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Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (JACM
1996), can be used to read and write to memory in a way that hides which lo-
cations are being accessed. The best known ORAM schemes have an O(log n)
overhead per access, where n is the data size. The work of Goldreich and Ostro-
vsky gave a lower bound showing that this is optimal for ORAM schemes that
operate in a �balls and bins� model, where memory blocks can only be shu�ed
between di�erent locations but not manipulated otherwise. The lower bound
even extends to weaker settings such as o�ine ORAM, where all of the accesses
to be performed need to be speci�ed ahead of time, and read-only ORAM, which
only allows reads but not writes. But can we get lower bounds for general ORAM,
beyond �balls and bins�?

The work of Boyle and Naor (ITCS '16) shows that this is unlikely in the
o�ine setting. In particular, they construct an o�ine ORAM with o(log n)
overhead assuming the existence of small sorting circuits. Although we do not
have instantiations of the latter, ruling them out would require proving new cir-
cuit lower bounds. On the other hand, the recent work of Larsen and Nielsen
(CRYPTO '18) shows that there indeed is an Ω(log n) lower bound for general
online ORAM.

This still leaves the question open for online read-only ORAM or for read/write
ORAM where we want very small overhead for the read operations. In this work,
we show that a lower bound in these settings is also unlikely. In particular, our
main result is a construction of online ORAM where reads (but not writes) have
an o(log n) overhead, assuming the existence of small sorting circuits as well as
very good locally decodable codes (LDCs). Although we do not have instantia-
tions of either of these with the required parameters, ruling them out is beyond
current lower bounds.

1 Introduction

An Oblivious RAM (ORAM), �rst introduced by Goldreich and Ostro-
vsky [Gol87,Ost90,GO96], is a scheme that allows a client to read and
write to his data stored on untrusted storage, while entirely hiding the ac-
cess pattern, i.e., which operations were performed and at which locations.
More precisely, we think of the client's data as �logical memory� which
the ORAM scheme encodes and stores in �physical memory�. Whenever
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the client wants to read or write to logical memory, the ORAM scheme
translates this operation into several accesses to the physical memory. Se-
curity ensures that for any two (equal length) sequences of access to logical
memory, the resultant distributions over the physical accesses performed by
the ORAM are computationally (or statistically) close. Following its intro-
duction, there has been a large body of work on ORAM constructions and
security [SCSL11,GMOT12,KLO12,WS12,SvDS+13,RFK+15,DvDF+16],
as well as its uses in various application scenarios (see,
e.g., [GKK+12,GGH+13,LPM+13,LO13,MLS+13,SS13,YFR+13,CKW13]
[WHC+14,MBC14,KS14,LHS+14,GHJR15,BCP15,HOWW18]).

One can always trivially hide the memory access pattern by performing a
linear scan of the entire memory for every memory access. Consequently, an
important measure of an ORAM scheme is its overhead, namely the num-
ber of memory blocks which need to be accessed to answer a single read

or write request. Goldreich and Ostrovsky [GO96] proved a lower bound of
Ω (log n) on the ORAM overhead, where n denotes the number of memory
blocks in the logical memory. There are also ORAM constructions achieving
this bound [SvDS+13,WCS15], at least if the block size is set to a su�ciently
large polylogarithmic term; and works [PPRY] achieving O (log n log log n) over-
head for Ω (log n) block size, assuming one-way functions. We note that one
can circumvent the [GO96] lower bound by relaxing the notion of ORAM
to either allow server-side computation [AKST14], or multiple non-colluding
servers [LO13], and several works have obtained sub-logarithmic overhead in
these settings [AKST14,FNR+15,DvDF+16,ZMZQ16,AFN+17,WGK18,KM18].
However, in this work we focus on the standard ORAM setting with a single
server and no server-side computation.

In some respects, the lower bound of [GO96] is very general. First, it applies
to all block sizes. Second, it holds also in restricted settings: when the ORAM is
only required to work for o�ine programs in which, roughly, all memory accesses
are stated explicitly in advance; and for read-only programs that do not update
the memory contents. However, in other respects, the bound is restricted since
it only applies to ORAM schemes that operate in the �balls and bins� model, in
which memory can only be manipulated by moving memory blocks (�balls�) from
one memory location (�bin�) to another. Therefore, the main question left open
by the work of [GO96] is: is there an ORAM lower bound for general ORAM
schemes, that are not restricted to operate in the �balls and bins� model?

Almost 20 years after Goldreich and Ostrovsky proved their lower bound, it
was revisited by Boyle and Naor [BN16], who show how to construct an ORAM
scheme in the o�ine setting with o (log n) overhead, using sorting circuits of size
o (n log n). Though sorting circuits of such size are not known, ruling out their
existence seems currently out of our reach. This result can be interpreted in two
ways. On the one hand, an optimist will view it as a possible approach towards
an ORAM construction in the o�ine setting, which uses �small� sorting circuits
as a building block. On the other hand, a pessimist may view this result as a
barrier towards proving a lower bound. Indeed, the [BN16] construction shows



that proving a lower bound on the overhead of o�ine ORAM schemes would yield
lower bounds on the size of sorting circuits, and proving circuit lower bounds is
notoriously di�cult. We note that unlike sorting networks, which only contain
�compare-and-swap� gates that operate on the two input words as a whole, and
for which a simple Ω (n log n) lower bound exists, sorting circuits can arbitrarily
operate over the input bits, and no such lower bounds are known for them.

The main drawback of the Boyle and Naor result [BN16] is that it only applies
to the o�ine setting, which is not very natural and is insu�cient for essentially
any imaginable ORAM application. More speci�cally, the o�ine setting requires
that the entire sequence of accesses be speci�ed in advance - including which
operation is performed, on which address, and in case of a write operation, what
value is written. However, even very simple and natural RAM programs (e.g.,
binary search) require dynamic memory accesses that depend on the results of
previous operations. Despite this drawback, the result of Boyle and Naor is still
very interesting since it shows that lower bounds which are easy to prove in the
�balls and bins� model might not extend to the general model. However, it does
not answer the question of whether general ORAM lower bounds exist in the
online setting, which is the one of interest for virtually all ORAM applications.

Very recently, and concurrently with our work, Larsen and Nielsen [LN18]
proved that the [GO96] lower bound does indeed extend to general online
ORAM. Concretely, they show an Ω (log n) lower bound on the combined over-
head of read and write operations in any general online ORAM, even with
computational security. Their elegant proof employs techniques from the �eld
of data-structure lower bounds in the cell-probe model, and in particular the
�information-transfer� method of P tra³cu and Demaine [PD06].

1.1 Our Contributions

In this work, we explore the read overhead of general ORAM schemes beyond
the �balls and bins� model and in the online setting. We �rst consider read-only
ORAM schemes that only support reads � but not writes � to the logical memory.
We stress that the scheme is read-only in the sense that it only supports programs
that do not write to the logical memory. However, to emulate such programs in
the ORAM, the client might write to the physical memory stored on the server.
We note that read-only ORAM already captures many interesting applications
such as private search over a database, or fundamental algorithmic tasks such as
binary search. We show how to construct online read-only ORAM schemes with
o(log n) overhead assuming �small� sorting circuits and �good� Locally Decodable
Codes (LDCs). We then extend our results to a setting which also supports sub-
linear writes but does not try to hide whether an operation is a read or a write

and, in particular, allows di�erent overheads for these operations. In all our
construction, the server is only used as remote storage, and does not perform
any computations.

We note that, similar to [BN16], our results rely on primitives that we do not
know how to instantiate with the required parameters, but also do not have any
good lower bounds for. One can therefore interpret our results either positively,



as a blueprint for an ORAM construction, or negatively as a barrier to proving
a lower bound in these settings. For simplicity of the exposition, we choose to
present our results through the �optimistic� lens.

We now describe our results in more detail.

Read-Only (RO) ORAM. We construct a read-only ORAM scheme, based on
sorting circuits and smooth locally decodable codes. Roughly, a Locally Decod-
able Code (LDC) [KT00] has a decoder algorithm that can recover any message
symbol by querying only few codeword symbols. In a smooth code, every indi-
vidual decoder query is uniformly distributed. Given a logical memory of size-n,
our scheme has O (log log n) overhead, assuming the existence of linear-size sort-
ing circuits, and smooth LDCs with constant query complexity and polynomial
length codewords. Concretely, we get the following theorem.

Theorem 1 (Informal statement of Corollary 1). Suppose there exist
linear-size boolean sorting circuits, and smooth LDCs with constant query com-
plexity and polynomial length codewords. Then there exists a statistically-secure
read-only ORAM scheme for memory of size n and blocks of size poly log n, with
O (1) client storage and O (log log n) overhead.

In Section 3, we also show a read-only ORAM scheme with o (log n) over-
head based on milder assumptions � concretely, smooth LDCs with O (log log n)

query complexity, and the existence of sorting circuits of size o
(

n logn
log2 logn

)
; see

Corollary 2. We note that under the (strong) assumption that the LDC has
linear-size codewords, our constructions achieve linear-size server storage. We
also note that if an a-priori polynomial bound on the number of memory ac-
cesses is known, then the constructions can be based solely on LDCs, and the
assumption regarding small sorting circuits can be removed.

ORAM schemes supporting writes. The read-only ORAM scheme described
above still leaves the following open question: is there a lower bound on read

overhead for ORAM schemes supporting write operations? To partially address
this question, we extend our ORAM construction to a scheme that supports
writes but does not hide whether an operation was a read or a write. In this
setting, read and write operations may have di�erent overheads, and we focus on
minimizing the overhead of read operations while preserving e�ciency of write
operations as much as possible. Our construction is based on the existence of
sorting circuits and smooth LDCs as in Theorem 1, as well as the existence
of One-Way Functions (OWFs). (We elaborate on why OWFs are needed in
Section 1.2.) Assuming the existence of such building blocks, our scheme has
O (log log n) read overhead and O (nε) write overhead for an arbitrarily small
constant ε ∈ (0, 1), whose exact value depends on the e�ciency of the LDC
encoding. Concretely, we show the following:

Theorem 2 (Informal statement of Theorem 7). Assume the existence of
OWFs, as well as LDCs and sorting circuits as in Theorem 1. Then for every
constant ε ∈ (0, 1), there exists a constant γ ∈ (0, 1) such that if LDC encoding



requires n1+γ operations then there is a computationally-secure ORAM scheme
for memory of size n and blocks of size poly log n with O (1) client storage,
O (log log n) read overhead, and O (nε) write overhead.

Similar to the read-only setting, we also instantiate (Section 4, Theorem 8)
the ORAM with writes scheme based on milder assumptions regarding the pa-
rameters of the underlying sorting circuits and LDCs, while only slightly in-
creasing the read overhead. Additionally, we describe a variant of our scheme
with improved write complexity, again at the cost of slightly increasing the read
overhead:

Theorem 3 (Informal statement of Theorem 9). Assume the existence
of OWFs, as well as LDCs and sorting circuits as in Theorem 1, where LDC
encoding requires n1+o(1) operations. Then there exists a computationally-secure
ORAM scheme for memory of size n and blocks of size poly log n with O (1)
client storage, o (log n) read overhead, and no(1) write overhead.

A Note on Block vs. Word Size. In our constructions we distinguish between
words (which are bit strings) and blocks (which consist of several words). More
speci�cally, words, which are the basic unit of physical memory on the server,
consist of w bits; and blocks, which are the basic unit of logical memory on the
client, consist of B words. We measure the overhead as the number of words the
client accesses on the server to read or write to a single logical block, divided
by B. We note that it is generally easier to construct schemes with smaller
word size. (Indeed, it allows the client more �ne-grained access to the physical
memory; a larger word size might cause the client to access unneeded bits on the
server, simply because they are part of a word containing bits that do interest
the client.) Consequently, we would generally like to support larger word size,
ideally having words and blocks of equal size. Our constructions can handle any
word size,1 as long as blocks are poly-logarithmically larger (for a su�ciently
large poylogarithmic factor). A similar di�erentiation between block and word
size was used in some previous works as well (e.g., to get O (logN) overhead in
Path ORAM [SvDS+13]).

A Note Regarding Assumptions. We instantiate our constructions in two pa-
rameter regimes: one based on the existence of �best possible� sorting circuits
and smooth LDCs (as described above), and one based on milder assumptions
regarding the parameters of these building blocks (as discussed in Sections 3
and 4). We note that despite years of research in these �elds, we currently seem
very far from ruling out the existence of even the �best possible� sorting circuits
and smooth LDCs. Concretely, to the best of our knowledge there are no speci�c
lower bounds for sorting circuits (as opposed to sorting networks, see discus-
sion above and in Section 2.2), and even for general boolean circuits only linear
lower bounds of c · n for some constant c > 1 are known [Blu84,IM02,FGHK16].

1 Similar to previous works (e.g., [SCSL11,SvDS+13,SS13]), we assume words are of
at least logarithmic size.



Regarding LDCs, research has focused on the relation between the query com-
plexity and codeword length in the constant query regime, but there are cur-
rently no non-trivial lower bounds for general codes. Even for restricted cases,
such as binary codes, or linear codes over arbitrary �elds, the bounds are ex-
tremely weak. Speci�cally, the best known lower bound shows that codewords
in q-query LDCs must have length Ω

(
n(q+1)/(q−1)) / log n [Woo07] (which, in

particular, does not rule out the existence of 4-query LDCs with codeword
length n5/3), so it is plausible that for a su�ciently large constant, constant-
query LDCs with polynomial length codewords exist. We note that a recent se-
ries of breakthrough results construct 3-query LDCs with sub-exponential code-

words of length exp
(
exp

(
O
(√

log n log log n
)))

= 2n
o(1)

, as well as extensions
to larger (constant) query complexity [Yek07,Rag07,Efr09,IS10,CFL+13]. Notice
that lower bounds on the size of the encoding circuit of such codes will similarly
yield circuit lower bounds.

A Note on the Connection to Private Information Retrieval (PIR) and Doubly-
E�cient PIR (DEPIR). The notions of PIR and DEPIR, which support reads
from memory stored on a remote server, are closely related to read-only ORAM,
but di�er from it signi�cantly in some respects. We now discuss these primi-
tives in more detail. In a (single-server) PIR scheme [KO97], there is no initial
setup, and anybody can run a protocol with the server to retrieve an arbitrary
location in the logical memory. The server is not used solely as remote storage,
and in fact the main goal, which is to minimize the communication between the
client and server, inherently requires the server to perform computations. One
additional signi�cant di�erence from ORAM is that the PIR privacy guaran-
tee inherently requires the server runtime to be linear in the size of the logical
memory, whereas a main ORAM goal is to have the server touch only a sub-
linear number of blocks (which the client reads from it to retrieve the block
he is interested in). In a DEPIR scheme [BIM00,BIPW17,CHR17], there is a
setup phase (as in ORAM), following which the server(s) stores an encoded ver-
sion of the logical memory, and the logical memory can be accessed either with
no key (in multi-server DEPIR [BIM00]), with a public key (in public-key DE-
PIR [BIPW17]) or with a secret key (in secret-key DEPIR [BIPW17,CHR17]).
First proposed by Beimel, Ishai and Malkin [BIM00], who showed how to con-
struct information-theoretic DEPIR schemes in the multi-server setting (i.e.,
with several non-colluding servers), two recent works [BIPW17,CHR17] give the
�rst evidence that this notion may be achievable in the single-server setting.
These works achieve sublinear server runtime, with a server that is only used as
remote storage. Thus, these single-server DEPIR schemes satisfy all the required
properties of a RO-ORAM scheme, with the added �bonus� of having a state-
less server (namely, whose internal memory does not change throughout the
execution of the scheme). However, these (secret-key) constructions are based
on new, previously unstudied, computational hardness assumptions relating to
Reed-Muller codes, and the public-key DEPIR scheme of [BIPW17] addition-
ally requires a heuristic use of obfuscation. Unfortunately, both of the above
assumptions are non-standard, poorly understood, and not commonly accepted.



Additionally, these constructions do not achieve o (log n) overhead (at least not
with polynomial server storage).

A Note on Statistical vs. Computational Security. Our RO-ORAM achieves sta-
tistical security under the assumption that the server does not see the memory
contents, namely the server only sees which memory locations are accessed. Hid-
ing memory contents from the server can be generically achieved by encrypting
the logical memory, in which case security holds against computationally-bounded
servers. We note that our ORAM scheme supporting writes requires encrypting
the logical memory even if the server does not see the memory contents. Con-
sequently, our ORAM with writes scheme achieve computational security even
in the setting where the server does not see the memory contents. Alternatively,
our construction can achieve statistical security if the underlying LDC has the
additional property that the memory accesses during encoding are independent
of the data. (This property is satis�ed by, e.g., linear codes.) We elaborate on
this further in Sections 3.1 and 4.

1.2 Our Techniques

We now give a high-level overview of our ORAM constructions. We start with
the read-only setting, and then discuss how to enable writes.

We note that our technique departs quite signi�cantly from that of Boyle
and Naor [BN16], whose construction seems heavily tied to the o�ine setting.
Indeed, the high-level idea underlying their scheme is to use the sorting circuit
to sort by location the list of operations that need to be performed, so that the
outcomes of the read operations can then be easily determined by making one
linear scan of the list. It does not appear that this strategy can naturally extend
to the online setting in which the memory accesses are not known a-priori.

Read-Only ORAM. We �rst design a Read-Only (RO) ORAM scheme that
is secure only for an a-priori bounded number of accesses, then extend it to a
scheme that remains secure for any polynomial number of accesses.

Bounded-access RO-ORAM using metadata. Our RO-ORAM scheme employs
a smooth LDC, using the decoder to read from memory. Recall that a k-query
LDC is an error-correcting code in which every message symbol can be recovered
by querying k codeword symbols. The server in our scheme stores k copies of
the codeword, each permuted using a separate, random permutation. (We note
that permuted LDCs were already used � but in a very di�erent way � in several
prior works [HO08,HOSW11,CHR17,BIPW17].) To read the memory block at
address j, the client runs the decoder on j, and sends the decoder queries to the
server, who uses the i'th permuted codeword copy to answer the i'th decoding
query. This achieves correctness, but does not yet guarantee obliviousness since
the server learns, for each 1 ≤ i ≤ k, which read operations induced the same
i'th decoding query.



To prevent the server from obtaining this additional information, we restrict
the client to use only fresh decoding queries in each read operation, namely a
set q1, . . . , qk of queries such that no qi was issued before as the i'th query. The
metadata regarding which decoding queries are fresh, as well as the description
of the permutations, can be stored on the server using any su�ciently e�cient
(speci�cally, polylogarithmic-overhead) ORAM scheme. Each block in the meta-
data ORAM will consist of a single word, so using the metadata ORAM will not
in�uence the overall complexity of the scheme, since for su�ciently large mem-
ory blocks the metadata blocks are signi�cantly smaller. In summary, restricting
the client to make fresh queries guarantees that the server only sees uniformly
random decoding queries, which reveal no information regarding the identity of
the accessed memory blocks.

However, restricting the client to only make fresh decoding queries raises the
question of whether the ORAM is still correct, namely whether this restriction
has not harmed functionality. Speci�cally, can the client always ��nd� fresh de-
coding queries? We show this is indeed the case as long as the number of read
operations is at most M/2k, where M denotes the codeword length. More pre-
cisely, the smoothness of the code guarantees that for security parameter λ and
any index j ∈ [n], λ independent executions of the decoder algorithm on index j
will (with overwhelming probability) produce at least one set of fresh decoding
queries. Thus, the construction is secure as long as the client performs at most
M/2k read operations.

We note that given an appropriate LDC, this construction already gives a
read-only ORAM scheme which is secure for an a-priori bounded number of
accesses, without relying on sorting circuits. Indeed, given a bound B on the
number of accesses, all we need is a smooth LDC with length-M codewords, in
which the decoder's query complexity is at most M/2B.

Handling an unlimited number of reads. To obtain security for an unbounded
number of read operations, we �refresh� the permuted codeword copies every
M/2k operations. (We call each such set of read operations an �epoch�.) Specif-
ically, to refresh the codeword copies the client picks k fresh, random permu-
tations, and together with the server uses the sorting circuit to permute the
codeword copies according to the new permutations. Since the logical memory
is read-only, the refreshing operations can be spread-out across the M/2k read

operations of the epoch.

ORAMwithWrites. We extend our RO-ORAM scheme to support write oper-
ations, while preserving o (log n) overhead for read operations. The construction
is loosely based on hierarchical ORAM [Ost90,GO96]. The high-level idea is to
store the logical memory on the server in a sequence of ` levels of increasing size,
each containing an RO-ORAM.2 We think of the levels as growing from the top
down, namely level-1 (the smallest) is the top-most level, and level-` (the largest)

2 This is reminiscent of a construction of [OS97], which also instantiated the levels of
a hierarchical ORAM with a primitive guaranteeing read privacy (speci�cally, they



is the bottom-most. Initially, all the data is stored in the bottom level `, and all
the remaining levels are empty. To read the memory block at some location j,
the client performs a read for location j in the RO-ORAMs of all levels, where
the output is the block from the highest level that contains the j'th block. When
the client writes to some location j, the server places that memory block in the
top level i = 1. After every li write operations � where li denotes the size of level
i � the i'th level becomes full. All the values in level i are then moved to level
i+ 1, a process which we call a �reshu�e� of level i into level i+ 1. Formalizing
this high-level intuition requires some care, and the �nal scheme is somewhat
more involved. See Section 4 for details.

We note that our construction di�ers from Hierarchical ORAM in two main
points. First, in Hierarchical ORAM level i is reshu�ed into level i + 1 ev-
ery li read or write operations, whereas in our scheme only write operations are
�counted� towards reshu�e (in that respect, read operations are �free�). This is
because the data is stored in each level using an RO-ORAM which already guar-
antees privacy for read operations. Second, Hierarchical ORAM uses Ω (log n)
levels, whereas to preserve o (log n) read overhead, we must use o (log n) levels.
In particular, the ratio between consecutive levels in our scheme is no longer
constant, leading to a higher reshu�e cost (which is the reason write operations
have higher overhead in our scheme).

2 Preliminaries

Throughout the paper λ denotes a security parameter. For a length-n string x
and a subset I = {i1, . . . , il} ⊆ [n], xI denotes (xi1 , . . . , xil).

Terminology. Recall that words, the basic unit of physical memory on the server,
consist of w bits; and blocks, the basic unit of logical memory on the client,
consist of B words. The client may locally perform bit operations on the bit
representation of blocks, but can only access full words on the server. We will
usually measure complexity in terms of logical blocks (namely, in terms of the
basic memory unit on the client). More speci�cally, unless explicitly stated oth-
erwise, client and server storage are measured as the number of blocks they store
(even though the basic storage unit on the server side is a word), and overhead
measures the number of blocks one needs to read or write to implement a read

or write operation on a single block. Formally:

De�nition 1 (Overhead). For a block size B and input length n, we say that
a protocol between client C and server S has overhead Ovh for a function Ovh :
N → N, if implementing a read or write operation on a single logical memory
block requires the client to access B · Ovh (n) words on the server.

use PIR). However, our goals, and the details of our construction, di�ers signi�cantly
from [OS97].



2.1 Locally Decodable Codes (LDCs)

Locally decodable codes were �rst formally introduced by [KT00]. We rely on
the following de�nition of smooth LDCs.

De�nition 2 (Smooth LDC). A smooth k-query Locally Decodable Code
(LDC) with message length n, and codeword length M over alphabet Σ, denoted
by (k, n,M)Σ-smooth LDC, is a triplet (Enc,Query,Dec) of PPT algorithms with
the following properties.

� Syntax. Enc is given a message msg ∈ Σn and outputs a codeword c ∈ ΣM ,
Query is given an index ` ∈ [n] and outputs a vector r = (r1, . . . , rk) ∈ [M ]

k
,

and Dec is given cr = (cr1 , . . . , crk) ∈ Σk and outputs a symbol in Σ.
� Local decodability. For every message msg ∈ Σn, and every index ` ∈ [n],

Pr [r← Query (`) : Dec (Enc (msg)r) = msg`] = 1.

� Smoothness. For every index ` ∈ [n], every query in the output of Query (`)
is distributed uniformly at random over [M ].

To simplify notations, when Σ = {0, 1} we omit it from the notation.

Remark on Smooth LDCs for Block Messages. We will use smooth LDCs for
messages consisting of blocks {0, 1}B of bits (for some block size B ∈ N), whose
existence is implied by the existence of smooth LDCs over {0, 1}. Indeed, given
a (k, n,M)-smooth LDC (Enc,Query,Dec), one can obtain a (k, n,M){0,1}B -

smooth LDC
(
Enc′,Query′,Dec′

)
by �interpreting� the message and codeword

as B individual words, where the j'th word consists of the j'th bit in all blocks.
Concretely, Enc′ on input a message

(
msg1, . . . ,msgn

)
∈
(
{0, 1}B

)n
, computes

y1j . . . y
M
j = Enc

(
msg1j , . . . ,msg

n
j

)
for every 1 ≤ j ≤ B, sets ci = yi1 . . . y

i
B, and

outputs c =
(
c1, . . . , cM

)
. Query′ operates exactly as Query does. Dec′, on input

cr1 , . . . , crk ∈ {0, 1}B, computes zj = Dec
(
cr1j , . . . , c

rk
j

)
for every 1 ≤ j ≤ B, and

outputs z1 . . . zB.

2.2 Oblivious-Access Sort Algorithms

Our construction employ an Oblivious-Access Sort algorithm [BN16] which is,
roughly, a RAM program that sorts its input, such that the access patterns
of the algorithm on any two inputs of equal size are statistically close. Thus,
oblivious-access sort is the �RAM version� of boolean sorting circuits. (Infor-
mally, a boolean sorting circuit is a boolean circuit ensemble {C (n,B)}n,B such
that each C (n,B) takes as input n size-B tagged blocks, and outputs the blocks
in sorted order according to their tags.)

De�nition 3 (Oblivious-Access Sort Algorithm, [BN16]). An Oblivious-
Access Sort algorithm for input size n and block size B, with overhead
OvhSort (n,B), is a (possibly randomized) algorithm Sort run by a client C on
an input stored remotely on a server S, with the following properties:



� Operation: The input consists of n tagged blocks which are represented as
length-B bit strings (the tag is a substring of the block) and stored on the
server.3 The client can perform local bit operations, but can only read and
write full blocks from the server.

� Overhead: The overhead of Sort is OvhSort (n,B).

� Correctness: With overwhelming probability in n, at the end of the algo-
rithm the server stores the blocks in sorted order according to their tags.

� Oblivious Access: For a logical memory DB consisting of n blocks of size
B, let APn,B (Sort,DB) denote the random variable consisting of the list of
addresses accessed in a random execution of the algorithm Sort on DB. Then
for every pair DB,DB′ of inputs with n size-B blocks, APn,B (Sort,DB) ≈s
APn,B

(
Sort,DB′

)
, where ≈s denotes negl (n) statistical distance.

Boyle and Naor [BN16] show that the existence of sorting circuits implies the
existence of oblivious-access sort algorithms with related parameters:

Theorem 4 (Oblivious-access sort from sorting circuits, [BN16]). If
there exist boolean sorting circuits {C (n,B)}n,B of size s (n,B), then there ex-
ists an oblivious-access sort algorithm for n distinct elements with O (1) client

storage, O
(
n · logB+ s

(
2n
B ,B

))
overhead, and e−n

Ω(1)

probability of error.

Remark on the Existence of Oblivious-Access Sort Algorithms with Small Over-
head. We note that for blocks of poly-logarithmic size B = poly log n, the exis-
tence of sorting circuits of size s (n,B) = O (n · B · log log n) guarantees (through
Theorem 4) the existence of oblivious-access sort algorithms with O (n · log log n)
overhead.

Remark on the Relation to Sorting Networks. The related notion of a sorting
network has been extensively used in ORAM constructions. Similar to oblivious-
access sort algorithms, sorting networks sort n size-B blocks in an oblivious man-
ner. (More speci�cally, a sorting network is data oblivious, namely its memory
accesses are independent of the input.) However, unlike oblivious-access sort al-
gorithms, and boolean sorting circuits, which can operate locally on the bits in
the bit representation of the input blocks, a sorting network consist of a sin-
gle type of compare-exchange gate which takes a pair of blocks as input, and
outputs them in sorted order. We note that a simple information-theoretic lower
bound of Ω (n log n) on the network size is known for sorting networks (as well as
matching upper bounds, e.g. [AKS83,Goo14]), whereas no such bound is known
for boolean sorting circuits or oblivious-access sorting algorithms.

3 In [BN16], the blocks consist solely of the tag, but the algorithm is usually run when
tags are concatenated with memory blocks (which are carried as a �payload�, and the
overhead increases accordingly). We choose to explicitly include the data portion in
the block.



2.3 Oblivious RAM (ORAM)

Oblivious RAMs were introduced by Goldreich and Ostro-
vskey [Gol87,Ost90,GO96]. To de�ne oblivious RAMs, we will need the
following notation of an access pattern.

Notation 1 (Access pattern). A length-q access pattern Q consists of a list
(opl, vall, addrl)1≤l≤q of instructions, where instruction (opl, vall, addrl) denotes
that the client performs operation opl ∈ {read,write} at address addrl with value
vall (which, if opl = read, is ⊥).

De�nition 4 (Oblivious RAM (ORAM)). An Oblivious RAM (ORAM)
scheme with block size B consists of procedures (Setup,Read,Write), with the
following syntax:

� Setup(1λ,DB) is a function that takes as input a security parameter λ, and
a logical memory DB ∈

(
{0, 1}B

)n
, and outputs an initial server state stS

and a client key ck. We require that the size of the client key |ck| be bounded
by some �xed polynomial in the security parameter λ, independent of |DB|.

� Read is a protocol between the server S and the client C. The client holds
as input an address addr ∈ [n] and the client key ck, and the server holds its
current state stS. The output of the protocol is a value val to the client, and
an updated server state st′S.

� Write is a protocol between the server S and the client C. The client holds as
input an address addr ∈ [n], a value v, and the client key ck, and the server
holds its current state stS. The output of the protocol is an updated server
state st′S.

Throughout the execution of the Read and Write protocols, the server is used only
as remote storage, and does not perform any computations.

We require the following correctness and security properties.

� Correctness: In any execution of the Setup algorithm followed by a sequence
of Read andWrite protocols between the client and the server, where theWrite

protocols were executed with a sequence V of values, the output of the client
in every execution of the Read protocol is with overwhelming probability the
value he would have read from the logical memory in the corresponding read
operation, if the pre�x of V performed before the Read protocol was performed
directly on the logical memory.

� Security: For a logical memory DB, and an access pattern Q, let AP (DB, Q)
denote the random variable consisting of the list of addresses accessed
in the ORAM when the Setup algorithm is executed on DB, followed by
the execution of a sequence of Read and Write protocols according to Q.
Then for every pair DB0,DB1 ∈

(
{0, 1}B

)n
of inputs, and any pair Q0 =(

opl, val
0
l , addr

0
l

)
1≤l≤q

, Q1 =
(
opl, val

1
l , addr

1
l

)
1≤l≤q

of access patterns of

length q = poly (λ), AP
(
DB0, Q0

)
≈s AP

(
DB1, Q1

)
, where ≈s denotes

negl (λ) statistical distance.



If AP
(
DB0, Q0

)
,AP

(
DB1, Q1

)
are only computationally indistinguishable,

then we say the scheme is computationally secure.

De�nition 4 does not explicitly specify who runs the Setup procedure. It can
be performed by the client, who then sends the server state stS to the server S,
or (to save on client computation) can be delegated to a trusted third party.

Remark on Hiding the Type of Operation. Notice that De�nition 4 does not hide
whether the performed operation is a read or a write, whereas an ORAM scheme
is usually de�ned to hide this information. However, any such scheme can be
generically made to hide the identity of operations by always performing both a
read and a write. (Speci�cally, in a write operation, one �rst performs a dummy
read; in a read operation, one writes back the value that was read.) Revealing
the identity of operations allows us to obtain more �ne-grained overheads.

Remark on Hiding Physical Memory Contents. The security property of De�ni-
tion 4 implicitly assumes that the server does not see the contents of the physical
memory: if the server is allowed to see it, he might be able to learn some non-
trivial information regarding the access pattern, and thus violate the security
property. As noted in Section 1.1, hiding the physical memory contents from the
server can be achieved by encrypting the physical memory blocks, but security
will then only hold against computationally-bounded servers, and so we choose
to de�ne security with the implicit assumption that the server does not see the
memory contents (which also allows for cleaner constructions).

We will also consider the more restricted notion of a Read-Only (RO) ORAM
scheme which, roughly, is an ORAM scheme that supports only read operations.

De�nition 5 (Read-Only Oblivious RAM (RO-ORAM)). A Read-Only
Oblivious RAM (RO-ORAM) scheme consists of procedures (Setup,Read) with
the same syntax as in De�nition 4, in which correctness holds for any sequence
of Read protocols between the client and the server, and security holds for any
pair of access patterns R0, R1 that contain only read operations.

3 Read-Only ORAM from Oblivious-Access Sort and

Smooth LDCs

In this section we construct a Read-Only Oblivious RAM (RO-ORAM) scheme
from oblivious-access sort algorithms and smooth LDCs. Concretely, we prove
the following:

Theorem 5. Suppose there exist:

� (k, n,M)-smooth LDCs with M = poly (n).
� An oblivious-access sort algorithm Sort with s (n,B) overhead for input size
n and block size B.



Then there exists an RO-ORAM scheme for logical memory of size n and blocks

of size B = Ω
(
λ · k2 · log3 (kn) log7 log (kn)

)
with k+ 2k2

M ·s (M,B)+O (1) over-
head, and O (k) client storage.

Theorem 1 now follows from Theorem 5 (using also Theorem 4) for an ap-
propriate instantiation of the sorting algorithm and LDC.

Corollary 1 (RO-ORAM, �dream� parameters; formal statement of
Theorem 1). Suppose there exist:

� (k, n,M)-smooth LDCs with k = O (1) and M = poly (n).
� Boolean sorting circuits {C (n,B)}n,B of size s (n,B) = O (n · B) for input
size n and block size B.

Then there exists an RO-ORAM scheme for logical memory of size n and blocks
of size Ω

(
λ · log4 n

)
with O (log log n) overhead, and O (1).

We also instantiate our construction with sorting algorithms and LDCs with
more �conservative� parameters, to obtain the following corollary.

Corollary 2 (RO-ORAM, milder parameters). Suppose there exist:

� (k, n,M)-smooth LDCs with k = poly log log n and M = poly (n).

� Boolean sorting circuits {C (n,B)}n,B of size s (n,B) ∈ o
(
n·B·logn

k2

)
for input

size n and block size B.

Then there exists an RO-ORAM scheme for memory of size n and blocks of size
Ω
(
λ · log4 n

)
with= o (log n) overhead, and poly log log n client storage.

Construction Overview. As outlined in the introduction, our construction uses
a (k, n,M)-smooth LDC. The server stores k codeword copies, each permuted
using a unique uniformly random permutation. To read block j from the logi-
cal memory, the client runs the LDC decoder until the decoder generates a set
of fresh decoding queries (i.e., a set q1, . . . , qk of queries such that for every
1 ≤ i ≤ k, qi was not issued before as the i'th query), and sends these queries
to the server. The server uses the i'th permuted codeword copy to answer the
i'th decoding query. The metadata regarding which decoding queries are fresh,
as well as the description of the permutations, are stored on the server using a
(polylogarithmic-overhead) ORAM scheme, which the client accesses to deter-
mine whether the decoder queries are fresh, and to permute them according to
the random permutations.

The execution is divided into �epochs� consisting of O (M/k) read opera-
tions. When an epoch ends, the client �refreshes� the permuted codeword copies
by picking k fresh, random permutations, and running an oblivious-access sort
algorithm with the server to permute the codeword copies stored on the server
according to the new permutations. The description of the new permutations is
stored in the metadata ORAM (the client also resets the bits indicating which
decoding queries are fresh). The refreshing operations are spread-out across the
O (M/k) read operations of the epoch. The resultant increase in complexity
depends on k (which determines the epoch length, i.e., the frequency in which
refreshing is needed), and on the overhead of the oblivious-access sort algorithm.



Construction 1 (RO-ORAM from Oblivious-Access Sort and Smooth LDCs).
The scheme uses the following building blocks:

� A (k, n,M){0,1}B-smooth LDC (EncLDC,QueryLDC,DecLDC).
� An oblivious-access sort algorithm Sort.
� An ORAM scheme (Setupin,Readin,Writein).

The scheme consists of the following procedures:

� Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈(
{0, 1}B

)n
. Instantiate the LDC with message size n over alphabet Σ =

{0, 1}B, and let k be the corresponding number of queries, and M be the
corresponding codeword size. Proceed as follows.
1. Counter initialization. Initializes a step counter count = 0.
2. Data storage generation.

(a) Generate the codeword D̃B = EncLDC (DB) with D̃B ∈ ΣM .
(b) For every 1 ≤ i ≤ k:

• Generate a random permutation P i : [M ]→ [M ].

• Let D̃B
i
∈ ΣM be a permuted version of the codeword which

satis�es D̃B
i

P i(j) = D̃Bj for all j ∈ [M ].
3. Metadata storage generation.

(a) For every 1 ≤ i ≤ k:
• Initialize a length-M bit-array Queriedi to 0.
• Initialize a length-M array Permi over {0, 1}logM such that
Permi (j) = P i (j).

(b) Let mDB denote the logical memory obtained by concatenating

Queried1, . . . ,Queriedk and Perm1, . . . ,Permk. Run (ckm, stm) ←
Setupin

(
1λ,mDB

)
to obtain the client key and server state for the

metadata ORAM.
4. Output. The long-term client key ck = ckm consists of the

client key for the metadata ORAM. The server state stS =({
D̃B

i
: i ∈ [k]

}
, stm, count

)
contains the k permuted codewords, the

server state for the metadata ORAM, and the step counter.
� The Read protocol. To read the logical memory block at location addr ∈ [n]
from the server S, the client C with key ck = ckm operates as follows, where
in all executions of the Readin or Writein protocols on mDB S plays the role
of the server with state stm and C plays the role of the client with key ckm.
1. Generating decoder queries. Repeat the following λ times:
• Run (q1, . . . , qk)← QueryLDC (addr) to obtain decoding queries.
• For every 1 ≤ i ≤ k, run the Readin protocol to read Queriedi [qi].
We say that qi is fresh if Queriedi [qi] = 0.

• Let (q̂1, . . . , q̂k) denote the decoding queries in the �rst iteration
in which all queries were fresh. (If no such iteration exists, set
(q̂1, . . . , q̂k) to be the decoding queries generated in the last itera-
tion.)



2. Permuting queries. For every 1 ≤ i ≤ k, run the Readin protocol to read

Permi [q̂i]. Let q
′
i denote the value that Readin outputs to the client.

3. Decoding logical memory blocks. Read D̃B
1

q′1
, . . . , D̃B

k

q′k
from the server,

and set the client output to DecLDC

(
D̃B

1

q′1
, . . . , D̃B

k

q′k

)
.

4. Updating counter and server state. Let ` = M
2k . Read count from the

server.
• If count < ` − 1, then update count := count + 1, and for every

1 ≤ i ≤ k, run the Writein protocol to write �1� to Queriedi [q̂i].
• Otherwise, update count := 0, and for every 1 ≤ i ≤ k:
∗ Run the Writein protocol to write 0 to Queriedi.
∗ Replace P i with a fresh random permutation on [M ] by run-
ning the Fisher-Yates shu�e algorithm (as presented by Dursten-
feld [Dur64]) on Permi, using the Readin and Writein protocols.

∗ Use Sort to sort D̃B
i
according to the new permutation P i (each

block consists of a codeword symbol, and the index in the code-
word which is used as the tag of the block).

If the complexity of these three steps is cepoch, then the client per-
forms cepoch/` steps of this computation in each protocol execution
so that it is completed by the end of the epoch.

We prove the following claims about Construction 1.

Proposition 1 (ORAM security). Assuming the security of all of the build-
ing blocks, Construction 1 is a secure RO-ORAM scheme.

Proposition 2 (ORAM overhead). Assume that:

� The logical memory DB has block size B, and the metadata ORAM has block
size mB, satisfying B > mB ≥ logM .

� The metadata ORAM has overhead Ovh (N) for memory of size N .
� The oblivious-access sort algorithm has OvhSort (n,B) overhead when operat-
ing on inputs consisting of n size-B blocks.

Then every execution of the Read protocol in Construction 1 requires accessing

O
(
kλ+ k2

)
·mB · Ovh

(
k · (M +M logM)

mB

)
+

(
k +

2k2

M
· OvhSort (M,B)

)
· B

words on the server.

Claims Imply Theorem. To prove Theorem 5, we instantiate the metadata
ORAM of Construction 1 with the following variant of path ORAM [SvDS+13]:

Theorem 6 (Statistical ORAM with polylog overhead, implicit
in [SvDS+13]). Let λ be a security parameter. Then there exists a statisti-
cal ORAM scheme with negl (λ) error for logical memory consisting of N blocks



of size mB = log2N log logN with O (logN) overhead, in which the client stores
O (logN (λ+ log logN)) blocks.

Moreover, initializing the scheme requires accessing O (N ·mB) words, and
the server stores O (N) blocks.

Proof of Theorem 5. Security follows directly from Proposition 1 since (as noted
in Section 2.1) the existence of a (k, n,M)-smooth LDC implies the existence of
a (k, n,M){0,1}B -smooth LDC.

As for the overhead of the construction, let Nm = k (M +M logM) denote
the size (in bits) of the metadata ORAM. Substituting mB = log2Nm log logNm,
and Ovh (N) = O (logN) (according to Theorem 6), Proposition 2 guarantees
that every execution of the Read protocol requires accessing

O
(
kλ+ k2

)
· log2Nm log logNm ·O (logNm) +

(
k +

2k2

M
· s (M,B)

)
· B

words on the server. The �rst summand can be upped bounded by

k2λ · log2 (kM) log3 log (kM) ·O (log (kM)) ≤ k2λ · log3 (kM) log3 log (kM) .

For B = Ω
(
λ · k2 · log3 (kn) log7 log (kn)

)
(as in the theorem statement) with a

su�ciently large constant in the Ω (·) notation, and since M = poly (n), this

corresponds to accessing O (B) words on the server, so the overhead is k + 2k2

M ·
s (M,B) +O (1).

Finally, regarding client storage, emulating the LDC decoder requires storing
k size-B blocks (i.e, the answers to the decoder queries). Operations on mDB

require (by Theorem 6) storing O (logNm (λ+ log logNm)) size-mB blocks which
corresponds to a constant number of size-B blocks.

Security Analysis: Proof of Proposition 1. The proof of Proposition 1 will use
the next lemma, which states that with overwhelming probability, every Read

protocol execution uses fresh decoding queries. This follows from the smoothness
of the underlying LDC.

Lemma 1. Let k,M ∈ N, and let X = (X1, . . . , Xk) be a random variable

over [M ]
k
such that for every 1 ≤ i ≤ k, Xi is uniformly distributed over [M ].

Let S1, . . . , Sk ⊆ [M ] be subsets of size at most `. Then in l independent sam-

ples according to X, with probability at least 1−
(
k · `M

)l
, there exists a sample

(x1, . . . , xk) such that xi /∈ Si for every 1 ≤ i ≤ k.
In particular, if ` = M

2k and l = Ω (λ) then except with probability negl (λ),
there exists a sample (x1, . . . , xk) such that xi /∈ Si for every 1 ≤ i ≤ k.

Proof. Consider a sample (x1, . . . , xk) according to X. Since each Xi is uni-
formly distributed over [M ], then Pr [xi ∈ Si] ≤ `

M , so by the union bound,

Pr [∃i : xi ∈ Si] ≤ k · `M . Since the l samples are independent, the probability

that no such sample exists is (Pr [in a single sample, ∃i : xi ∈ Si])l ≤
(
k · `M

)l
.

For the �in particular� part, notice that for ` = M
2k and l = Ω (λ), 1−

(
k · `M

)l
=

1− 2−Ω(λ).



We are now ready to prove Proposition 1.

Proof of Proposition 1. The correctness of the scheme follows directly from the
correctness of the underling LDC. We now argue security. Let DB0,DB1 be two
logical memories consisting of n size-B blocks, and let R0, R1 be two sequences of
read operations of length q = poly (λ). We proceed via a sequence of hybrids. We
assume that in each read operation, at least one iteration in the Read protocol
succeeded in generating fresh decoder queries, and condition all hybrids on this
event. This is without loss of generality since by Lemma 1, this happens with
overwhelming probability.

Hb
0 : Hybrid Hb0 is the access pattern AP

(
DBb, Rb

)
in an execution of read

sequence Rb on the RO-ORAM generated for logical memory DBb.
Hb

1 : In hybrid Hb1, for every 1 ≤ i ≤ k, we replace the values of Queriedi and
Permi with dummy values of (e.g.,) the all-0 string. Moreover, we replace all
read and write accesses to the metadata mDB with dummy operations that
(e.g.,) read and write the all-0 string to the �rst location in the metadata.
(We note that the accesses to the permuted codewords remain unchanged,
where each access consists of fresh decoding queries, permuted according to
P 1, . . . , P k.)
Hybrids Hb0 and Hb1 are statistically indistinguishable by the security of the
metadata ORAM.

Hb
2 : In hybrid Hb2, for every 1 ≤ i ≤ k, and every epoch j, we replace the per-
mutation on which the oblivious-access sort algorithm Sort is applied, with a
dummy permutation (e.g., the identity). (As in Hb1, the accesses to the code-
word copies remain unchanged, and in particular the �right� permutations
are used in all epochs.)
Hybrids Hb1 and Hb2 are statistically indistinguishable by the obliviousness
property of the oblivious-access sort algorithm.

Hb
3 : In hybrid Hb3, for every 1 ≤ i ≤ k, we replace the queries to the i'th
permuted codeword with queries that are uniformly random subject to the
constraint that they are all distinct.
Hybrids Hb2 and Hb3 are statistically indistinguishable since by our assumption
all the queries sent to the codeword copies are fresh, and they are permuted
using random permutations. (Notice that Hb2,Hb3 contain no additional in-
formation regarding these permutations.)

We conclude the proof by noting that H0
3 ≡ H1

3 since neither depend on
DB0,DB1, R0 or R1.

Complexity Analysis: Proof of Proposition 2. We now analyze the complexity of
Construction 1, proving Proposition 2. Notice that since mB ≥ logM , an image
of any random permutation P i : [M ] → [M ] is contained in a single block of
mDB. Notice also that the metadata mDB consists of k · (M +M logM) bits,

and let Nm := k·(M+M logM)
mB denote its size in size-mB blocks. Recall that a

word (i.e., the basic unit of the physical memory stored on the server) consists
of w bits.



Proof of Proposition 2. Every execution of the Read protocol consists of the fol-
lowing operations:

� Reading k ·λ bits from mDB to check if the decoding queries in each of the λ
iterations are fresh. Reading each bit requires reading a di�erent block from
mDB, which requires accessing kλ ·mB · Ovh (Nm) words on the server.

� Reading k images from Perm1, . . . ,Permk to permute the chosen decoding
queries. This requires reading k blocks from mDB, which requires accessing
k ·mB · Ovh (Nm) words on the server.

� Reading k blocks from the permuted codewords D̃B
1
, . . . , D̃B

k
to answer the

decoder queries, which requires accessing B
w · k words on the server.

� Writing k bits to mDB to update the values Queriedi
[
q̂i
]
, 1 ≤ i ≤ k, to 1,

in total accessing k ·mB · Ovh (Nm) words on the server. (This operation is
only performed when count < `− 1, but counting it in every Read execution
will not increase the overall asymptotic complexity.)

� Updating the counter, which requires accessing λ
w words on the server.

In total, these operations require accessing O (kλ) ·mB ·Ovh (Nm) + k · Bw words
on the server.

In addition, every Read execution performs its �share� of the operations
needed to update the server state at the end of the epoch. More speci�cally,
it performs a 1

` = 2k
M -fraction of the following operations:

� Writing k · MmB blocks to mDB to reset all entries of Queriedi, 1 ≤ i ≤ k, as
well as reading and writing k · 2M blocks to mDB to update the entries of
Permi, 1 ≤ i ≤ k with the images of the new permutations, using the Fisher-
Yates shu�e. In total, this requires accessing k ·M ·

(
1
mB + 4

)
·mB ·Ovh (Nm)

words on the server.
� Running k executions of Sort on an input ofM blocks of size B to re-permute
the codeword copies, which requires accessing k ·OvhSort (M,B) words on the
server.

So these update operations require accessing O
(
k2
)
· mB · Ovh (Nm) + 2k2

M · B ·
OvhSort (M,B) words on the server per execution of the Read protocol.

In summary, reading a single logical block from DB requires accessing

O
(
kλ+ k2

)
· mB · Ovh

(
k·(M+M logM)

mB

)
+
(
k
w + 2k2

M · OvhSort (M,B)
)
· B words

on the server.

3.1 Read-Only ORAM with Oblivious Setup

In this section we generalize the notion of an RO-ORAM scheme to allow the
client to run the ORAM Setup algorithm, using the server as remote storage,
when the logical memory is already stored at the server. We call this primitive
an RO-ORAM scheme with oblivious setup. This primitive will be used in the
next section to construct an ORAM scheme supporting writes with low read

overhead.



At a high level, an RO-ORAM scheme with oblivious setup is an RO-ORAM
scheme (Setup,Read) associated with an additional protocol OblSetup which al-
lows the client to execute the Setup algorithm using the server as remote storage
when the logical memory is already stored on the server, where the execution is
oblivious in the sense that the scheme remains secure when the RO-ORAM is
generated using OblSetup instead of Setup.

In the full version [WW18] we formalize this notion, and show that the RO-
ORAM scheme of Construction 1 has oblivious setup. The oblivious setup pro-
tocol relies on the building blocks of Construction 1, and additionally uses a
CPA-secure symmetric encryption scheme (whose existence follows from the ex-
istence of OWFs). The high-level idea is conceptually simple. The client �rst
encrypts the logical memory, then generates the codeword copies by encoding
the encrypted logical memory. This can be done by running the encoding pro-
cedure of the LDC �in the clear� (using the server as remote storage), because
by the CPA-security of the encryption scheme, the access pattern of the en-
coding procedure reveals no information on the logical memory. (Indeed, the
access pattern might depend on the values of the ciphertexts, but those are com-
putationally indistinguishable from encryptions of 0.) Then, the client can use
an �empty� metadata (initialized to 0) to generate his keys for the metadata
ORAM, and update its contents by running the Write protocol of the metadata
ORAM together with the server. Finally, the codeword copies can be obliviously
permuted using the oblivious-access sort algorithm. This high-level intuition is
formalized in the full version [WW18], where we prove the following:

Lemma 2 (RO-ORAM with oblivious setup). Assuming OWFs, and as-
suming the security of the building blocks of Construction 1, there exists a
computationally-secure RO-ORAM scheme with oblivious setup. Moreover, if:

� the logical memory DB has block size B, and the metadata ORAM has block
size mB, satisfying B > mB ≥ logM ,

� the metadata ORAM has Ovh (N) overhead for memories of size N , and
its setup algorithm can be executed using the server as remote storage by
accessing Tm (N) words on the server, where the client (server) stores sC
(sS) size-mB blocks,

� the oblivious-access sort algorithm has OvhSort (n,B) overhead when operating
on inputs consisting of n size-B blocks,

� the LDC has query complexity k, codeword length M , and on messages of
length n its encoding procedure performs TLDC (n) operations (i.e., touches
TLDC (n) message symbols),

then the OblSetup protocol accesses

λ+ Tm

(
k (M +M logM)

mB

)
+ 2n · B

w
+ TLDC (n) ·

B

w
+ kM · B

w

+

(
kM

mB
+ kM

)
·mB · Ovh

(
k (M +M logM)

mB

)
+ k · B · OvhSort (n,B)

words on the server, where w denotes the word size. Moreover, the client stores
sC · mB

B size-B blocks, and the server stores n+ kM + sS · mB
B + λ size-B blocks.



A Note on Statistically-Secure RO-ORAM with Oblivious Setup. Our RO-ORAM
with oblivious setup scheme is computationally-secure, even assuming the server
does not see the memory contents. This is due to the fact that the access pattern
during LDC-encoding might depend on the contents of the message being en-
coded, which in our case is the encrypted contents of the logical memory. Since
the encryptions of two logical memories are only computationally indistinguish-
able, the resultant security is computational. We note that using an LDC with
additional properties, we can obtain a statistically-secure RO-ORAM scheme
with oblivious setup. Concretely, if the LDC encoding procedure is oblivious in
the sense that its access pattern is independent of the contents of the message
being encrypted (a property satis�ed by, e.g., linear codes) then one can run
the LDC encoding procedure on the logical memory itself, and encryption is
not needed. Similarly, if the LDC has a su�ciently small encoding circuit, then
encoding can be performed directly on the (un-encrypted) logical memory.

4 Oblivious RAM Supporting Writes with o (logn) Read
Complexity

In this section we extend the RO-ORAM scheme of Section 3 to support writes,
while preserving the overhead of read operations. We instantiate our construc-
tion in several parameter regimes, obtaining the following results (see the full
version [WW18] for the proofs).

First, by instantiating our construction with �best possible� sorting circuits
and LDCs, we prove Theorem 2:

Theorem 7 (ORAM, �dream� parameters; formal statement of Theo-
rem 2). Assume the existence of OWFs, as well as LDCs and sorting circuits
as in Corollary 1, where the LDC has the following additional properties:

� M = n1+δ for some δ ∈ (0, 1).
� Encoding requires M1+γ operations over size-B blocks, for some γ ∈ (0, 1).

Then there exists an ORAM scheme for memories of size n and blocks of
size B = Ω

(
λ · log3 n log7 log n

)
with O (1) client storage, where read operations

have O (log log n) overhead, and write operations have O (nε) overhead for any
constant ε ∈ (0, 1) such that ε > δ + γ + δγ.

Using milder assumptions regarding the parameters of the underlying sorting
circuit and LDC, we can prove the following:

Theorem 8 (ORAM, milder parameters). Assume the existence of OWFs,
as well as LDCs and sorting circuits as in Corollary 2, where the LDC has
the additional properties speci�ed in Theorem 7. Then there exists an ORAM
scheme for memories of size n and blocks of size B = Ω

(
λ · log3 n log7 log n

)
with poly log log n client storage, where read operations have o (log n) overhead,
and write operations have O (nε) overhead for any constant ε ∈ (0, 1) such that
ε > δ + γ + δγ.



Finally, we also obtain a scheme with improved write overhead, by somewhat
strengthening the assumptions regarding the LDC.

Theorem 9 (ORAM, low write overhead; formal statement of Theo-
rem 3). Assume the existence of OWFs, as well as LDCs and sorting circuits
as in Corollary 1, where the LDC has the following additional properties:

� M = n1+o(1).
� Encoding requires M1+o(1) operations over size-B blocks.

Then there exists an ORAM scheme for memories of size n and blocks of
size B = Ω

(
λ · log3 n log7 log n

)
with O (1) client storage, where read operations

have o (log n) overhead, and write operations have no(1) overhead.

Construction Overview. As outlined in Section 1.2, the ORAM consists of ` lev-
els of increasing size (growing from top to bottom), where initially the logical
memory is stored in the lowest level, and all other levels are empty. read oper-
ations look for the memory block in all levels, returning the top-most copy of
the block, and write operations write the memory block to the top-most level,
causing a reshu�e at prede�ned intervals to prevent levels from over�owing.

Transforming this high-level intuition into an actual scheme requires some
adjustments. First, our RO-ORAM scheme4 was designed for logical memories
given as array data structures (namely, in which blocks can only be accessed
by specifying the location of the block in the logical memory), but upper levels
are too small to contain the entire logical memory, namely they require RO-
ORAM schemes for map data structure.5 To overcome this issue, we associate
with each level i an array DBi that contains the memory blocks of level i, and is
stored in an RO-ORAM Oi (for array data structures). Additionally, we store the
metadata regarding which block appears in which array location in a (standard,
polylogarithmic-overhead) ORAM MOi for map structures. Thus, to look for
block j in level i, the client �rst searches for j inMOi. If the j'th memory block
appears in level i, thenMOi returns the location t in which it appears in DBi,
and so the client can read the block by performing a read for address t on the
RO-ORAM Oi of the level.

Second, to allow for e�cient �reshu�ing� of level i (which, in particular,
requires a traversal of both DBi and DBi+1), we also store DBi in every level
i. Thus, every level i contains the array DBi, the metadata ORAMMOi which
maps blocks to their locations in DBi, and the RO-ORAM Oi which stores DBi.
We note that the metadata ORAM is not needed in the lowest level, because the
structure will preserve the invariant that DB` contains all the blocks �in order�
(namely, the k'th block of the logical memory is the k'th block of DB`).
4 The construction can use any RO-ORAM scheme, but the read overhead is at least
the overhead of the RO-ORAM scheme. Therefore, to obtain o (logn) overhead, we
need to instantiate the ORAM with our RO-ORAM scheme.

5 We note that several ORAM schemes (such as tree-based ORAM schemes, and in
particular the ORAM of Theorem 6), though described for logical memories given
as arrays, can actually support logical memories given as map data structures.



Finally, every �reshu�e� of level i into level i + 1 requires re-generation of
the RO-ORAM Oi+1, since the contents of DBi+1 have changed. In general, re-
generation cannot use the setup algorithm of the RO-ORAM due to two reasons.
First, the setup is designed to be run by a trusted party, and so the server cannot
run it, and since setup depends on the entire logical memory, it is too costly for
the client to run on his own. Second, while the setup of an RO-ORAM is only
required to be polynomial-time (since it is only executed once, and so its cost
is amortized over su�ciently many accesses to the RO-ORAM), when executed
repeatedly as part of reshu�e, a more stringent e�ciency requirement is needed.
The �rst property is captured by the ORAM with oblivious setup primitive
(Section 3.1). For the second property we use the fact that our RO-ORAM
scheme described in Section 3 has a highly-e�cient oblivious setup protocol.

Given these building blocks, the ORAM operates as follows. To read the j'th
logical memory block, the client looks for the block in every level. At the lowest
level `, which contains the entire logical memory, this is done by reading the
block at address j from O`. For all other levels 1 ≤ i < `, this is done by �rst
reading j fromMOi to check whether the j'th memory block appears in DBi,
and if so in which index t; and then using Oi to read the t'th block of DBi.
(If the j'th block does not appear in DBi, a dummy read is performed on Oi.)
The output is the copy of block j from DBi

∗
for the smallest level i∗ such that

DBi
∗
contains the j'th memory block. This is the �correct� answer because the

levels preserve the invariant that each level contains at most one copy of each
logical memory block, and the most recent copy appears in the top-most level
that contains the block.

To write value v to the block at address j, the client asks the server to
write a new copy of block j with value v to the top level. As noted above, this
causes a reshu�e into lower levels at prede�ned intervals to prevent levels from
over�owing. More speci�cally, every li write operations level i will be reshu�ed
into level i+ 1, where li denotes the size of level i. During reshu�e, all memory
blocks from DBi are copied into DBi+1, and multiple copies of the same memory
block are consolidated by storing the level-i copy. Additionally, the ORAMs
MOi+1,Oi+1 of level i + 1 are updated, and level i is emptied (that is, DBi
is replaced with an empty array, and MOi,Oi are updated accordingly). See
Figures 2 (page 27) and 4 (page 29) for an example.

Instantiating this ORAM scheme with di�erent values of the number of levels
` yields ORAM schemes with di�erent tradeo�s between the read and write

overhead. Concretely, Theorems 7 and 8 are obtained by setting ` to be constant,
and Theorem 9 is obtained by setting ` = logn

log2 logn
.

We now formally describe the construction.

Construction 2 (ORAM with writes). The scheme uses the following building
blocks:

� An RO-ORAM scheme with oblivious setup (SetupR,ReadR,OblSetupR).
� An ORAM scheme (Setupm,Readm,Writem) for map data structures.

We de�ne the following protocols.



� Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈(
{0, 1}B

)n
. Setup does the following.

• Initialize a writes counter. Initialize a writes counter count to 0.
• Initialize lowest level.
∗ Initialize DB` = DB. We assume without loss of generality that the
blocks in DB are of the form (j, bj), namely each logical memory
block contains its logical address.6

∗ Generate an RO-ORAM scheme O` for DB` by running(
ck`R, st

`
R

)
← SetupR

(
1λ,DB`

)
to obtain a client key ck`R and a

server state st`R for O`.
• Initialize upper levels. For every level 1 ≤ i < `:

∗ Initialize DBi to consist of i dummy memory blocks.
∗ Generate an RO-ORAM scheme Oi for DBi by running

(
ckiR, st

i
R

)
←

SetupR
(
1λ,DBi

)
to obtain a client key ckiR and a server state stiR

for Oi.
∗ Generate a map data structure Mi mapping each block (j, bj) in
DBi to its index in DBi. (That is, if (j, bj) is the t'th block of DBi
then the entry (t, j) is added toMi.)

∗ Generate a metadata ORAM scheme MOi for Mi, by running(
ckim, st

i
m

)
← Setupm

(
1λ,Mi

)
to obtain the client key and server

state forMOi.
• Output. The long-term client key ck =

(
ck`R,

{
ckiR, ck

i
m

}
i∈[`−1]

)
consists of the client keys for the RO-ORAMs Oi and the
metadata ORAMs MOi of all levels. The server state stS =(
count, st`R,DB

`,
{
stiR, st

i
m,DB

i
}
i∈[`−1]

)
contains the counter count of

the number of write operations performed, the server states in the RO-
ORAMs Oi and the metadata ORAMsMOi of all levels, as well as the
memory contents DBi of all levels.

The Read protocol. To read the logical memory block at location addr ∈ [n]

from the server S, the client C with key
(
ck`R,

{
ckiR, ck

i
m

}
i∈[`−1]

)
operates as

follows, where in all executions of the ReadR protocol on Oi (respectively, all
executions of the Readm or Writem protocols on MOi) S plays the role of the
server with state stiR (respectively, stim) and C plays the role of the client with
key ckiR (respectively, ckim).

� Determine block location in level i. For every level 1 ≤ i ≤ ` − 1, run the
Readm protocol on MOi to read the index l in which the block appears in
DBi. (If block addr does not appear in level i, then l =⊥.)

� Read block from level i. For every level 1 ≤ i ≤ `−1, if l =⊥, set l = 1. Run
the ReadR protocol on Oi to read the l'th block from DBi.

6 This assumption is without loss of generality since for the block sizes we consider,
concatenating the address to the block would cause at most a constant multiplicative
increase in the block size.



� Read block from level `. Run the ReadR protocol on O` to read the addr'th
block from DB`.

� Output. Let i∗ be the smallest such that block addr appears in DBi
∗
, and let

(addr, v) denote the block returned by the execution of the ReadR protocol
on Oi∗ . Output v to C. (All other memory blocks returned by the ReadR
protocol executions are ignored.)

The Write protocol. To write value val to block addr ∈ [n] in the logical

memory, the client C with key
(
ck`R,

{
ckiR, ck

i
m

}
i∈[`−1]

)
operates as follows.

� Generate a �dummy� level 0 which contains a single memory block (addr, val),
and send it to the server.

� Update the server state and client key as follows:
• count := count+ 1.
• If l`−1 divides count, then reshu�e level ` − 1 into level
` using the ReShu�e` procedure of Figure 1, namely execute

ReShu�e`
(
ck`−1R , ck`R, ck

`−1
m , st`−1R , st`R, st

`−1
m

)
.

• For every i from ` − 2 down to 0 for which li divides count, reshu�e
level i into level i+ 1 using the ReShu�e procedure of Figure 3, namely
execute ReShu�e

(
i, ckiR, ck

i+1
R , ckim, ck

i+1
m , stiR, st

i+1
R , stim, st

i+1
m

)
.

Remark on De-amortization. We note that using a technique of Ostrovsky and
Shoup [OS97], the server complexity in Construction 2 can be de-amortized,
by slightly modifying the Write protocol to allow the reshu�ing process to be
spread-out over multiple accesses to the ORAM. The reason reshu�e operations
can be �spread out� is that reshu�ing is performed in a �bottom-up� fashion,
namely when it is time to reshu�e level i into level i + 1, that reshu�ing is
executed before level i − 1 is reshu�ed into level i. Thus, the memory blocks
that are involved in the reshu�e of level i into level i + 1 have been known for
the last li−1 time units, ever since level i was last updated due to a reshu�e of
level i − 1 into it. Therefore, the operations needed to perform the reshu�e of
level i into level i+ 1 can be spread out over li−1 operations.

A Note On Statistically-Secure ORAM with Writes. Our ORAM with writes
constructions (Theorems 7-9) are computationally-secure due to the use of
a computationally-secure RO-ORAM with oblivious setup. However, given a
statistically-secure RO-ORAM with oblivious setup the resultant ORAM with
writes would also be statistically secure. As noted in Section 3.1, such a scheme
can be obtained assuming an LDC with a small encoding circuit, or with an
oblivious encoding procedure. Thus, given an LDC with one of these additional
properties we can get a statistically-secure ORAM with writes (with the param-
eters stated in Theorems 7-9).

Acknowledgements. Research supported by NSF grants CNS-1314722, CNS-
1413964, CNS-1750795 and the Alfred P. Sloan Research Fellowship. The �rst
author was supported in part by The Eric and Wendy Schmidt Postdoctoral
Grant for Women in Mathematical and Computing Sciences.



The ReShu�e
` procedure

Inputs:

ckjR, j ∈ {`− 1, `}: the client keys for the RO-ORAMs O`−1,O` of levels `− 1, `.
ck`−1
m : the client key for the metadata ORAMMO`−1 of level `− 1.

st
j
R, j ∈ {`− 1, `}: the server states for the RO-ORAMs O`−1,O` of levels `−1, `.

st
`−1
m : the server state for the metadata ORAMMO`−1 of level `− 1.

Operation:

� Updating contents of level `. For every 1 ≤ k ≤ n:

• Read the k'th block (k, vk) of DB`.
• Run the Readm protocol (with client key ck`−1

m and server state st`−1
m ) on

MO`−1 to read the index t in which memory block k appears in DB`−1.
(If memory block k does not appear in DB`−1 then Readm returns ⊥ to
the client.)

• Run the ReadR protocol (with client key ck`−1
R and server state st`−1

R ) on
O`−1 to read the value v′k of the t'th block in DB`−1. (If t =⊥, perform
a dummy read of the block at index 1.)

• If t 6=⊥, replace the k'th block in DB` with (k, v′k). Otherwise, replace
the k'th block with (k, vk) (this is a dummy write).

� Updating RO-ORAMs. Replace DB`−1 with an array consisting of l`−1

dummy blocks. For j = ` − 1, `, run the OblSetupR protocol to generate a

new RO-ORAM Oj for DBj :
(
c̃k
j

R, s̃t
j
R

)
← OblSetupR

(
1λ,DBj

)
. Replace

ckjR, st
j
R with c̃k

j

R, s̃t
j
R, respectively.

� Updating metadata ORAM. For every 1 ≤ k ≤ l`−1:

• Read the k'th block (j, vj) of DB`−1.
• Remove the entry corresponding to k fromM`−1 by executing theWritem
protocol onMO`−1 (with client key ck`−1

m and server state st`−1
m ).

Fig. 1: The ReShu�e` protocol used in Construction 2



Fig. 2: ReShu�e` execution on a toy-example ORAM with logical memory size
n = 5 and ` = 4 levels. The red circle indicates the block which is currently
updated. Arrows denote the output of the metadata and RO ORAMs, where
dashes arrows denote dummy accesses. Block 1 is updated �rst (top left), MO3

is accessed and returns t = 2 indicating that block 1 appears as the second block
of DB3. The block (1, v′1) is then read from O3, and updated in DB4. Block 2
is updated next (top right), MO3 is accessed and returns t = 3 indicating that
block 2 appears as the third block of DB3. The block (2, v′′2 ) is then read from
O3, and updated in DB4. Block 3 is updated next (center left),MO3 is accessed
and returns t = 1 indicating that block 3 appears as the �rst block of DB3. The
block (3, v′3) is then read from O3, and updated in DB4. Block 4 is updated next
(center right),MO3 is accessed and returns t =⊥, indicating that block 4 does not
appear in DB3. Therefore, a dummy read is performed on O3, and a dummy write
is performed on DB4. Finally, block 5 is updated (bottom left),MO3 is accessed
and returns t =⊥, indicating that block 5 does not appear in DB3. Therefore,
a dummy read is performed on O3, and a dummy write is performed on DB4.
The values of DB3,DB4 at the end of the ReShu�e` execution are depicted at
the bottom right (these values are used to generate new RO-ORAMs O3,O4, and
update the metadata ORAMsMO3,MO4).
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ORAM Oj for DBj :
(
c̃k
j

R, s̃t
j
R

)
← OblSetupR

(
1λ,DBj

)
. Replace ckjR, st

j
R

with c̃k
j

R, s̃t
j
R, respectively.

Fig. 3: The ReShu�e protocol used in Construction 2



Fig. 4: ReShu�e execution for i = 1 on the ORAM from Figure 2. The red circle
indicates the block which is currently updated. Arrows denote the output of the
metadata and RO ORAMs, where dashes arrows denote dummy accesses. The
blocks of DB2 are updated �rst. The �rst block of DB2 is updated �rst (top left),
MO1 is accessed and returns t =⊥ indicating that this block does not appear
in DB1. Therefore, a dummy read is performed on O1, and dummy writes are
performed onMO1,DB2. The second block of DB2 is updated next (top right),
MO1 is accessed and returns t = 1 indicating that this block appears as the �rst
block of DB1. The block (4, v′4) is then read from O1, and updated in DB2. Then,
the block is deleted from DB1 by updatingMO1 (replacing the entry (1, 4) with
(⊥, 4)). Next, the blocks of DB1 are copied into DB2. The �rst block of DB1 is
copied �rst. MO1 is accessed and returns t =⊥, indicating that this block was
already copied into DB2 (and removed from DB1). Therefore, a dummy block is
written to DB2, and dummy writes are performed on MO1,MO2. Finally, the
second block of DB1 is copied. MO1 is accessed and returns t = 2, indicating
that the block has not been removed from DB1. The block is then written into
DB2,MO2 is updated to re�ect that block 1 appears as the fourth block of DB2,
and the block is deleted from DB1 by updatingMO1 accordingly. The values of
DB1,DB2 at the end of the ReShu�e execution are depicted at the bottom (these
values are used to generate new RO-ORAMs O1,O2).
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