parse pki = (pkP,i, pkF,i, pskF ,i, prFK ,i, fskP ,i).

2. For i = 1, . . . , n, parse ci = (cF,i, prFE ,i).

3. If C is syntactically malformed, does not match n, or pki or ci has incorrect
size, replace C with a program returning 0.

4. Let outF = EvalF (C, (pkF,1, . . . , pkF,N), (I1, cF,1), . . . , (In, cF,n)).

5. Let outP = EvalP(DecF (·, outF), (pkP,1, . . . , pkP,N), (1, pskF ,1), . . . , (N, pskF ,N)).

6. For i = 1, . . . , N , let
outK,i = EvalP(KValidateλ,dpkF,i,outP , (pkP,1, . . . , pkP,N), (i, pskF ,i), (i, prFK ,i)).

7. For i = 1, . . . , n, let
outC,i = EvalP(CValidateλ,dpkF,i,cF,i,outP , (pkP,1, . . . , pkP,N), (i, prFE ,i)).

8. Output ĉ = EvalF (DecP(·,CombineDec(·, outK,1, . . . , outK,N , outC,1, . . . , outC,n)),
(pkF,1, . . . , pkF,N), (1, fskP ,1), . . . , (N, fskP ,N)).

Dec(sk1, . . . , skN , ĉ)

1. For i = 1, . . . , N , parse ski = skF,i.

2. Output y = DecF (skF,1, . . . , skF,N , ĉ).

We now prove that this construction gives a leveled compact circuit-private
MFHE.

Theorem 8. Assume a compact leveled MFHE scheme F and a leveled (U, CF)-
homomorphic circuit-private multi-key HE scheme P exist., where CF includes
DecF (·, outF), KValidateλ,dpkF ,outP and CValidateλ,dpkF ,cF ,outP for all λ, d, pkF , cF ,
outP , outF . The resulting scheme in the above construction is a leveled compact
circuit-private MFHE.

We refer to the full version of this paper for the proof.

5.2 Instantiation

Finally, if we instantiate the result of Theorem 8 by our construction in Theo-
rem 7, we get the following results:

Corollary 2. Assume there exists a privately expandable multi-hop multi-key
compact somewhat homomorphic encryption scheme that can evaluate circuits
up to depth 2d+2 where d is the depth of its decryption circuit. Then there exists
a maliciously circuit-private multi-key fully homomorphic encryption scheme.

Corollary 3. Assuming RLWE and DSPR assumptions, and circular security
for ESH , there exists a maliciously circuit-private multi-key fully homomorphic
encryption scheme.

24

6 Three-Round On-the-Fly MPC with Circuit Privacy

In this section we consider one application of the circuit-private MFHE scheme—
on-the-fly MPC protocol. In this setting, a large number of clients Pi uploaded
their encrypted inputs to a server or a cloud, denoted by S. The server selects an
N -input function F on a subset of clients’ input, and performs the computation
without further information. Afterward, the server and the clients whose inputs
are chosen run the rest of the protocol. At the end of an on-the-fly MPC proto-
col, only those clients learn the output while the server and other parties learn
nothing. Furthermore, the communication complexity and the running time of
clients should be independent of the function F . As in standard MPC, the input
of each client should not be revealed to any other parties, including the server.
In addition, we require circuit privacy for the server. Clients should not learn
anything about the function other than its output. We give the formal definition
of on-the-fly MPC protocol from [20] as follows:

Definition 9. Let C be a class of functions with at most U inputs. An on-the-fly
multi-party computation protocol Π for C is a protocol between P1, . . . , PU , S
where Pi is given xi as input, for i ∈ [U], and S is given an ordered subset
V ⊆ [U] of size N and a function F on N inputs. At the end of the protocol,
each party Pi for i ∈ V outputs F ({xi}i∈V) while Pi for i /∈ V and S output ⊥.
The protocol consists of two phases:

– Offline phase is performed before F, V is chosen. All parties participate in
this phase.

– Online phase starts after F, V is chosen. Only S and Pi for i ∈ V participate
in this phase, and ignore all messages from Pi, i /∈ V .

We require that the communication complexity of the protocol and the compu-
tation time of P1, . . . , PU be independent of (the complexity of) the function F .
Furthermore, the computation time of Pi for i /∈ V is independent of the output
size of F .

We then define the security and circuit privacy of on-the-fly MPC protocol
in the plain model against malicious adversaries.

Definition 10. An adversary A corrupting a party receives all messages directed
to the corrupted party and controls the messages that it sends. Since the server
ignores messages from parties outside V , we assume w.l.o.g. that an adversary
only corrupts computing parties, i.e., parties in V .

Let ViewΠ,S(F, V,x) denote the collection of messages the server S receives
in an execution of protocol Π on a subset V ⊆ [U] with |V | = N , an N -input
function F ∈ C and input vector x. Let ViewΠ,A(F, V,x) denote the joint collec-
tion of messages A receives through corrupted parties in an execution of protocol
Π on V , F and x.

An on-the-fly multi-party computation protocol Π for C is secure if

25

– for every adversary A corrupting parties {Pi}i∈T with |T | = t < N , for all
V ⊆ [U] with |V | = N , for all N -input function F ∈ C and for all input
vectors x,x′ such that xi = x′i for any i ∈ T ,

[ViewΠ,A(F, V,x)|y = F ({xi}i∈V)] 'c [ViewΠ,A(F, V,x′)|y = F ({x′i}i∈V)] .

– for every server S, for all V ⊆ [U] with |V | = N , for all N -input function
F ∈ C and for all input vectors x,x′,

[ViewΠ,S(F, V,x)|y = F ({xi}i∈V)] 'c [ViewΠ,S(F, V,x′)|y = F ({x′i}i∈V)] .

Let the ideal world protocol be where the computation of F is performed
through a trusted functionality F . Each party Pi sends their input xi to F ,
the server sends F and V to F , which performs the computation and sends the
output F ({xi}i∈V) to each Pi, i ∈ V . Let IDEALF,S(F, V, x) denote the joint
output of the ideal-world adversary S, parties P1, . . . , PU and the server S. Let
REALΠ,A(F, V, x) denote the joint output of the real-world adversary S, parties
P1, . . . , PU and the server S.

The protocol Π has (malicious) circuit privacy if for every malicious (and
possibly unbounded) adversary A corrupting any number of clients, there exists
an unbounded simulator S with black-box access to A such that for all V ⊆ [U]
with |V | = N , for all N -input function F ∈ C and for all input vectors x,
IDEALF,S(F, V, x) 's REALΠ,A(F, V, x).

Adding circuit privacy to an on-the-fly MPC protocol via circuit-private
MFHE scheme has two implications beyond the definition state above. First,
it automatically strengthen the protocol against malicious adversaries without
using setup. This is because the evaluated output only depends on the output
and encrypted input even against malformed public keys and ciphertexts. On the
other hand, it implies that the clients do not know the function being evaluated,
which in turn makes it difficult, if even possible, to verify against a malicious
server. Therefore, we assume that the server is only honest-but-curious, that it
follows the protocol, but may try to learn clients’ input data.

Naturally, the MFHE scheme leads to server-assisted MPC by having each
client generate keys, and encrypt its inputs and uploads to the server. The server
then runs an evaluation algorithm on the encrypted inputs. However, in order
to decrypt the evaluated output, one needs to have all secret keys. One solution,
as in [17], is to run another MPC protocol with each client’s secret key as input
to decrypt. However, this results in multiple rounds in the plain model. In order
to solve this problem, we use a projective garbling scheme.

After the server runs the evaluation algorithm, it creates a garbled circuit of
MFHE decryption with secret keys as input. In order to create a garbled input,
the server cannot give e to the clients as it will allow the clients to generate
multiple garbled inputs, thus rendering the security meaningless. We solve this
problem by using a 1-out-of-2 oblivious transfer (OT). In order to minimize the
round complexity of our MPC protocol, we consider an OT protocol that runs
in one round. However, the standard one-round 1-out-of-2 OT protocols known
are only secure against semi-honest receivers.

26

We refer to the full version of this paper for the formal definitions of the gar-
bling scheme and OT, and the construction of a one-round 1-out-of-2 OT pro-
tocol that is secure against malicious receivers from maliciously circuit-private
single-key FHE.

Theorem 9. Assuming a circuit-private single-key FHE, there exists a one-
round 1-out-of-2 oblivious transfer protocol that is secure against malicious re-
ceivers.

6.1 Construction

Let E = (KeyGen,Enc,Eval,Dec) be a (leveled) compact maliciously circuit-
private MFHE scheme with secret key length s = s(λ) and using r = r(λ)
random bits for key generation. For simplicity, we assume that each client’s in-
put is 1 bit. The protocol can be easily generalized to the case where each client
holds many bits of input. Compactness of the MFHE implies that the evaluated
output do not depend on the size of the input. Thus, the rest of our protocol
stays the same. Let (GOT, QOT, AOT, DOT) be a one-round 1-out-of-2 OT proto-
col. Let (GarbCircuit,GarbEval) be a projective gabling scheme. Let U be the set
of indices of all clients in the system. We describe an on-the-fly MPC protocol
ΠN (V, F, x) as follows:

On-the-Fly MPC Protocol

Step 1: For i ∈ [U], client Pi generates a key pair (pki, ski) = KeyGen(1λ; ri)
and encrypts his input ci ← Enc(pki, xi). For each j = 0, . . . , s + r − 1,
Pi also generates (pkjOT,i, sk

j
OT,i) ← GOT(1λ). It computes bitwise qji =

QOT(pkjOT,i, ski[j]) for j = 0, . . . , s − 1, and qs+ji = QOT(pkjOT,i, ri[j]) for

j = 0, . . . , r − 1. It then sends (pki, ci, pkOT,i,
−→q i) to the server S.

The server S then selects a circuit C representing the function F on
inputs {xi}i∈V for a subset V ⊆ U such that |V | = N . We may assume
w.l.o.g. that V = [N].

Step 2: The server S computes c = Eval(C, pk1, . . . , pkN , c1, . . . , cN). S com-
putes a garbled circuit (G, e) = GarbCircuit(1λ, gc,pk1,...,pkN) where

gc,pk1,...,pkN ((sk1, r1), . . . , (skN , rN)) =

Dec(sk1, . . . , skN , c) if (pki, ski) =

KeyGen(1λ; ri)
for all i ∈ [N];

⊥ otherwise

and e = (X0
0 , X

1
0 , . . . , X

0
N(r+s)−1, X

1
N(r+s)−1). For each i ∈ [N] and j =

0, . . . , r + s − 1, it computes aji = AOT(pkOT,i, q
j
i , X

0
i(r+s)+j , X

1
i(r+s)+j). It

sends (G, a0i , . . . , a
r+s−1
i) (and V) to Pi for each i ∈ V .

27

Step 3: For i ∈ V , client Pi computes its garbled input Xi(r+s)+j =

DOT(skOT,i, a
j
i) for j = 0, . . . , r + s − 1 and broadcasts to other Pi′ ∈ V .

Each client computes y = GarbEval(G,X0, . . . , XN(r+s)−1).

Remarks

1. The upper bound on the number of clients whose inputs are used in a com-
putation must be known in advance. This requirement is inherited from the
multi-key homomorphic encryption scheme in [17] that we use to construct
our MFHE. It is also the case for the on-the-fly MPC construction in [17].

2. Private channel (from the server) between clients is required to prevent the
server learning clients’ secret keys. This requirement can be done by the
honest-but-curious server passing public keys of all parties in V along with
its messages in step 2. The public key of Pi can be used to encrypt a garbled
input from Pj to Pi.

3. We require circular security between MFHE and OT schemes. This can be
done without additional assumptions by using OT constructed from the same
circuit-private homomorphic scheme in Section 4.

Theorem 10. Let E = (KeyGen,Enc,Eval,Dec) be a leveled compact MFHE
scheme. Let OT = (GOT, QOT, AOT, DOT) be an OT protocol. Let Gb = (GarbCir-
cuit,GarbEval) be a projective garbling scheme. If E is maliciously circuit-
private, OT is secure against malicious receivers, and Gb is a secure garbling
scheme, then the protocol ΠN is a 3-round secure on-the-fly MPC protocol with
circuit privacy.

We refer to the full version of this paper for the proof.

7 Conclusion and Open Questions

We have shown that we can construct circuit-private MFHE from the existing
multi-key HE and single-key circuit-private FHE. We also use it to construct an
on-the-fly MPC with circuit privacy against malicious clients in the plain model.
However, our construction inherits the same assumption as the construction of
MFHE of López-Alt et al., including DSPR and RLWE. So, the main open
question is:

Is it possible to construct a multi-key homomorphic encryption (with circuit
privacy) under standard assumptions such as LWE in the plain model?

Since our technique only relies on properties that exist in many single-key
constructions, we expect that we can apply it to other multi-key HE as well.
Moreover, circuit privacy for on-the-fly MPC requires some degree of trust to-
ward a server party. Our construction assumes the server to be honest-but-
curious. We would like to capture a wider range of unintended behavior of the
server while still achieving circuit privacy. So, another open question is:

Is there a better model for on-the-fly MPC with circuit privacy?

28

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Advances in Cryptology–EUROCRYPT 2001, pp. 119–135. Springer
(2001)

2. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions: Cryptanalysis of some FHE and graded encoding schemes. Tech. rep.,
Cryptology ePrint Archive, Report 2016/127 (2016)

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Advances in Cryptology–EUROCRYPT 2012, pp. 483–501.
Springer (2012)

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Advances in Cryptology–CRYPTO
2011, pp. 505–524. Springer (2011)

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of CRYPTOLOGY 13(1), 143–202 (2000)

6. Chongchitmate, W., Ostrovsky, R.: Circuit-private multi-key FHE. Cryptology
ePrint Archive, Report 2017/010 (2017), http://eprint.iacr.org/

7. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Advances in Cryptology–CRYPTO 2015, pp. 630–656. Springer
(2015)

8. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Proceedings of the 4th Interna-
tional Workshop on Practice and Theory in Public Key Cryptography: Public Key
Cryptography. pp. 119–136. PKC ’01, Springer-Verlag, London, UK, UK (2001),
http://dl.acm.org/citation.cfm?id=648118.746742

9. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 294–
310. Springer (2016)

10. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

11. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable Yao circuits. In: Advances in Cryptology–CRYPTO 2010, pp. 155–
172. Springer (2010)

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology–CRYPTO 2013, pp. 75–92. Springer (2013)

13. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. Journal of Cryptology 25(1), 158–193 (2012)

14. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: Proceedings of the 31st Annual Conference
on Advances in Cryptology. pp. 132–150. CRYPTO’11, Springer-Verlag, Berlin,
Heidelberg (2011), http://dl.acm.org/citation.cfm?id=2033036.2033047

15. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted
data. In: Proceedings of the 4th Conference on Theory of Cryptogra-
phy. pp. 575–594. TCC’07, Springer-Verlag, Berlin, Heidelberg (2007),
http://dl.acm.org/citation.cfm?id=1760749.1760790

16. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
IACR Cryptology ePrint Archive 2011, 272 (2011)

29

17. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In: Pro-
ceedings of the Forty-fourth Annual ACM Symposium on Theory of Com-
puting. pp. 1219–1234. STOC ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2213977.2214086

18. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework
for private function evaluation. In: Advances in Cryptology–EUROCRYPT 2013,
pp. 557–574. Springer (2013)

19. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalua-
tion. In: Advances in Cryptology–ASIACRYPT 2014, pp. 486–505. Springer (2014)

20. Mukherjee, P., Wichs, D.: Two round mutliparty computation via multi-key FHE.
Cryptology ePrint Archive, Report 2015/345 (2015), http://eprint.iacr.org/

21. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Advances in Cryptology–CRYPTO 2014, pp. 536–553.
Springer (2014)

22. Pippenger, N.: On simultaneous resource bounds. In: Proceedings of the
20th Annual Symposium on Foundations of Computer Science. pp. 307–
311. SFCS ’79, IEEE Computer Society, Washington, DC, USA (1979),
http://dx.doi.org/10.1109/SFCS.1979.29

23. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. In:
Proceedings of the Fortieth Annual ACM Symposium on Theory of Com-
puting. pp. 711–720. STOC ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1374376.1374479

24. Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of the Eighth
Annual ACM Symposium on Theory of Computing. pp. 196–203. STOC ’76, ACM,
New York, NY, USA (1976), http://doi.acm.org/10.1145/800113.803649

25. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Advances in cryptology–EUROCRYPT 2010, pp.
24–43. Springer (2010)

30

