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Abstract. We prove that if the hardness of inverting a size-verifiable
one-way function can be based on NP-hardness via a general (adaptive)
reduction, then NP ⊆ coAM. This claim was made by Akavia, Goldre-
ich, Goldwasser, and Moshkovitz (STOC 2006), but was later retracted
(STOC 2010).

Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06] claimed that if
there exists an adaptive reduction from an NP-complete problem to inverting
an efficient size-verifiable function, then NP ⊆ coAM. They provided a proof for
size-verifiable functions that have polynomial pre-image size as well as a proof
for general size-verifiable functions, even if the size of the pre-image can only be
approximated. The proof for the latter statement was found to be erroneous and
has been retracted [AGGM10].3 In this note we give a proof of their claim. For
motivation about the problem, we refer the reader to the work [AGGM06].

Throughout this paper, we consider efficiently computable functions f with
f({0, 1}n) ⊆ {0, 1}m(n), where m is an injective function on integers. We say an
oracle I inverts f if for every x ∈ {0, 1}∗, I(f(x)) belongs to the set f−1(f(x)).

We say that f is size-verifiable if the decision problem Nf = {(y, s) : |f−1(y)| =
s} is in AM. We say that f is approximately size-verifiable if the following promise
problem Af is in AM:

YES instances of Af : (y, s, 1a) such that |f−1(y)| ≤ s

NO instances of Af : (y, s, 1a) such that |f−1(y)| > (1 + 1/a)s.
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A reduction from a decision problem L to inverting f is a randomized oracle
algorithm R? such that for every oracle I that inverts f , RI decides L with
probability at least 2/3 over the randomness of R?.

Theorem 1. Let f be an efficiently computable, approximately size-verifiable
function. If there exists an efficient reduction from L to inverting f with respect
to deterministic inversion oracles, then L is in AM ∩ coAM.

Corollary 1. Let f be an efficiently computable, approximately size-verifiable
function. There is no efficient reduction from an NP-hard language L to inverting
f with respect to deterministic inversion oracles, unless NP ⊆ coAM.

We first prove a weaker version of the theorem that relies on two simplifying
assumptions. Firstly, we assume that the reduction is correct even with respect
to randomized inversion oracles. These are oracles that have access to an in-
ternal source of randomness when answering their queries. Our inversion oracle
will simply sample a uniform pre-image amongst all possible pre-images like an
inverter for a distributional one-way function [IL89]. Note that a reduction that
works for randomized inversion oracles also works with respect to deterministic
oracles, as they are a special case of randomized ones. As we prove a negative
result, stronger requirements on the reduction weaken our result. We will thus
explain later how to remove this additional requirement on the reduction. Sec-
ondly, we assume the function to be size-verifiable rather than approximately
size-verifiable. We then adapt the proof to the general case.

Randomized inversion oracles Let R? be a reduction, I a randomized oracle,
and z an input. A valid transcript of RI(z) is a string of the form (r, x1, . . . , xq),
where r is the randomness of the reduction and x1, . . . , xq are the oracle answers
in the order produced by I. We will assume, without loss of generality, that the
length of r and the number of queries q depend only on the length of z.

Consider the randomized inversion oracle U that, on query y, returns an x
chosen uniformly at random from the set f−1(y), or the special symbol ⊥ if
this set is empty. Let the set C consist of all tuples (z, r, x1, . . . , xq, p), such
that (r, x1, . . . , xq) is an accepting valid transcript of RU (z) and p is an integer
between 1 and dK/(s(y1) · · · s(yq))e. Here,

– yi is the i-th query of the reduction,
– s(y) is the size of the set of possible answers on query y:

s(y) =

{
|f−1(y)|, if f−1(y) is non-empty

1, otherwise,

– and K = 2 ·2q`, where ` is an upper bound on the length of queries R? makes
on inputs of length |z|.

Claim. C is in AM.



Proof. On input (z, r, x1, . . . , xq, p), the AM verifier for C runs the reduction
on input z with randomness r and checks that for for each query yi that the
reduction makes, the answer xi is indeed a pre-image of yi and that the reduc-
tion accepts. To see that p is of the right size, we ask the prover to provide
s(y1), . . . , s(yq) such that p ≤ K/(s(y1) · · · s(yq)). We then run the AM verifier
for Nf to check that the numbers s(y1), . . . , s(yq) that the prover provided are
correct.

Let C(z) denote the set of all (r, x1, . . . , xq, p) such that (z, r, x1, . . . , xq, p) is
in C.

Claim. C(z) has size at least 2
32|r|K if z ∈ L, and size at most 1

22|r|K if z 6∈ L.

Proof. Fix the input z. Conditioned on the randomness r, every valid transcript
(r, x1, . . . , xq) appears with probability exactly 1/(s(y1) . . . s(yq)) over the choice
of randomness of the inverter. All these probabilities add up to one:∑

(x1,...,xq)

1

s(y1) . . . s(yq)
= 1.

If z ∈ L, then at least a 2/3 fraction of these valid transcripts must be
accepting for R?(z) over the choice of r and so

|C(z)| ≥ 2
3

∑
valid transcript (r, x1, . . . , xq)

⌈ K

s(y1) . . . s(yq)

⌉
≥ 2

3

∑
r
K
∑

(x1,...,xq)

1

s(y1) . . . s(yq)

= 2
32|r|K.

If z 6∈ L, then at most a 1/3 of the valid transcripts are accepting, and

|C(z)| ≤ 1
3

∑
valid transcript (r, x1, . . . , xq)

⌈ K

s(y1) . . . s(yq)

⌉
≤ 1

3

∑
r
(K + 1)

∑
(x1,...,xq)

1

s(y1) . . . s(yq)

≤ 1
3

∑
r
K
(∑

(x1,...,xq)

1

s(y1) . . . s(yq)
+
∑

(r,x1,...,xq)
1
)

≤ 1
32|r|(K + 2q`)

≤ 1
22|r|K

by our choice of K.

Using the set lower bound protocol of Goldwasser and Sipser [GS86], we

conclude that L is in AM. Applying the same argument to the reduction R
?

that outputs the opposite answer of R?, it follows that L is also in coAM.



Deterministic inversion oracles We now prove Theorem 1 for size-verifiable func-
tions and deterministic inversion oracles. Assume R? is an efficient reduction
from L to inverting f with respect to deterministic inversion oracles. Then, for
every inversion oracle I for f , RI decides L with probability at least 2/3. By
averaging, it follows that for every distribution I on inversion oracles I for f ,
RI decides L with probability at least 2/3:

Prr,I∼I [RI(z; r) = L(z)] ≥ 2
3 for every z.

If the oracle U could be written as a probability distribution over determin-
istic inversion oracles for f , then Theorem 1 would follow immediately from
Claims 1 and 1. Unfortunately this is not the case: One reason is that a deter-
ministic oracle sampled from any distribution always produces the same answer
to the same query, while the oracle U outputs statistically independent answers.
We resolve this difficulty by applying a minor modification to the description
of U : The modified oracle U ′ will choose among the answers to a query y us-
ing randomness coming from a random function F applied to y. Specifically, if
x1, . . . , xs(y) are the possible inverses of y, then U ′(y) = xF (y).

Proof (Proof of Theorem 1 for size-verifiable functions). Let `(n) and q(n) be
polynomial, efficiently computable upper bounds on the query length and query
complexity of the reduction on inputs of length n, respectively. Let F = {Fm} be
a collection of random functions, where Fm takes as input a string y ∈ {0, 1}m
and outputs a number between 1 and s(y). We define the randomized oracle U ′

as follows:

– Randomness: For every query length m, choose a uniformly random Fm,
independently of F1, . . . , Fm−1.

– Functionality: On input y of length m, output ⊥ if y is not in the range of
f , or U ′(y) = xFm(y) if it is, where x1, . . . , xs(y) are the inverses of y under
f .

Observe that U ′ is determined by a product distribution over F1, F2, . . . and any
fixing of F1, F2, . . . specifies a deterministic inversion oracle for f . Since, for every
z, the event RU ′

(z; r) = L(z) is measurable both over r and over (F1, F2, . . . ),
by averaging

Prr,(F1,F2,... )∼F [RU ′
(z; r) = L(z)] ≥ 2

3 for every z.

We may now assume, without loss of generality, that RU ′
never makes the

same query twice to the oracle U ′. (More formally, we replace R? by another
reduction that memoizes answers to previously made queries, and possibly makes
some dummy queries at the end to ensure the number of queries is exactly q(n)
on inputs of length n.) We define C(z) as before. Claims 1 and 1 still hold, and
so L is in AM ∩ coAM.



Extension to approximately size-verifiable functions Consider the promise prob-
lem C ′, whose YES instances are the same as the YES instances of C, and whose
NO instances consist of the (z, r, x1, . . . , xq, p) for which either (r, x1, . . . , xq) is

not an accepting valid transcript of RU ′
(z) or p > d 65K/s(y1) . . . s(yq)e, where

K = 10
3 2q`. We now prove the analogues of Claims 1 and 1. We observe that the

Goldwasser-Sipser lower bound protocol extends to AM-promise problems and
conclude, as before, that L must be in AM ∩ coAM.

Claim. C ′ is in AM.

Proof. On input (z, r, x1, . . . , xq, p), the AM verifier for C ′ runs the reduction
on input z with randomness r and checks that for for each query yi that the
reduction makes, the answer xi is indeed a pre-image of yi and that the re-
duction accepts. It then asks the prover to provide claims ŝi for the values
s(yi), 1 ≤ i ≤ q, runs the AM proof for Af on input (yi, ŝi, 1

6q), and veri-
fies that p ≤ dK/ŝ1 . . . ŝqe. Clearly the verifier accepts YES instances of C ′. If
(z, r, x1, . . . , xq, p) is a NO instance, then either the transcript is not valid and
accepting, or f(xi) 6= yi for some i, or dK/ŝ1 . . . ŝqe ≥ p > d 65K/s(y1) . . . s(yq)e,
in which case s(yi) > (6/5)1/q ŝi > (1 + 1/(6q))ŝi for some i and the verifier for
Af rejects.

Let C ′YES(z) and C ′NO(z) consist of those (r, x1, . . . , xq, p) such that (z, r, x1,
. . . , xq, p) are YES and NO instances of C ′, respectively.

Claim. If z ∈ L, then C ′YES(z) has size at least 2
32|r|K. If z 6∈ L, then C ′NO(z)

has size at most 1
22|r|K, where C ′NO(z) denotes all tuples (z, r, x1, ..., xq, p) that

are not in C ′NO(z).

Proof. The proof of the first part is identical to the proof of the first part of
Claim 1. For the second part, if z 6∈ L, then by a similar calculation

|C ′NO(z)| ≤ 1
3

∑
valid transcript (r, x1, . . . , xq)

⌈ 6K/5

s(y1) . . . s(yq)

⌉
≤ 1

32|r|( 6
5K + 2q`) ≤ 1

22|r|K.

Conclusion

In this work we show that counting the number of possible (suitably padded)
transcripts from an interaction between a reduction and an inverter for a size-
verifiable function is essentially a #P problem. The value of this problem can be
approximated in AM using the Goldwasser-Sipser protocol. Alternatively, we can
view this protocol as a proof-assisted sampler for an approximately uniformly
random transcript.

Akavia et al.’s attempted proof of Theorem 1 is also based on the idea of sam-
pling a transcript from a fixed distribution. Instead of sampling the transcript
“globally” as we do, they instantiate a variant of the Goldwasser-Sipser protocol



separately for every answer provided by the inverter. Such a protocol would have
unbounded round complexity; to obtain a (constant-round) AM proof system,
the protocol messages are reordered and grouped. While the samples produced
by the Goldwasser-Sipser protocol are close to the desired distribution for each
answer, their true distribution is affected by the prover’s choices. The adaptive
nature of the reduction allows the prover to exercise enough choice to end up
with an atypical transcript. In contrast, when the transcript is sampled globally,
it is guaranteed to be close to typical.
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