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Abstract. The possibility of basing cryptography on the minimal assumption NP * BPP is at the
very heart of complexity-theoretic cryptography. The closest we have gotten so far is lattice-based
cryptography whose average-case security is based on the worst-case hardness of approximate shortest
vector problems on integer lattices. The state-of-the-art is the construction of a one-way function (and
collision-resistant hash function) based on the hardness of the Õ(n)-approximate shortest independent
vector problem SIVPÕ(n).
Although SIVP is NP-hard in its exact version, Guruswami et al (CCC 2004) showed that gapSIVP√

n/ logn

is in NP ∩ coAM and thus unlikely to be NP-hard. Indeed, any language that can be reduced to
gapSIVPÕ(

√
n) (under general probabilistic polynomial-time adaptive reductions) is in AM ∩ coAM

by the results of Peikert and Vaikuntanathan (CRYPTO 2008) and Mahmoody and Xiao (CCC 2010).
However, none of these results apply to reductions to search problems, still leaving open a ray of hope:
can NP be reduced to solving search SIVP with approximation factor Õ(n)?
We eliminate such possibility, by showing that any language that can be reduced to solving search SIVP
with any approximation factor λ(n) = ω(n logn) lies in AM intersect coAM.

1 Introduction

It is a long-standing open question whether cryptography can be based on the minimal assumption that
NP * BPP. More precisely, one would hope to construct cryptographic primitives such that given a
polynomial-time algorithm breaking the security of the primitive, one can efficiently solve SAT.

The closest we have gotten so far is lattice cryptography. This approach was born out of the breakthrough
result of Ajtai [Ajt96], which constructs a one-way function family based on the worst-case hardness of
certain lattice problems such as the γ-approximate shortest independent vectors problem (SIVPγ), which
can be stated as follows: given an n-dimensional lattice, find a set of n linearly independent vectors whose
length1 is at most γ(n) (polynomial in n) times the length of the shortest such vector set. Since the work of
Ajtai, the state of the art is a construction of a family of collision resistant hash functions (CRHF) based on
the hardness of the shortest independent vectors problem with an approximation factor Õ(n) [MR04]. One
would hope that this approach is viable for constructing cryptography based on NP-hardness since Blömer
and Seifert showed that SIVPγ is NP-hard for any constant factor [BS99]. Presumably, if one could construct
cryptographic primitives based on the hardness of SIVPO(1), we would be golden. Alternatively, if one could
extend the result of Blömer and Seifert to show the NP-hardness of SIVPγ for larger γ(n), we would be
closer to the goal of basing cryptography on NP-hardness.

However, there are some negative results when one considers the corresponding gap version of the same
lattice problem. The gap problem, denoted by gapSIVPγ , is to estimate the length of the short independent
vector set within a factor of γ(n). Peikert and Vaikuntanathan show that gapSIVPω(

√
n logn) is in SZK [PV08].

Thus there is no Cook reduction from SAT to gapSIVPÕ(
√
n) unless the polynomial hierarchy collapses (as

BPPSZK ⊆ AM ∩ coAM [MX10]).
Fortunately, the hardness of SIVP is not contradicted by the fact that the gap problem with the same

approximation factor is easy. For instance, if one considers any ideal lattice in the field Z[x]/〈x2k + 1〉, its
successive minima satisfy λ1 = . . . = λn, thus gapSIVP√n can be trivially solved using Minkowski’s inequality.
However, finding a set of short independent vectors in such ideal lattices is still believed to be hard. As none
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of these negative results apply to reductions to search SIVP, there is still a ray of hope: can NP be reduced
to solving search SIVP with approximation Õ(n)?

Thus, in order to really understand the viability of the approach begun by the work of Ajtai, it seems one
must study the search versions of lattice problems. In this work, we relate the hardness of the search version
SIVPγ , to the gap version gapSIVP. Informally, we show that if gapSIVPγ is not hard, neither is SIVP√n·γ .

Main Theorem 1 If gapSIVPγ ∈ SZK and there exists a probabilistic polynomial-time adaptive reduction
from a language L to SIVP√n logn·γ , then L ∈ AM ∩ coAM.

As a quick corollary, combining our result with gapSIVPω(
√
n logn) ∈ SZK [PV08], any language that can

be reduced to SIVPω(n logn) lies in AM intersect coAM and thus it is not NP-hard unless the polynomial
hierarchy collapses.

Corollary 1.1. If there exists a probabilistic polynomial-time adaptive reduction from a language L to SIVPγ
for any γ(n) = ω(n log n), then L ∈ AM ∩ coAM.

1.1 Proof Overview

The first step is to shift from a search problem to a sampling problem. Our goal is to obtain a black-box
separation between SIVPγ and NP-hardness by showing that any language L that can be reduced to SIVPγ
is in AM intersect coAM. Let R be the reduction from L to SIVPγ . We will construct an AM protocol for
L using reduction R. For a first attempt, the näıve verifier samples a random tape and sends it to the prover.
The prover simulates the reduction R and resolves any query to SIVPγ using its unbounded computational
power. The simulation, including the answers to the reduction’s query to SIVPγ , is sent to the näıve verifier,
so that the verifier can check its correctness. But SIVPγ is a search problem and there is no unique right
answer. The prover has the freedom to decide which answer is chosen upon each query. This freedom allows
a malicious prover to fool the näıve verifier. Similar difficulty were faced by Bogdanov and Brzuska, which is
resolved by inherently shifting to sampling problems. In order to separate size-verifiable one-way functions
from NP-Hardness [BB15], they force the prover to sample a random answer uniformly among all correct
ones. Thus the correct answer distribution for each query is unique.

Inspired by the work of Bogdanov and Brzuska, we consider a sampling problem related to SIVPγ ,
called the discrete Gaussian distribution. A discrete Gaussian over a lattice is a distribution such that the
probability of any vertex v is proportional to e−π‖v−c‖

2/s2 , where c is its “center” and parameter s is its
“width”. Lemma 4.3 shows that discrete Gaussian sampling is as hard as SIVPγ in the sense that there
is a black-box reduction from SIVPγ to discrete Gaussian sampling with “width” γ(n)/

√
n. Therefore, if

language L can be reduced to SIVPγ , then it can also be reduced to discrete Gaussian sampling on lattices
with “width” s ≤ λn/

√
n.

Lemma 4.3 (Informal) SIVPγ can be efficiently reduced to discrete Gaussian sampling on lattices with
“width” σ = γ√

n
λn.

Lemma 4.3 is a generalization of [Reg09, Lemma 3.17]. Its proof is quite intuitive. Repeatedly sample
from the discrete Gaussian over the same lattice centered at 0. With good probability, the newly sampled
vertex is short and is linearly independent from previously sampled verteces.

The next natural question is, which property separates a sampling problem from NP-hardness? Here we
introduce the notion of “probability-verifiability”. Informally, a distribution family is probability-verifiable
if for any distribution D in this family and for any possible value v, Pr[v ← D], the probability that v is
sampled from D, can be lower bounded within an arbitrarily good precision in AM.

Lemma 4.4 (Informal) If a language L can be reduced to a probability-verifiable sampling problem S, then
L ∈ AM ∩ coAM.
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Lemma 4.4 is a generalization of [BB15]. Assume language L can be reduced to sampling problem S. The
input of S is interpreted as the description of a distribution, let Ppd denote the distribution specified by
input pd.

Let R be the reduction from L to sampling problem S. On each input x, an execution RS(x) is determined
by the random tape of reduction R, denoted by r, and the answers to the reduction’s queries to S. The
transcript is defined as σ = (r, pd1, v1, . . . , pdT , vT ) where pdt is the t-th query to S and vt is the corresponding
response. Note that r, v1, . . . , vT determine the execution, since pdt is determined by r, v1, . . . , vt−1. Then

Pr[RS(x) accepts] =
∑

σ:accepting transcript

of RS(x)

Pr[σ] =
∑

σ:accepting transcript

of RS(x)

Pr[r] · Ppd1(v1) · . . . · PpdT (vT ). (1)

For simplicity, assume for now that there is an efficient algorithm that computes the probability Ppd(v)
given pd and value v. This property is stronger than probability-verifiability. Then the probability that
RS(x) accepts, which equals a sum (equation (1)) where each term can be efficient computed, can be lower
bounded using the set lower bound protocol of Goldwasser and Sipser [GS86], so L ∈ AM. Symmetrically,
L ∈ coAM. The proof of Lemma 4.4 shows the same result from the weaker condition that S is probability-
verifiable.

There is one last step missing between Lemma 4.3 and Lemma 4.4: Is discrete Gaussian sampling
probability-verifiable? What is the smallest factor γ such that discrete Gaussian sampling with “width” ≤ γλn
is probability-verifiable? Lemma 4.5 answers this question, and it connects the hardness of discrete Gaussian
sampling with the hardness of gapSIVP.

Lemma 4.5 (Informal) Assume gapSIVPγ is in SZK. There exists a real valued function s(B) ∈ [λn, Õ(γ)·
λn] such that given a lattice basis B, discrete Gaussian sampling over lattice L(B) with “width” s(B) is
probability-verifiable.

Lemma 4.5 has an easier proof assuming the stronger condition that gapSIVPγ is in P. If there were some
deterministic polynomial time algorithm solving gapSIVPγ , there would exist s(B) ∈ [λn(B), γλn(B)] that
can be efficiently computed by binary search. As s(B) ≥ λn(B), the verifier can ask the prover to provide a
set of n linearly independent vectors w1, . . . ,wn whose length is no longer than s(B). Given the lattice basis
B and a set of short linearly independent vectors, there exists an efficient algorithm that samples from the
discrete Gaussian with the desired parameter [BLP+13]. When the verifier can sample from a distribution,
he can lower bound the probability of each value using the set lower bound protocol [GS86].

This informal proof assumes gapSIVPγ ∈ P in order to compute a function s(B) that s(B) ≈ λn(B).
As the verifier only needs to compute such a function s(B) in an AM protocol, this assumption can be
weakened to gapSIVPγ ∈ SZK, by combining with Lemma 3.1.

Lemma 3.1 (Informal) Assume gapSIVPγ is in SZK. There exists a real valued function s(B) ∈ [λn, Õ(γ)·
λn] that can be efficiently computed in Arthur-Merlin protocol.

The proof technique of Lemma 3.1 crucially relies on the fact that gapSIVPγ ∈ SZK. As a result, we can
hardly make use of previous results such as gapSIVP√

n/ logn
∈ NP ∩ coAM [GMR04].

1.2 Related Works

Prior work exploring the problem of basing cryptography on worst-case NP-hardness has obtained several
negative results for black-box reduction. Brassard [Bra79] first showed that one-way permutations cannot
be based on NP-hardness. Goldreich and Goldwasser [GG98] showed that public-key encryption schemes
satisfying certain very specific properties cannot be based on NP-hardness. The required properties include
the ability to certify an invalid key.

Work of Akavia, Goldreich, Goldwasser and Moshkovitz [AGGM06] and Bogdanov and Brzuska [BB15]
showed that a special class of one-way functions called size-verifiable one-way functions cannot be based
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on NP-hardness. A size-verifiable one-way function is one in which the size of the set of pre-images can be
efficiently approximated via an AM protocol.

Bogdanov and Lee [BL13] showed that homomorphic encryption schemes satisfying a special property
cannot be based on NP-hardness. The required property is that the homomorphic evaluation produces a
ciphertext whose distribution is statistically close to that of a fresh encrypted ciphertext.

Recently, Liu and Vaikuntanathan [LV16] showed that single-server private information retrieval (PIR)
schemes cannot be based on NP-hardness.

Several works have also obtained a separation results for restricted types of reductions, most notably
non-adaptive reductions which make all oracle queries simultaneously. The work of Feigenbaum and Fortnow
[FF91], subsequently strengthened by Bogdanov and Trevisan [BT06], showed that there cannot be a non-
adaptive reduction from SAT to the average-case hardness of any problem in NP, unless the polynomial
hierarchy collapses.

On basing lattice problems on NP-hardness, the work of Goldreich and Goldwasser [GG00], subsequently
strengthened by Micciancio and Vadhan [MV03], showed that gapSVP√

n/ logn
and gapCVP√

n/ logn
are both

contained in NP∩SZK. The shortest vector problem (SVP) and the closest vector problem (CVP), roughly
speaking, is the problem of finding the shortest non-zero vector in a lattice or finding the lattice vector
that is closest to a given point. The corresponding gap problem gapSVPγ , gapCVPγ is to estimate within
a factor of γ(n) the length of the shortest non-zero vector or the distance to the closest lattice vector
from a given point. The problem gapSVP is connected to gapSIVP via so-called “transference theorems” for
lattices [Ban93]. Aharonov and Regev [AR04] explored a slightly looser approximation factor and showed
that gapSVP√n and gapCVP√n are both contained in NP ∩ coNP.

In prior work on the gap version of the SIVP problem, Guruswami, Micciancio and Regev [GMR04] showed
that gapSIVP√

n/ logn
∈ NP∩coAM. Peikert and Vaikuntanathan [PV08] showed that gapSIVPγ ∈ SZK for

any γ(n) = ω(
√
n log n). In contrast to these results for promise problems, our work explores the approximate

SIVP problem. With an approximation factor γ(n) = Õ(n), this search problem is the basis of lattice-based
collision resistant hash function (CRHF) constructions [Ajt96,MR04]. In particular, Micciancio and Regev
constructed CRHF from the worst-case hardness of SIVPγ(n) for any γ(n) = ω(n log n) [MR04]. We separate
SIVPγ from NP-hardness for the same approximation factor.

2 Preliminaries

Lattice A lattice in Rn is an additive subgroup of Rn{ n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

generated by n linearly independent vectors b1, . . . ,bn ∈ Rn. The set of vectors b1, . . . ,bn is called a basis
for the lattice. A basis can be represented by matrix B ∈ Rn×n whose columns are the basis vectors. The
lattice generated by the columns of B is denoted by L(B).

L(B) = {Bx : x ∈ Nn}.

The i-th successive minimum of a lattice L, denoted by λi(L), is defined as the minimum length that L
contains i linearly independent vectors of length at most λi(L). Formally,

λi(L) := min{r : dim(L ∩ rB) ≥ i},

where rB is the radius r ball centered at the origin defined as rB := {x ∈ Rn : ‖x‖2 ≤ r}. We abuse notations
and write λi(B) instead of λi(L(B)).
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Shortest Independent Vectors Problem (SIVP) SIVP is a computational problem. Given a basis B of an
n-dimensional lattice, find a set of n linearly independent vectors v1, . . . ,vn ∈ L(B) such that maxi ‖vi‖ is
minimized, i.e., ‖vi‖ ≤ λn(B) for all 1 ≤ i ≤ n.

SIVPγ is the approximation version of SIVP with factor λ. Given a basis B of an n-dimensional lattice,
find a set of n linearly independent vectors v1, . . . ,vn ∈ L(B) such that ‖vi‖ ≤ γ(n) ·λn(B) for all 1 ≤ i ≤ n.
The approximation factor γ is typical a polynomial in n.

gapSIVPγ is the decision version of SIVPγ . An input to gapSIVPγ is a basis B of a n-dimensional lattice
and a scalar s. It is a YES instance if λn(B) ≤ s, and is a NO instance if λn(B) ≥ γ(n) · s.

Discrete Gaussian For any vector c and any s > 0, let

ρc,s(v) = e−π‖v−c‖
2
2/s

2

be a Gaussian function with mean c and width s. Functions are extends to sets in usual way, ρc,s(L) =∑
v∈L ρc,s(v). The discrete Gaussian distribution over lattice L with mean c and width s, denoted by

NL,c,s, is defined by

∀v ∈ L, NL,c,s(v) =
ρc,s(v)

ρc,s(L)
.

In this work, most discrete Gaussian distributions considered are centered at the origin. Let ρs,NL,s denote
ρ0,s,NL,0,s respectively.

Lemma 2.1 (Lemma 1.4 in [Ban93]). For each a ≥ 1, for any n-dimensional lattice L, ρas(L) ≤ anρs(L)

Lemma 2.2 (Lemma 1.5 in [Ban93]). For any c > 1/
√

2π, n-dimensional lattice L

ρs(L \ cs
√
nB) < Cn · ρs(L) (2)

where C = c
√

2πe · e−πc2 .

Sampling Problems Besides computational problems and decision problems, we define sampling problems.
The input of a sampling problem specifies a distribution, let Ppd denote the distribution specified by input
pd. The goal is to sample from the distribution Ppd. A probabilistic polynomial-time algorithm S perfectly
solves the sampling problem if for any input pd

∀v,Pr[S(pd)→ v] = Ppd(v).

The probability is over the random input tape of S. In a more practical definition, S solves the sampling
problem if the output distribution of S(pd) is close to Ppd, i.e.

∆sd(S(pd, 1`),Ppd) ≤
1

`

where ∆sd denotes the statistical distance.
For example, in this work, discrete Gaussian is considered as a sampling problem. For any function s(·)

mapping lattice bases to positive real numbers, define sampling problem DGSs. The input of DGSs is a
lattice basis B. The target output distribution PB is the discrete Gaussian distribution NL(B),s(B), where
each vector v ∈ L(B) is sampled with probability

PB(v) = NL(B),s(B)(v) =
ρs(B)(v)

ρs(B)(L(B))
.

Probability-Verifiable A sampling problem is probability-verifiable if there exists an AM protocol to lower
bound Ppd(v) for any pd and v. More precisely, there exists a family of error function {ηpd,m} such that for
any pd,m, the error function ηpd,m : {0, 1}∗ → [0,+∞) satisfies

∑
v ηpd,m(v) ≤ 1

m , and the promise problem

– YES instance: (pd, v, p̂, 1m) such that p̂ = Ppd(v)
– NO instance: (pd, v, p̂, 1m) such that p̂ ≥ Ppd(v) + ηpd,m(v)

is in AM.
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Sampling Oracles In order to formalize the (probabilistic) Turing reduction to a sampling problem, we also
define sampling oracles, which is a generalization of traditional oracles studied by complexity theorists. Let
S be a sampling oracle for a fixed sampling problem. S can be queried on any valid pd; upon query pd,
sampling oracle S(pd) would always output a fresh sample from distribution Ppd. E.g. if the sampling oracle
S is queried for the same pd multiple times, it would output i.i.d. samples from distribution Ppd.

A probabilistic Turing reduction from a language L to a sampling problem S is a probabilistic poly-time
oracle Turing machine R, such that R can solve L given a sampling oracle of S in the sense that

x ∈ L =⇒ RS(x)→ 1 w.p. ≥ 2/3,

x /∈ L =⇒ RS(x)→ 1 w.p. ≤ 1/3.

If such a reduction exists, we say L can be reduced to sampling problem S, denoted by L ∈ BPPS.

Similarly, a computational problem or a search problem can be reduced to a sampling problem S if they
can be efficiently solved given the sampling oracle of S.

R-TFAM and Rη-TFAM The complexity class R-TFAM is introduced by Mahmoody and Xiao [MX10].
Informally, it’s consist of real-valued functions that can be efficiently computed in AM. A function f :
{0, 1}∗ → R is in R-TFAM if the following promise problem is in AM:

– YES instance: (x, f(x), 1m).

– NO instance: (x, y, 1m) such that |y − f(x)| > 1
m .

The definition of R-TFAM emphasize on the absolute error. The complexity class Rη-TFAM is defined
to capture those functions that can be efficiently computed in AM with small relative error. A function
g : {0, 1}∗ → R+ is in Rη-TFAM if the following promise problem is in AM:

– YES instance: (x, g(x), 1m).

– NO instance: (x, y, 1m) such that |y − g(x)| > 1
m · g(x).

It follows directly from the definitions that g ∈ Rη-TFAM if and only if log g ∈ R-TFAM for any function
g : {0, 1}∗ → R+.

Statistical Zero Knowledge Statistical zero knowledge (SZK) is the class of decision problems that can be
verified by a statistical zero-knowledge proof protocol. Entropy Difference (ED) is a complete problem for
SZK [GV99], which is defined as the following: Given two polynomial-size circuits, C and D, let C and D be
the distributions of their respective outputs when C,D are fed with uniform random inputs. The problem is
to distinguish between

– YES instance: (C,D) such that H(C)−H(D) ≥ 1;

– NO instance: (C,D) such that H(C)−H(D) ≤ −1.

Where H is the Shannon entropy. Moreover, the mapping H : C 7→ H(C) is in R-TFAM.

3 Gap Problems

The lattice problem gapSIVP is essentially estimating λn(B) given a lattice basis B. This definition can be
generalized to any real valued functions. Define the gap problem of function f : {0, 1}∗ → R+ with gap
γ : {0, 1}∗ → [1,+∞), denoted by gapfγ , as the promise problem

– YES instance: (x, y) such that y ≤ f(x);

– NO instance: (x, y) such that y > γ(x) · f(x).
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In this work, estimating λn(B) is of critical importance. Its gap problem, gapSIVPγ , alone is not sufficient
for the proof. Instead, a stronger form of approximation is defined. Say g : {0, 1}∗ → R+ is an approximation
of function f within factor γ if f(x) ≤ g(x) ≤ γ(x) · f(x) for all x. Clearly, computing g is a harder problem
than gapfγ , in the sense that there is a trivial reduction from gapfγ to computing g.

The following Lemma shows a reduction in the other direction: if gapfγ is in SZK, then there exists an
approximation of f within almost the same factor, which can be computed in AM.

Lemma 3.1. For any real valued function f : {0, 1}∗ → R+ and any gap γ : {0, 1}∗ → [1,+∞) that
log γ(x) ≤ poly(|x|), if gapfγ ∈ SZK, then for any constant µ > 1, there exists g : {0, 1}∗ → R+ such that
∀x, g(x) ∈ [f(x), µγ(x)f(x)] and g is in Rη-TFAM.

Lemma 3.1 can be combined with previous results about gapSIVP. Peikert and Vaikuntanathan [PV08]
showed that gapSIVPγ ∈ NISZK ⊆ SZK for any γ = ω(

√
n log n). Thus there exists an approximation of

λn within a factor Õ(
√
n) that can be computed in AM.

Corollary 3.2. For any γ(n) = ω(
√
n log n), there exists a function g maps lattice bases to real numbers

such that g ∈ Rη-TFAM and λn(B) ≤ g(B) < γ(n) · λn(B).

Proof (Lemma 3.1). Entropy Difference (ED) is a complete problem for SZK, so gapfγ ∈ SZK implies the
existence of a reduction (x, y) 7→ (Cx,y, Dx,y) that maps input x together with a real number y to random
circuits Cx,y, Dx,y. Let Cx,y and Dx,y be the output distributions of Cx,y, Dx,y. The reduction from gapfγ to
ED satisfies the following properties:

– There is an efficient deterministic algorithm computing Cx,y, Dx,y given input (x, y).
– H(Cx,y)−H(Dx,y) > 2 for any x, y that y ≤ f(x).
– H(Cx,y)−H(Dx,y) < −1 for any x, y that y > γ(x) · f(x).

Define the clamp function

clamp(y) :=


1, if y ≥ 1;

y, if y ∈ (0, 1);

0, if y ≤ 0.

For any fixed constant µ > 1, define

g(x) = exp

(
lnµ ·

+∞∑
i=0

clamp(H(Cx,µi)−H(Dx,µi)) + lnµ ·
+∞∑
i=1

(
clamp(H(Cx,µ−i)−H(Dx,µ−i))− 1

))
.

As clamp(H(Cx,y)−H(Dx,y)) = 1 for y ≤ f(x),

g(x) ≥ exp
(
lnµ · dlogµ(f(x))e

)
≥ f(x).

As clamp(H(Cx,y)−H(Dx,y)) = 0 for y > γ(x) · f(x),

g(x) ≤ exp
(
lnµ · dlogµ(γ(x) · f(x))e

)
≤ µγ(x) · f(x).

In order to complete the proof, we show that g is in Rη-TFAM. For any input x, ĝ, the prover can prove
ĝ ≈ g(x) if ĝ = g(x).

Consider the following protocol, ε = 1/poly(m, ln γ) will be fixed later.

On any input x, define di = H(Cx,µi)−H(Dx,µi). And the honest prover should send d̂i = di. The prover

have to prove that di − ε < d̂i < di + ε. For µi ≤ f(x), d̂i ≥ di − ε ≥ 1, then clamp(d̂i) = 1 = clamp(di).

For µi ≥ µγ(x)f(x), d̂i ≤ di + ε ≤ 0, then clamp(d̂i) = 0 = clamp(di). For f(x) < µi < µγ(x)f(x),

| clamp(d̂i)− clamp(di)| ≤ |d̂i − di| < ε.

7



AM “protocol” on input (x, ĝ)

P: Send . . . , d̂−1, d̂0, d̂1, d̂2, . . . such that logµ ĝ =
∑∞
i=0 clamp(d̂i) +

∑∞
i=1(clamp(d̂−i)− 1)

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,µi)−H(Dx,µi) < d̂i + ε

Thus ∣∣∣ ln ĝ − ln g(x)

lnµ

∣∣∣ ≤∑
i∈Z

∣∣clamp(d̂i)− clamp(di)
∣∣

=
∑

f(x)<µi<µγ(x)f(x)

∣∣clamp(d̂i)− clamp(di)
∣∣

< dlogµ(µγ(x))eε

<
ln γ(x) + 2

lnµ
ε.

If ε is sufficiently small, ĝ would be close to g(x). To ensure |ĝ − g(x)| ≤ 1
mg(x), it is sufficient to set

ε = O( 1
m(ln γ(x)+2) ).

The above “protocol” is not a real protocol, as it requires the prover to send an infinite sequence to the
verifier. To compress the proof, the prover need a succinct interactive proof that dj > 1 for all j ≤ iL and
dj < 0 for all j ≥ iH .

For an index i, if the prover can convince the verifier that di = H(Cx,µi)−H(Dx,µi) < 2, the verifier also
learns that µi > g(x), thus for any j ≥ i+ dlogµ γ(x)e, µj > γ(x)g(x) and dj ≤ −1. Similarly, if the prover
can convince the verifier that di = H(Cx,µi) −H(Dx,µi) > −1 , the verifier also knows that dj ≥ 2 for any
j ≤ i− dlogµ γ(x)e.

Thus the real AM protocol that proves ĝ ∈ (g(x)− 1
m , g(x) + 1

m ) is the following:

AM protocol on input (x, ĝ, 1m)

P: Send d̂iL , d̂iL+1, . . . , d̂iH−1, d̂iH such that
– logµ ĝ = iL +

∑iH
i=iL

clamp(d̂i)
– iH = iL + 2dlogµ γ(x)e
– d̂iL+dlogµ γ(x)e > 0

– d̂iL+dlogµ γ(x)e+1 < 1

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,µi)−H(Dx,µi) < d̂i + ε
for ε = O( 1

m(ln γ(x)+2)
).

ut

4 Search SIVP and NP-hardness

Theorem 4.1. For any factor γ : N → R, if gapSIVPγ ∈ SZK and there exists a probabilistic polynomial-
time adaptive reduction from a language L to SIVP√n lnn·γ , then L ∈ AM ∩ coAM.

The smallest factor γ we knows that makes problem gapSIVPγ be in SZK comes from [PV08]: for any

factor γ(n) = ω(
√
n log n), problem gapSIVPγ is in SZK.

Corollary 4.2. For any factor γ(n) = ω(n log n), if there exists a probabilistic polynomial-time adaptive
reduction from a language L to SIVPγ , then L ∈ AM ∩ coAM.
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The proof of Theorem 4.1 is the combination of Lemma 4.3, Lemma 4.4 and Lemma 4.5. Problem
gapSIVPγ is in SZK and there is a reduction from language L to search problem SIVP√n lnn·γ . Lemma 4.3
shows that there is another reduction from L to sampling problem DGSs for any s satisfying

s(B) ∈ [λn(B),
√

lnn · γλn(B)]. (3)

Lemma 4.5 shows that there exists a function s satisfying (3) such that the sampling problem DGSs is
probability-verifiable. Therefore, there exists a reduction from L to a probability-verifiable sampling problem.
Finally, Lemma 4.4 shows that such a language L must live in AM ∩ coAM.

Lemma 4.3. Let s(·) be a function mapping lattice bases to real numbers, such that ∀B, λn(B) ≤ s(B) ≤
γ√
n
λn(B). Then there exists a probabilistic Turing reduction from SIVPγ to DGSs.

Lemma 4.4. If there exists a probabilistic Turing reduction from a promise problem L = (LY , LN ) to
probability-verifiable sampling problems, then L ∈ AM ∩ coAM.

Lemma 4.5. For any factor γ : N → R, if gapSIVPγ(n)/
√
lnn ∈ SZK, then there exists a function s(·)

mapping lattice bases to real numbers, such that ∀B, s(B) ∈ [λn(B), γ(n) · λn(B)] and DGSs is probability-
verifiable.

By combining Lemma 4.4, Lemma 4.5 and [PV08], we can also show that discrete Gaussian sampling
with width Õ(

√
n) · λn is not NP-hard unless the polynomial hierarchy collapses.

Theorem 4.6. If there exists a probabilistic Turing reduction from a promise problem L to DGSs for s(B) =
ω(
√
n log n) · λn(B), then L ∈ AM ∩ coAM.

4.1 From Search SIVP to Discrete Gaussian Sampling

This section proves Lemma 4.3, which is essentially Lemma 3.17 in Regev’s work [Reg09]. Informally speaking,
Regev shows a reduction from SIVPγ to DGSγ/

√
n for γ = Ω(

√
n log n); Lemma 4.3 uses similar technique to

construct a reduction from SIVPγ to DGSγ/
√
n for γ = Ω(

√
n).

The reduction from SIVPγ to discrete Gaussian sampling is straightforward: Sample n2 times from discrete
Gaussian distribution of width s ∈ [λn,

γ√
n
λn]. The sampled vectors contain n short, linearly independent

vectors with probability exponentially close to 1.
In order to prove Lemma 4.3, we shows that if n2 vectors are sampled from discrete Gaussian NL(B),s(B),

the following two “bad events” occurs with probability exponentially small.

– One of the sampled vectors is too long, its Euclidean norm is larger than γλn(B).
– The sampled vectors are not full rank.

Lemma 2.2 bounds the probability that an overlong vector is sampled from a discrete Gaussian distribu-
tion. Let the constant c in formula (2) equals 1,

Pr
v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
=
ρs(L(B) \ s

√
nB)

ρs(L(B))
<
(√

2πe · e−π
)n

< 0.2n.

As γ(n) · λn(B) ≥
√
n · s(B),

Pr
v←NL(B),s(B)

[
‖v‖ > γλn(B)

]
≤ Pr

v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
< 0.2n,

which is exponentially small.
To prove that the n2 sampled vectors span the whole space, we need a lower bound on the probability a

newly sampled vector is linear independent from the previous ones. Lemma 4.7 shows such a lower bound,
improves [Reg09, Lemma 3.15] by a factor of

√
lnn (the so-called smoothing parameter).
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Lemma 4.7. For any n-dimensional lattice L, real number s ≥ λn(L) and for any proper linear subspace
V ( Rn, the probability Prv←NL,s [v 6∈ V] is at least 1/20.

Proof. By the definition of successive minimum, there exists u ∈ L\V such that ‖u‖ ≤ λn(L). Let L′ denote
L∩V. As L is closed under addition, L′+ u,L′−u are subsets of L. Moreover, as V is closed under addition
and u /∈ V, the sets L′ + u,L′,L′ − u are disjointed.

Pr
v←NL,s

[v ∈ V] =
ρs(L′)
ρs(L)

≤ ρs(L′)
ρs(L′ − u) + ρs(L′) + ρs(L′ + u)

=

∑
v∈L′ ρs(v)∑

v∈L′
(
ρs(v − u) + ρs(v) + ρs(v + u)

)
As ‖u‖ ≤ λn(L) ≤ s, for any vector v

ρs(v − u) + ρs(v + u) = e−π‖v−u‖
2/s2 + e−π‖v−u‖

2/s2

= (e−2π〈u,v〉/s
2

+ e2π〈u,v〉/s
2

)e−π‖u‖
2/s2e−π‖v‖

2/s2 ≤ 2e−πρs(v)

Thus

Pr
v←NL,s

[v ∈ V] ≤
∑

v∈L′ ρs(v)∑
v∈L′(1 + 2e−π/22)ρs(v)

=
1

1 + 2e−π
≈ 0.92.

ut

Assume k vectors has been sampled from NL(B),s(B) and their dimension is strictly less than n. By
Lemma 4.7, the next n sampled vectors contain a vector linearly independent from the first k with probability
exponentially close to 1. By union bound, n2 samples from NL(B),s(B) contains n linearly independent vectors
with probability exponentially close to 1.

4.2 Probability-Verifiable Sampling Problem and NP-hardness

This section proves Lemma 4.4, which is a generalization of [BB15], the proof techniques are similar.
Let M be the reduction from a promise problem L = (LY , LN ) to S. For a given input x, we want to

distinguish between Pr[MS(x)→ 1] ≥ 8/9 and Pr[MS(x)→ 1] ≤ 1/9 in AM. Notice that the randomness
includes the random tape of M and the randomness S used to answer each query.

A transcript of an execution ofMS(x) is an tuple (r, pd1, v1, pd2, v2, . . . , pdT , vT ) consists of the random
tape ofM, all queries to S and the correlated answers. The transcript fully determined the executionMS(x),
and

Pr[MS(x)→ 1] =
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT )

determines a execution whereMS(x)→1

Pr[(r, pd1, v1, pd2, v2, . . . , pdT , vT )]

=
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT )

determines a execution whereMS(x)→1

Pr[r]

T∏
t=1

Ppdt(vt).

In the proof, we construct an AM protocol that estimates this sum.

Proof of Lemma 4.4 It’s sufficient to show that L = (LY , LN ) ∈ AM. Then the same argument would shows
L̄ = (LN , LY ) ∈ AM, which implies L ∈ coAM.

L can be efficiently reduced to a probability-verifiable sampling problem. Let S denote a correlated
sampling oracle. The reduction is a probability polynomial-time oracle algorithm M such that

x ∈ LY =⇒ Pr[MS(x)→ 1] ≥ 8

9
,

x ∈ LN =⇒ Pr[MS(x)→ 1] ≤ 1

9
.

(4)
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The probability is over the random tape of M and the randomness used by S. Without loss of generality,
assume there exists T = poly(n) that M uses T bits of randomness and makes T queries on any input
x ∈ {0, 1}n.

Define a transcript of an execution MS(x) as a tuple (r, pd1, v1, pd2, v2, . . . , pdT , vT ) where r ∈ {0, 1}T
is the random tape of M, pdt is the t-th query to sampling oracle S and vt is the t-th sample returned by
S. The length of vt is bounded by some polynomial of n, let `(n) be a polynomial that upper bound |vt|.

Note that the input, the random tape and oracle’s answers fully determine the reduction. Given the
input and random tape, the reduction’s first query is predictable; given the input, random tape and the
oracle’s previous answers, the reduction’s next query is predictable. Therefore, we define a transcript σ =
(r, pd1, v1, pd2, v2, . . . , pdT , vT ) to be valid, if it’s potentially a transcript of an execution MS(x), i.e. if for
all 1 ≤ t ≤ T , pdt would the t-th query in execution MS(x) when r is the random tape and v1, . . . , vt−1
is the oracle’s previous answers. By this definition, σ is a valid transcript doesn’t implies vt has non-zero
probability under distribution pdt. Let C(x) denote the set of all valid transcripts of MS(x).

The transcript also determines the output of the reduction. Define a transcript σ to be accepting, if σ is
valid and the corresponding executionMS(x) output 1. Let C1(x) denote the set of all accepting transcripts
of MS(x).

Let Px(σ) denote the probability that σ is the transcript of MS(x) when the random tape is uniformly
chosen and S is an ideal sampling oracle. Then by chain rule,

Px(σ) =
1

2T

T∏
t=1

Ppdt(vt)

for any valid transcript σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ). For any input x, we know C1(x) ⊆ C(x),∑
σ∈C(x)

Px(σ) = 1,
∑

σ∈C1(x)

Px(σ) = Pr[MS(x)→ 1]

by the definition of valid/accepting transcripts. Thus, by condition (4), to distinguish between x ∈ LY and
x ∈ LN , it’s sufficient to distinguish between

∑
σ∈C1(x)

Px(σ) ≥ 8/9 and
∑
σ∈C1(x)

Px(σ) ≤ 1/9.

Define D(x) as the set of all tuple (σ, k) such that σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ) ∈ C1(x), and k is
an integer that

1 ≤ k ≤ K · Px(σ) = K · 1

2T

T∏
t=1

Ppdt(vt)

where K = 10 · 2T · 2T (`+1). Then the size of D(x) is roughly K · Pr[MS(x)→ 1] if K is sufficiently large.
The sampling problem is probability-verifiable. By definition, there exists a family of error function

{ηpd,m} such that for any pd,m, the error function ηpd,m : {0, 1}∗ → [0,+∞) satisfies
∑
v ηpd,m(v) ≤ 1, and

the promise problem

– YES instances: (pd, v, p̂, 1m) such that p̂ = Ppd(v)
– NO instances: (pd, v, p̂, 1m) such that p̂ ≥ Ppd(v) + 1

mηpd,m(v)

is in AM. Let ProbLowerBound be the corresponding AM protocol.
Let set D′(x) consist of all tuple (σ, k) such that σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ) ∈ C1(x), and k is

an integer that

1 ≤ k ≤ K · 1

2T

T∏
t=1

(
Ppdt(vt) +

1

T
ηpdt,T (vt)

)
.

Here K = 10 · 2T · 2T (`+1) as in the definition of D(x). By definition, D(x) ⊆ D′(x).

Claim. The promise problem

– YES instances: (x, σ, k) such that (σ, k) ∈ D(x)
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– NO instances: (x, σ, k) such that (σ, k) /∈ D′(x)

is in AM.

Proof. TranscriptChecking is an AM protocol that solves this promise problem.

AM protocol TranscriptChecking on input (x, σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ), k)

V: Check whether σ is a valid accepting transcript of MS(x); Reject if not
P: Send p̂1, . . . , p̂T , an honest prover should send p̂t = Ppdt(vt)
P,V: Run protocol ProbLowerBound(pdt, vt, 1

10T ) for all 1 ≤ t ≤ T , repeat polynomial many times in parallel and
take majority so that the total error probability is exponentially small; Reject if either of these protocols reject.

V: Check whether 1 ≤ k ≤ K · 1
2T

∏q
i=1 p̂i; Reject if not

For (σ, k) ∈ D(x), an honest prover could convince the verifier that to accept (x, σ, k).

Any prover, even if it’s malicious, should send p̂t such that p̂t ≤ Ppdt(vt) + 1
10T ηpdt,10T (vt). Otherwise

the prover will be caught in ProbLowerBound protocol with overwhelming probability. Thus no prover can
make the verifier accept (x, σ, k) with high probability if (σ, k) /∈ D′(x). ut

Claim. The size of D(x) is at least 2
3K if x ∈ LY .

Proof. x ∈ LY implies that Pr[MS(x)→ 1] ≥ 8
9 . Thus

|D(x)| =
∑

σ∈C1(x)

bK · Px(σ)c

≥
∑

σ∈C1(x)

(K · Px(σ)− 1)

= K ·
∑

σ∈C1(x)

Px(σ)− |C1(x)|

≥ K · Pr[MS(x)→ 1]− |C(x)|

≥ 8

9
K − 2T · 2T (`+1)

=
8

9
K − 1

10
K

≥ 2

3
K

ut

Claim. D′(x) has size at most 1
3K if x ∈ LN .

12



Proof. x ∈ LN implies that Pr[MS(x)→ 1] ≤ 1
9 .

|D′(x)| =
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

⌊
K · 1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)⌋

≤ K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)

= K ·
∑

σ=(r,pd1,...,vT )∈C1(x)

(
1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏
t=1

Ppdt(vt)

)

+K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

1

2T

T∏
t=1

Ppdt(vt)

≤ K ·
∑

σ=(r,pd1,...,vT )∈C(x)

(
1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏
t=1

Ppdt(vt)

)
+K · Pr[MS(x)→ 1]

≤ (e1/10 − 1)K +
1

9
K

≤ 1

3
K.

The second to last inequality symbol relies on the following inequality,∑
σ=(r,pd1,v1,...,pdT ,vT )∈C(x)

(
1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

))

=
∑

(r,pd1,v1,...,pdT−1,vT−1,pdT )

∃vT (r,pd1,v1,...,pdT ,vT )∈C(x)

(
1

2T

T−1∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)
·

∑
v

(
PpdT (v) +

1

10T
ηpdT ,10T (v)

))

≤
∑

(r,pd1,v1,...,pdT−1,vT−1)

∃pdT ,vT (r,pd1,...,vT )∈C(x)

(
1

2T

T−1∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)(
1 +

1

10T

))

...

≤
∑

r∈{0,1}T

1

2T

(
1 +

1

10T

)T
≤
(

1 +
1

10T

)T
≤ e1/10.

ut
Combining the claims above, L can be reduced to the following promise problem

– YES instances: x such that |D′(x)| ≥ |D(x)| ≥ 2
3K;

– NO instances: x such that |D(x)| ≤ |D′(x)| ≤ 1
3K.

This promise problem can be solved in AM using the set lower bound protocol of Goldwasser and Sipser
[GS86]. Thus L ∈ AM.
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4.3 DGSs is Probability-Verifiable

By Lemma 3.1, for any approximation factor γ, if gapSIVPγ/µ ∈ SZK for any constant µ > 1, there exists a
function g maps lattice bases to real numbers such that g is in Rη-TFAM and λn(B) ≤ g(B) < γ(n)λn(B).

For any basis B and lattice point v ∈ L(B), as g ∈ Rη-TFAM, the verifier can force the prover to
provide a sufficiently accurate estimation of g(B), denoted by ĝ. As ĝ ≈ g(B) ≥ λn(B), the verifier can ask
the prover to provide a set of linearly independent vectors W = (w1, . . . ,wn) such that ‖W‖ ≤ ĝ. Here the
length of a vector set, e.g. ‖W‖, is defined as the length of the longest vector in the set.

Given such a short independent vector set W, there exists an efficient algorithm that samples from
discrete Gaussian distribution NL(B),ŝ such that ŝ = Θ(

√
log n) · ĝ [BLP+13,GPV08]. Moreover, the verifier

can estimate the probability that v is sampled from NL(B),ŝ using the set lower bound protocol.
Let s(B) = Θ(

√
log n) · g(B), then ŝ is a good estimation of s(B). If the bias between ŝ and s(B) is

sufficiently small, one could expect Pr[v← NL(B),ŝ] ≈ Pr[v← NL(B),s(B)].

Proof (Lemma 4.5). By Lemma 3.1, for sufficiently large n, gapSIVPγ(n)/
√
lnn ∈ SZK implies the ex-

istence of a function g maps lattice bases to real numbers such that g is in Rη-TFAM and g(B) ∈

[λn(B), γ(n)/
√

ln(2n+ 4)/π · λn(B)]. Here n ≥ 2 is sufficiently large, as it implies
γ(n)/
√

ln(2n+4)/π

γ(n)/
√
lnn

≥ 1.01.

Define s(B) =
√

ln(2n+ 4)/π · g(B), thus for sufficiently large n

λn(B) ≤
√

ln(2n+ 4)/π · λn(B) ≤ s(B) < γ(n)λn(B).

Given any basis B, vector v ∈ L(B) and precision parameter m, the verifier can learn a good estimation
on g(B), denoted by ĝ. As g(B) ≥ λn(B), the verifier could ask the prover to provide a set of linearly
independent vectors of L(B), denoted by W, such that ‖W‖ ≤ ĝ.

Given a set of linearly independent vectors W that ‖W‖ ≤ ĝ, there is an efficient algorithm which
samples from discrete Gaussian NL(B),

√
ln(2n+4)/π·ĝ [BLP+13]. Let S denote this sampling algorithm. Let

ŝ =
√

ln(2n+ 4)/π · ĝ, then ŝ is a good approximation of s(B). Let r be the random tape in the sampling
algorithm S, then

Pr[v← NL(B),ŝ] =
{r : S(B′, ŝ) outputs v when r is the random input tape}

2|r|
.

We could use the set lower bound protocol to lower bound this probability Pr[v ← NL(B),ŝ]. Thus the
promise problem

– YES instances: (W,v, ŝ, p̂, 1m) such that v ∈ L, ‖W̃‖ ≤ ŝ√
ln(2n+4)/π

, p̂ = Pr[v← NL(B),ŝ]

– NO instances: (W,v, ŝ, p̂, 1m) such that p̂ ≥ (1 + 1
m ) Pr[v← NL(B),ŝ]

is in AM, as it can be solved by protocol ProbLowerBound.

AM protocol ProbLowerBound on input (B,v, p̂, 1m)

P: Send ĝ, an honest prover should send ĝ = g(B)
P,V: Convince the verifier that |ĝ − g(B)| ≤ cδ · g(B),

where δ = 1
nm2 , c is a sufficiently small constant

P: Send W = (x′1, . . . ,x
′
n)

V: Check if W is a basis of L(B) and ‖W̃‖ ≤ ĝ
P,V: Run the set lower bound protocol to convince the verifier that p̂ ≤ (1 + 1

2m
) Pr[v ← NL(B),ŝ], where ŝ =√

ln(2n+ 4)/π · ĝ

To prove DGSs is probability-verifiable, it is sufficient to show that ProbLowerBound is an AM protocol
that estimates the probability Pr[v← NL(B),ŝ] with high accuracy. The estimation error of ProbLowerBound
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has two sources: (a) the inaccuracy of the set lower bound protocol, which introduce an O( 1
m ) multiplicative

error; and (b) the inaccuracy when estimating s(B). Let ηB(v) be the estimation error, the error term
satisfies

NB,s(B)(v) + ηB(v) ≤
(

1 +
1

2m

)
max

|ŝ−s(B)|≤δ·s(B)
NB,ŝ(v) (5)

To complete the proof, it is sufficient to show that
∑

v∈L(B) ηB(v) = O( 1
m ). By summing (5) over v ∈ L(B),

1 +
∑

v∈L(B)

ηB(v) ≤
(

1 +
1

2m

) ∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v).

Thus it is sufficient to show ∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) ≤ 1 +O(
1

m
). (6)

Which is proved as∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) =
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

ρŝ(v)

ρŝ(L(B))

≤
∑

v∈L(B)

max|ŝ−s(B)|≤δ·s(B) ρŝ(v)

min|ŝ−s(B)|≤δ·s(B) ρŝ(L(B))

≤
ρ(1+δ)s(L(B))

ρ(1−δ)s(L(B))

≤ (
1 + δ

1− δ
)n

= O(
1

mn
)

(7)

The last inequality is due to Lemma 2.1. ut
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