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Abstract. We show that any multi-party functionality can be evalu-
ated using a two-round protocol with perfect correctness and perfect
semi-honest security, provided that the majority of parties are honest.
This settles the round complexity of information-theoretic semi-honest
MPC, resolving a longstanding open question (cf. Ishai and Kushilevitz,
FOCS 2000). The protocol is efficient for NC1 functionalities. Further-
more, given black-box access to a one-way function, the protocol can
be made efficient for any polynomial functionality, at the cost of only
guaranteeing computational security.

Technically, we extend and relax the notion of randomized encoding to
specifically address multi-party functionalities. The property of a multi-
party randomized encoding (MPRE) is that if the functionality g is an
encoding of the functionality f , then for any (permitted) coalition of
players, their respective outputs and inputs in g allow them to simulate
their respective inputs and outputs in f , without learning anything else,
including the other outputs of f .

1 Introduction

Secure multi-party computation (MPC) is perhaps the most generic crypto-
graphic task. A collection of n parties, each with its own input xi, wish to
jointly compute function of all of their inputs (y1, . . . , yn) = f(x1, . . . , xn) so
that each party learns its yi and nothing else, and even a coalition of adversarial
players should not learn more than the collection of outputs of its members.
Throughout this work, we will be concerned with the most basic variant of this
problem, denoted as private computation, where even adversarial parties are as-
sumed to follow the protocol but try to learn as much as they can from their
view (a.k.a semi-honest adversaries). Unless stated otherwise, we further assume
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that the adversary is computationally unbounded, and correspondingly, require
information-theoretic (perfect) privacy.

The seminal works of Ben-Or, Goldwasser and Wigderson [7] and Chaum,
Crépeau and Damg̊ard [11] established that in this setting security for non-trivial
functions can only be achieved if the adversarial coalition includes strictly less
than half of the total number of parties (a.k.a honest majority). They showed
that in the presence of honest majority, any function f can be privately com-
puted, thus existentially resolving the problem.

However, as with all computational tasks, one wishes to minimize the re-
sources required to carry out an MPC protocols. A resource that received much
attention is the round complexity: the number of rounds of communication re-
quired to carry out the protocol. We consider the standard simultaneous commu-
nication model where at each round each party can send a message to any other
party, but these messages can only depend on information received in previ-
ous rounds. The aforementioned [7, 11] solutions depend on the (multiplicative)
depth of (the arithmetic representation of) the function f . For depth d, they
require d rounds of communication (and the communication and computational
complexity are polynomial in the number of parties n and the circuit size of
f). In terms of lower bound, it is not hard to show that most functions cannot
be privately computed with less than two rounds, but no better lower bound is
known.

Constant-round information-theoretic protocols were first constructed by Bar-
Ilan and Beaver [5] and were later extended in several works (cf. [13]). Ishai and
Kushilevitz [21, 22] approached the 2-round lower bound: They presented a 3-
round protocol, and in fact showed that a 2-round protocol is possible if instead
of honest majority one requires that more than two-thirds of the parties are
honest. Ishai and Kushilevitz note that their methods fall short of achieving the
ultimate result and leave it as an open problem to resolve whether it is possible
to achieve 2-round honest-majority protocol for all functions [21, Section 6]:

“An open question of a somewhat different flavor is that of finding the exact
number of rounds required for privately evaluating an arbitrary (i.e., a

worst-case) function f with an optimal privacy threshold. Using randomizing
polynomials, an upper bound of 3 was obtained. If this bound is tight (i.e., 2

rounds are not enough) then, in a very crude sense, the randomizing
polynomials approach is non-restrictive.”

In this work, we resolve the aforementioned open question. We show that in-
deed any functionality can be privately computed in a 2-round protocol that only
requires honest majority. The communication and computational complexity are
asymptotically comparable to previous solutions.

Theorem 1 (2-round unconditional MPC). At the presence of honest ma-
jority, privately computing any functionality with perfect correctness and perfect
privacy reduces non-interactively to the task of privately computing a degree-2
functionality. Consequently, in this setting, any function f can be privately com-
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puted in two rounds with polynomial efficiency in the number of parties and in
the size of the formula (or even branching program) that computes f .3

Furthermore, under the assumption that one-way functions exist, it is possi-
ble to improve the computational and communication complexity to polynomial
in the size of the circuit computing f (rather than its formula size or exponen-
tial in the circuit depth), at the cost of only achieving computational security.
Note that the honest majority condition cannot be lifted in this setting (unless
one-way functions imply oblivious transfer).

Theorem 2 (2-round MPC in minicrypt). Assume the existence of one-
way functions. Then, privately computing any polynomial-time functionality with
computational privacy and honest majority reduces non-interactively to the task
of privately computing a polynomial-time computable degree-2 functionality. Con-
sequently, in this setting, any function f can be privately computed in two rounds
with polynomial efficiency in the number of parties and the circuit size of f . The
protocol makes only a black-box use of the one-way function.

Prior to this work, Beaver, Micali and Rogaway [6, 24] (henceforth BMR) con-
structed the first constant-round computationally private MPC assuming honest
majority and one-way functions. A careful analysis of their construction leads
to 3 rounds.4

See Section 1.3 below for comparison with recent related results such as [1,14].

The Client-Server Setting. Our results extend to the so-called client-server set-
ting [12], which considers a communication graph of the following form: A set of
clients that have inputs send messages (in a single round) to a set of servers, the
servers perform local computation and send messages (in a single round) back
to the clients, who can then recover their outputs. Our methods show how to
achieve security in the semi-honest setting so long as there is an honest majority
among clients and an honest majority among servers. We note that ideally we
would like to only require honest majority among servers, our methods provide a
path towards this goal but falls short of achieving it. (This point will be further
discussed towards the end of Section 1.1.)

1.1 Our Techniques

Ishai and Kushilevitz introduced the notion of randomizing polynomials, which
was since generalized to the notion of randomized encoding (RE) [3]. A function
f is encoded by a function g if the output of g allows to reconstruct the output of
f and nothing else. The [21] result essentially shows that any function f can be
encoded by a function g of multiplicative degree 3 (over the binary field). Thus,

3 Branching programs (BP) are believed to be more powerful than formulas since the
BP complexity of any function is at most polynomial in its formula size, whereas the
converse is believed to be false.

4 Throughout the paper, we refer to the simplified version of the BMR protocol that
appears in Rogaway’s thesis [24].
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instead of applying the [7, 11] protocol to compute the function f directly, it is
possible to apply it to compute g (the encoding of f). Since degree 3 functions
can be computed in 3 rounds with honest majority, or in 2 rounds if more
than two-thirds of the parties are honest, the encoding of [21, 22] implies MPC
protocols with these properties for all functions. We note that the computational
complexity and output length of the encoding g may be significantly larger than
those of f and indeed scale (roughly) polynomially with its formula size. An
additional minor caveat is that the encoding g is a randomized function, even if f
was deterministic. This is resolved using the standard technique of secret sharing
the random tape between all users, i.e. each user holds private randomness and
the function g is computed with a random tape that is the XOR of all private
tapes. This transformation does not effect the multiplicative degree and therefore
does not change the round complexity of the resulting protocol (though it incurs
a poly(n) factor in computational and communication complexity).

It is evident from the above outline that if one could find a RE with mul-
tiplicative degree 2, the round complexity of MPC will be resolved. However,
it was shown in [21] that such randomized encodings do not exist, at least if
perfect correctness and security are sought (we recall that our solution achieves
perfect correctness and security). The quotation above therefore suggests that
the resolution of the round complexity of MPC will also resolve the question of
optimality of the RE approach to the problem.

In this work, we show that indeed RE is too restrictive to resolve the round
complexity problem. We present a natural generalization that we call multi-
party randomized encoding (MPRE). This object allows to analyze randomized
encodings in the specific context of MPC, and naturally translate it to protocols
similarly to RE. While RE encodes a computation and ignores the partitioning
of inputs between the parties, an MPRE takes into account the way that in-
puts and outputs are distributed among parties. Correspondingly, this notion
of encoding allows to encode a multiparty functionality by another multiparty
functionality (in contrast to the RE notion which allows to encode a function by
another function). In this sense MPRE is much closer in spirit to MPC protocols,
and one can easily go from protocols to MPREs and back. Being a multiparty
functionality, in MPRE inputs are split between different parties who may also
employ private local randomness (which does not make sense in the context of
standard RE). The round complexity of the protocol induced by the MPRE de-
pends on the effective degree, which allows preprocessing of local randomness.
Theorem 1 follows by showing that any functionality has MPRE with effective
degree 2 which is private against adversarial minority.

Multi-Party Randomized Encoding (MPRE). The definition of MPRE is in-
spired by that of RE, but with the emphasis that inputs and outputs can belong
to different players. If we consider a multi-party functionality f(x1, . . . , xn) =
(y1, . . . , yn), then an MPRE of f would be a randomized functionality

g((x1, r1), . . . , (xn, rn); s) = (z1, . . . , zn),
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where s is a global random string (which, we bear in mind, will be shared among
users when a protocol is to be derived) and ri is the local random string of
player i. Decoding requires that for each i, yi can be recovered from zi. The
privacy requirement is that for any “legitimate” adversarial coalition A ⊆ [n],
the r and z values of all players in A can be simulated given their x and y
values. In the context of honest majority we can consider protecting against all
A of cardinality strictly less than n/2, but the MPRE notion is more general
and allows some function classes to be encoded while allowing any adversarial
A ⊆ [n] (indeed we show such an encoding for a useful class). It is possible to
show the expected composition theorem, arguing that if g is MPRE of f which
is private against some class of adversarial coalitions A1 ⊆ 2[n], and there is a
protocol that privately computes g against some class of adversarial coalitions
A2 ⊆ 2[n], then the same protocol (augmented with local decoding) can be used
to compute f , and is private against A1∩A2. It thus follows that if g is MPRE of
f which is private against all adversarial minorities, and if g has effective degree
2 (allowing preprocessing of local randomness), then f has a 2-round protocol
which is private against any adversarial minority.5 Showing that all functions
have such encoding will be our goal towards proving Theorem 1. For formal
definitions of MPRE, composition and relation to other notions see Section 3.

How to Encode Any Function. As explained above, our goal is to show that any
functionality f(x1, . . . , xn) = (y1, . . . , yn) has an encoding that is both secure
against all adversarial minorities and has effective degree 2. We do this in a
sequence of steps. The first step is noticing that we can get a “friendly” MPRE
from any protocol for computing f , even one with many rounds. We stress that
this will not be our final MPRE. The definition of this MPRE g is straightfor-
ward: the output of party i is simply its view in the protocol, augmented with all
the intermediate values computed locally by i. Note that this new functionality
now requires local randomness of the parties. The fact that these views were
generated by a protocol will be of particular use to us since the outputs of g can
be viewed as wires of a boolean circuit, where each wire belongs to a different
party in the computation. The view of each party in the protocol (i.e. its output
in the functionality g) consists of values that it received from other parties, and
values that it computed locally. We can thus envision a circuit whose gates are
“owned” by players, and there are additional syntactic “transmission gates” that
represent a message passing from one player to the other. Transmission gates do
not have any functionality but rather represent change of ownership, still they
will be useful for our next step. We call such an MPRE “protocol compatible”
and describe their properties formally in Section 4. Specifically, we will consider
the MPRE induced (essentially) by the 3-round protocol that is based on [7,22].

By employing a composition theorem for MPRE, it suffices to encode the
functionality g by an MPRE h of effective degree 2. Indeed, we show that any
protocol-compatible functionality g (i.e. one whose outputs can be represented as

5 In fact, we show that the computation of f privately reduces to g via a non-interactive
reduction that makes a single call to g.
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local views of parties in a multi-party protocol, or equivalently as wires of a cir-
cuit of the structure described above), can be encoded with effective degree-2 and
privacy against any adversarial coalition. The MPRE takes great resemblance
to the well known RE scheme that is based on information-theoretic garbled
circuit [22]. (Specifically, it is based on the point-and-permute variant of Yao’s
garbled circuit [6,24,26].) This randomized encoding scheme takes a circuit, and
for each wire it samples two wire keys and a permutation bit, and its output is a
list of “garbled tables” together with the permutation bits of the output wires.
Expressing this in algebraic form leads to degree 3 randomized encoding. More
generally, the degree of each garbled gate G is deg(G) + 1.

In our MPRE, the wire keys will be sampled using the global randomness
(which down the line is shared between all parties). Crucially, the permutation
bits will be generated using the local randomness of the party that “owns”
this wire, as per the protocol compatible functionality. One can verify that this
description results in an encoding with effective degree 2. Indeed, the encoding
consists of two type of gates: local-computation gates and transmission gates. In
local-computation gates G, the input and output wires of the gate are owned by
the same party, thus this party can preprocess the permutation bits and reduce
the degree to 2. In the case of transmission gates, the fan-in is 1, and so the
degree is only 2. The same proof as in [4, 6, 22, 24] can be used to show MPRE
privacy. The construction is described in detail in Section 5.

Putting the two components together results in an MPRE h for every f
which is secure against all adversarial minorities and has effective degree 2,
giving rise to our final 2-round protocol. The computational and communication
complexity are analyzed in the respective sections. Section 6 contains the proof
of Theorem 1, putting together all relevant components.

The Computational Setting. To prove Theorem 2, we start with the standard
observation that for shallow circuits the computational and communication com-
plexity of the information theoretic protocol are polynomial. We again use stan-
dard properties of the [6] protocol, to obtain an MPRE that can be written as
an evaluation of a shallow circuit over values that are computed locally by the
players with a black-box access to a pseudorandom generator. This allows us to
apply Theorem 1 towards proving Theorem 2. See Section 6 for details.

The Client-Server Setting and an Open Problem. MPREs are applicable to the
client-server setting in an immediate manner. Let g be an MPRE of f which
is secure against some class of adversarial coalitions A. Assume that g can be
computed in the client-server setting with security against a class A of client
coalitions and a class B of server coalitions. Then f is computable in the client-
server setting with security against A client coalitions and B server coalitions.

In our setting, we show that all functions f have g with effective degree 2 and
security against dishonest minority. One can verify that the protocols of [7, 11],
when applied to degree 2 functions, imply client-server protocols with security
against arbitrary client collusion and dishonest server minority. The conclusion
is that security is achieved if there is honest majority of both clients and servers.
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This application constitutes an additional motivation to investigate whether
every function f has an MPRE g with effective degree 2 and security against
arbitrary collusion. We are not aware of any impossibility result for such encoding
(in particular, honest majority will still be needed for our MPC application in
order to compute g). Its existence, however, will allow to remove the requirement
for honest majority of clients in the client-server setting and is expected to have
other interesting consequences.

1.2 Broader Perspective: Degree vs. Round Complexity

Since the pioneering constructions of perfect MPC [7,11], there appears to be a
tight relation between the round complexity of privately computing a function-
ality f at the presence of honest majority to its algebraic degree. This relation
was refined by [21], who showed that instead of considering the degree of f , one

should focus on the degree of a RE f̂ of f . Our work further replaces the notion
of RE-degree with the effective degree of an MPRE f̂ of f . As a result, we finally
prove the conjectured equivalence between round complexity and (the “right”
notion of) degree.

It is instructive to take a closer look at the notion of effective degree and see
how it relates to existing notions. Recall that effective degree essentially allows
the parties to apply arbitrary local-preprocessing of their private randomness
(and inputs) “for free”, without charging it towards the degree. This relaxation
is crucial for our results. Indeed, it can be shown that degree-d MPRE directly
imply degree-d RE (see full version). Also observe that the notion of effective

degree inherently requires to treat the encoding f̂ as a multiparty functionality,
and therefore effective degree becomes meaningless in the case of RE. In this
sense, MPRE is a convenient intermediate point between a protocol to RE;
It takes into account the views of different players (which is crucial for defining
effective degree) while being a non-interactive (and therefore easy to manipulate)
object.

Let us further note that the methodology of degree-reduction via local pre-
processing is not new. In particular, it is crucially employed in classical constant-
round MPC protocols including Yao’s two-party protocol [26] and its multiparty
variant [6, 24]. Using our terminology, these protocols implicitly yield compu-
tational MPRE of constant effective degree. In particular, assuming one-way
functions, Yao’s protocol yields a computational MPRE of effective degree 2 for
any efficiently computable 2-party functionality, and the BMR protocol yields
a computational MPRE of effective degree 3 for any efficiently computable n-
party functionality. Indeed, an important part of our conceptual contribution is
to provide a formal, easy-to-handle, framework that captures this use of degree-
reduction via preprocessing.

1.3 Other Related Works

Benhamouda and Lin [8] and Garg and Srinivasan [16] have recently constructed
2-round computationally-private protocols for arbitrary (efficiently computable)
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functions. This result is incomparable to Theorem 2: It does not require honest
majority (i.e., privacy holds against arbitrary coalitions), but relies on a stronger
computational assumption (the existence of (two-round) Oblivious Transfer which
is minimal in this setting). We further note that our high level approach shares
some similarities with these works. Indeed, our notion of MPRE abstracts and
generalizes the notion of garbled protocols, introduced by Garg and Srinivasan [15],
which plays a key role in both [8] and [16].

Independently of our work, two recent papers study the notion of minimal
round complexity for MPC in the honest majority setting. Ananth et al. [1] fo-
cus on secure computation in the presence of certain types of active (malicious)
adversaries, and present protocols under the assumption of honest majority in
addition to some computational and/or setup assumptions. Most relevant to our
work is a consequence of one of their result showing that based on one-way func-
tions there is a 2-round protocol against semi-honest adversarial minority (in
fact, they achieve a stronger notion called “security with abort”). Contrary to
our work, the [1] protocol is not applicable in the information theoretic setting,
and therefore does not have bearing on the question of MPC with perfect se-
curity. Furthermore, our approach shows a reduction from the computation of
general functionalities to the computation of degree-2 functionalities, which is
not achieved by [1] (even implicitly, as far as we can tell).

Garg, Ishai and Srinivasan [14] study the construction of information the-
oretic security for semi-honest MPC in various settings. Most relevant to this
work is their construction of a 2-round protocol with perfect security for for-
mulas. However, in their protocol, unlike ours, communication complexity grows
super-polynomially with the number of players. One can again attribute this to
falling short of reducing the general MPC task to the task of computing degree-2
functionalities.

Acknowledgements. We are grateful to Yuval Ishai, Akshayaram Srinivasan,
Muthuramakrishnan Venkitasubramaniam, and Hoteck Wee for valuable dis-
cussions and to the anonymous referees of TCC 2018 for carefully reading this
paper and for providing us with helpful feedback.

1.4 Paper Organization

We begin with some general background on multiparty functionalities and secure
multiparty computation in Section 2. In Section 3, we introduce the notion of
multipatry randomized encoding, and discuss its properties. In Section 4 we show
how to use MPC protocols (in particular [7]) to obtain “protocol-compatible”
MPRE, and in Section 5 show how to transform such an encoding into a degree-2
MPRE based on information-theoretic garbled circuits. Section 6 uses these tools
to prove our main theorems. Some of the proofs are omitted from this version
and can be found in the full version (available on eprint).



Perfect Secure Computation in Two Rounds 9

2 Preliminaries

This section defines multiparty functionalities and provides some basic back-
ground on secure computation. It will convenient to use a somewhat non-standard
notation for functionalities, and so even an expert reader may want to read this
part carefully. (In contrast, the MPC subsection can be safely skipped.)

2.1 Multi-Party Functionalities

An n-party functionality is a function that maps the inputs of n parties to a vec-
tor of outputs that are distributed among the parties. Without loss of generality,
we assume that the inputs of each party are taken from some fixed input domain
X (e.g., bit strings of fixed length). It will be convenient to represent a function-
ality by a pair f : Xn → {0, 1}m and P : [m] → 2[n]. The function f maps the
joint inputs of all parties x = (x1, . . . , xn) to an output vector y = (y1, . . . , ym),
and the mapping P : [m]→ 2[n] determines the distribution of outputs between
the parties, i.e., the i-th output yi should be delivered to the parties in the set
P (i). By default (and without loss of generality), we assume that P (i) is always
a singleton and therefore think of P as a mapping from [m] to [n]. Sometimes
the output partition function P will be implicit, and refer to f as a functionality.
We further use the convention that, for a string y = f(x) and a subset of parties
T ⊆ [n], the restriction of y to the coordinates held by the parties is denoted by
y[T ] = (yj)j:P (j)∈T . When T = {i} is a singleton, we simply write y[i].

We will also make use of randomized functionalities. In this case, we let f take
an additional random input r0 and view r0 as an internal source of randomness
that does not belong to any party. We typically write f(x1, . . . , xn; r0) and use
semicolon to separate the inputs of the parties from the internal randomness of
the functionality.

Finally, a central notion in this work is that of effective degree of a function-
ality, which generalizes the standard notion of degree. A multi-output function-
ality f has degree D if each of its outputs can be written as an F2-polynomial
of degree D over the deterministic and random inputs. Intuitively, the effective
degree is the degree of the functionality if the parties are allowed arbitrary local
preprocessing. A formal definition follows.

Definition 1 (Effective degree). A (possibly randomized) n-party function-
ality f : Xn ×R′ → {0, 1}m has effective degree d if there exists a tuple of local
preprocessing functions (h1, . . . , hn) and a degree-d function h such that

h(h1(x1), . . . , hn(xn); r′) = f(x1, . . . , xn; r′), (1)

for every x1, . . . , xn and internal randomness r′.

2.2 Standard Background on Secure Computation

Through the paper, we assume a fully-connected network with point-to-point
private channels. We focus on semi-honest (aka passive) secure computation
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hereafter referred to as private computation. (See, e.g., [9, 10, 17], for more de-
tailed and concrete definitions.)

Definition 2. (Private computation) Let f(x1, . . . , xn) be a (possibly ran-
domized) n-party functionality. Let π be an n-party protocol. We say that the pro-
tocol τ -privately computes f with perfect privacy if there exists an efficient ran-
domized simulator Sim for which the following holds. For any subset of corrupted
parties T ⊆ [n] of size at most τ , and every tuple of inputs x = (x1, . . . , xn) the
joint distribution of the simulated view of the corrupted parties together with
output of the honest parties in an ideal implementation of f ,

Sim(T, x[T ], y[T ]), y[T̄ ], where y = f(x) and T̄ = [n] \ T,

is identically distributed to

Viewπ,T (x), Outputπ,T̄ (x),

where Viewπ,T (x) and Outputπ,T̄ (x) are defined by executing π on x with fresh
randomness and concatenating the joint view of the parties in T (i.e., their
inputs, their random coin tosses, and all the incoming messages), with the output
that the protocol delivers to the honest parties in T̄ . The computational variant of
the definition is obtained by settling for computational indistinguishability with
respect to non-uniform polynomial-time adversaries.

Secure Reductions. To define secure reductions, consider the following hybrid
model. An n-party protocol augmented with an oracle to the n-party function-
ality g is a standard protocol in which the parties are allowed to invoke g, i.e.,
a trusted party to which they can securely send inputs and receive the corre-
sponding outputs. The notion of τ -security generalizes to protocols augmented
with an oracle in the natural way.

Definition 3. Let f and g be n-party functionalities. A τ perfectly-private re-
duction from f to g is an n-party protocol that given an oracle access to the
functionality g, τ -privately realizes the functionality f with perfect security. We
say that the reduction is non-interactive if it involves a single call to f (and pos-
sibly local computations on inputs and outputs), but no further communication.
The notions of τ computationally-private reduction is defined analogously.

Appropriate composition theorems, e.g. [17, Thms. 7.3.3, 7.4.3] and [9], guar-
antee that the call to g can be replaced by any protocol that τ -privately realize
g, without violating the security of the high-level protocol for f .

3 Multi-Party Randomized Encodings

In this section we formally present the notion of multi-party randomized en-
codings (Section 3.2), relate it to MPC protocols (Section 3.3), and study its
properties (Section 3.4). As discussed in the introduction, this new notion can
be viewed as a relaxation of the more standard notion of randomized encoding
of functions. (See Section 3.1).
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3.1 Randomized Encoding of Functions

We begin with the standard notion of randomized encoding (RE) [3, 21]. In the
following let X,Y, Z, and R be finite sets.

Definition 4 (Randomized Encoding [3,4]). Let f : X → Y be a function.

We say that a function f̂ : X × R → Z is a δ-correct, (t, ε)-private randomized
encoding of f if the following hold:

– δ-Correctness: There exist a deterministic decoder Dec such that for any
input x ∈ X,

Pr
r

$←R
[Dec(f̂(x; r)) 6= f(x)] ≤ δ.

– (t, ε)-Privacy: There exists a randomized simulator Sim such that for any
x ∈ X and any circuit Adv of size t∣∣∣∣∣Pr[Adv(Sim(f(x))) = 1]− Pr

r
$←R

[Adv(f̂(x; r)) = 1]

∣∣∣∣∣ ≤ ε.
We refer to the second input of f̂ as its random input, and a use semicolon (;)
to separate deterministic inputs from random inputs.

An encoding f̂ is useful if it is simpler in some sense than the original function f .
In the context of MPC the main notion of simplicity is the degree of the encoding,
where the each output of f̂ is viewed as a polynomial over (x, r). Other notions
of simplicity have been used in other contexts. (See [2, 20] for surveys on REs.)

3.2 MPRE Definition

Inspired by the notion of randomized encoding of functions [3,21], we define the
notion of multiparty randomized encoding (MPRE). Syntactically, we encode a
functionality f(x1, . . . , xn) by a randomized functionality

f̂((x1, r1), . . . , (xn, rn); r0)

that employs internal randomness r0 ∈ R and augments the input of each
party by an additional random input ri ∈ R, for some fixed domain R (by
default bit-string of fixed length). Roughly speaking, the view of the encoding

f̂((x1, r1), . . . , (xn, rn); r0) that is available to a subset T of parties (i.e., the
parties inputs, randomness and outputs) should contain the same information
that is revealed to the subset T by the functionality f(x) (i.e., the inputs and
outputs).

The following heavily relies on our (somewhat non-standard) formalization
of multi-party functionalities, see Section 2.1.

Definition 5 (Multi-Party Randomized Encoding (MPRE)). Let f :
Xn → {0, 1}m be an n-party deterministic functionality with an output par-

tition P : [m] → [n]. We say that an n-party randomized functionality f̂ :
(X × R)n × R → {0, 1}s with output partition Q is a multi-party randomized
encoding of f with privacy threshold of τ if the following hold:
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– Perfect Correctness: There exists a deterministic decoder Dec such that
for every party i ∈ [n], and every tuple of input-randomness pairs

((x1, r1), . . . , (xn, rn)) ∈ (X ×R)n

and every internal randomness r0 ∈ R it holds that

Dec (i, ŷ[i], xi, ri) = y[i],

where y = f(x1, . . . , xn), ŷ = f̂((x1, r1), . . . , (xn, rn); r0), and, recall that ŷ[i]

is the restriction of ŷ to the coordinates delivered to party i by (f̂ , Q), and
y[i] is the restriction of y to the coordinates delivered to party i by (f, P ).6

– (τ, t, ε)-Privacy: There exists a randomized simulator Sim such that for
every set T ⊆ [n] of parties of size at most τ and every set of inputs
x = (x1, . . . , xn) it holds that the random variable

Sim(T, x[T ], y[T ]), where y = f(x1, . . . , xn)

and the random variable
(x[T ], r[T ], ŷ[T ]),

where

ŷ = f̂((x1, r1), . . . , (xn, rn); r0), and (r0, r1, . . . , rn)
$← Rn+1,

cannot be distinguished by a t-size circuit with advantage better than ε.

We say that privacy is perfect if (τ, t, ε)-privacy holds for any t and ε = 0. We

always represent an MPRE f̂ by a Boolean circuit that computes f̂ , and define
the size and depth of f̂ to be the size and depth of the corresponding circuit.
We refer to the randomness r0 as the internal randomness of the encoding.
When such randomness is not used, we refer to f̂ as an MPRE with no internal
randomness.

Observe that any functionality trivially encodes itself. Indeed, MPRE f̂ be-
comes useful only if it is simpler in some sense than f . Jumping ahead, our main
notion of simplicity will be effective degree.

Remark 1 (Perfect and Computational encodings of infinite functionalities). Def-
inition 5 naturally extends to an infinite sequence of functionalities f = {fλ}λ∈N
where fλ is an n(λ)-party functionality whose domain, range, and complexity
may grow polynomially with λ. We say that a sequence of n(λ)-party function-

alities f̂ = {f̂λ}λ∈N is a perfectly correct (τ(λ), t(λ), ε(λ))-private MPRE of f
if there exists an efficient algorithm (compiler) which gets as an input 1λ and

outputs (in time polynomial in λ) three circuits (f̂λ,Decλ,Simλ) which form a

6 As in the case of RE, one can relax correctness and allow a small decoding error.
Since all our constructions natively achieve perfect correctness, we do not define this
variant.
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perfectly correct (τ(λ), t(λ), ε(λ))-private MPRE of fλ. We refer to an MPRE
as perfect if the above holds for any function t(·) and for ε = 0, and refer to it
as being computational if the above holds for t(λ) = λω(1) and ε(λ) = 1/λω(1).
Similar extensions applies to REs (as was done in previous works).

Remark 2. The parameter λ is being used to quantify both the complexity of f
(circuit size and input length) and the security level (computational privacy).
When describing some of our constructions, it will be convenient to separate
between these two different roles and treat λ solely as a security parameter
(independently from the complexity of f). Computational privacy will be guar-
anteed (in the sense of the above definition) as long as λ is set to be polynomial
in the complexity of f .

3.3 From MPRE to MPC Protocol

The main motivation for studying MPRE’s is the following simple observation.

Proposition 1. Let f be an n-party functionality. Let g be a perfect (resp., com-
putational) MPRE of f with privacy threshold of τ . Then, the task of τ -privately
computing f with perfect privacy (resp., computational privacy) reduces non-
interactively to the task of τ -privately computing g with perfect privacy (resp.,
computational privacy).

In particular, by using standard composition theorems any protocol π that τ -
privately computes g with perfect (resp., computational) privacy can be turned
into a protocol π′ with the same complexity and round complexity that τ -
privately computes f with perfect (resp., computational) privacy.

The proof of Proposition 1 appears in the full version.

3.4 Manipulating MPRE

One can always get rid of the internal randomness r0 of an MPRE

f̂((x1, r1), . . . , (xn, rn); r0)

by extending the randomness of each party with an additional random string r′i
and applying the functionality f̂ with r0 set to

∑
i r
′
i. Here, we assume that the

randomness domain R is a set of fixed length strings and so addition stands for
bit-wise XOR. (More generally, this transformation works as long as “addition”
forms a group operation over the randomness space R.) Formally, the following
holds.

Proposition 2 (Removing internal randomness). Suppose that the func-

tionality f̂((x1, r1), . . . , (xn, rn); r0) is a perfectly correct (τ, t, ε)-private MPRE
of (f, P ). Then the functionality

g((x1, r1, r
′
1), . . . , (xn, rn, r

′
n)) := f̂((x1, r1), . . . , (xn, rn);

∑
i

r′i)

is a perfectly correct (τ, t, ε)-private MPRE of (f, P ).
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Note that g has the same algebraic degree and the same effective degree as f̂
over F2. (A multi-output functionality f has degree D if each of its outputs can
be written as an F2-polynomial of degree D over the deterministic and random
inputs. For effective degree see Definition)

Composition (Re-Encoding MPRE). The composition property of REs ( [3, 4])
asserts that if we take an encoding g(x; r) of f(x), view it as a deterministic
function g′(x, r) over x and r, and re-encode this function by a another RE
h(x, r; r′), then the function h′(x; (r, r′)) is an encoding of f . We prove a similar
statement regarding MPRE’s.

Lemma 1 (Composition). Let (f(x1, . . . , xn), P ) be an n-party functionality
and assume that the functionality (g((x1, r1) . . . , (xn, rn)), Q) perfectly encodes f
with threshold τ1 and no internal randomness. Further assume that the function-
ality (h(((x1, r1), r′1) . . . , ((xn, rn), r′n); r′0),M) perfectly encodes the functionality
(g,Q) (viewed as a deterministic functionality over the domain (X ′)n where
X ′ = (X ×R) with threshold τ2). Then, the functionality (h′,M), where

h′((x1, (r1, r
′
1)), . . . , (xn, (rn, r

′
n)); r′0) := h(((x1, r1), r′1) . . . , ((xn, rn), r′n)),

is a perfect MPRE of f with threshold min(τ1, τ2).

(Observe that h′ is defined identically to h except each party i treats xi as its
deterministic input of i and (ri, r

′
i) as its randomness.)

A similar lemma holds in the computational setting as well.

Lemma 2 (Composition (Computational version)). Let f = {fλ} be an
infinite family of n(λ)-party functionalities which is computationally encoded by
the families of functionalities g = {gλ} with privacy threshold τ(λ) and with
no internal randomness. Suppose that h = {hλ} computationally encode g with
privacy threshold of τ ′(λ). Then, (h′, P ), defined as in Lemma 1, forms a com-
putational encoding of f with privacy threshold of min(τ, τ ′).

4 Encoding via Protocol-Compatible Functionalities

In this section we show that any functionality f can be encoded by a so-called
protocol compatible functionality g that enjoys “nice” syntactic properties.

4.1 From MPC Protocol to MPRE

We begin by noting that any protocol naturally induces an MPRE as shown
below.

Definition 6 (The view functionality). Let π be an n-party protocol in which
the i-th party holds a deterministic input xi and private randomness ri. The n-
party view functionality gπ is defined as follows:

– The input of the i-th party is (xi, ri).
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– The output of the i-th party consists of all the messages that are sent to her
in an execution of π (on the inputs (x1, r1), . . . , (xn, rn)).

We also consider the extended view functionality in which, in addition to the
above, gπ delivers to each party i all intermediate values that are computed locally
by i, where the local computation of every party is viewed as a Boolean circuit.

Note that the view and extended view can deterministically be derived from
each other.

Proposition 3. Let π be a protocol that implements the n-party functionality
f(x1, . . . , xn) with perfect correctness and perfect (resp., computational) privacy
against a passive adversary that may corrupt up to τ players. Then the view
functionality and the extended view functionality of π encode the functionality f
with perfect correctness and perfect (resp., computational) privacy threshold τ .

Proof. The proposition follows immediately from the fact that π privately im-
plements f as per Definition 2. The correctness of π translates into correctness
of gπ and the τ -privacy of the protocol immediately translates into τ -privacy of
the MPRE.

An extended view functionality gπ has several useful syntactic properties.
These are captured by the following notion of protocol compatible functionality.

Definition 7. A protocol compatible functionality (f, P ) is a functionality with
no internal randomness that can be represented by a Boolean circuit C as follows.

– The circuit C takes the same inputs as f . The outputs y = (y1, . . . , ym) of
f(x) consist of the values of all the wires in the circuit (including internal
wires and input wires) sorted under some topological order (inputs are first).

– The computation in C is performed via two types of gates.
• A transmission gate delivers a value from one party to another, i.e. it

maps a single input ya to a single output yb such that ya = yb and possibly
P (a) 6= P (b).

• A local computation gate (wlog, NAND gate) maps two inputs (ya, yb)
to a single output yc, where P (a) = P (b) = P (c).

Proposition 4. Let π be an n-party protocol and let gπ be its extended view
functionality. Then, gπ is protocol compatible.

Proof. By definition, every output bit of gπ is either an input bit, the result of
some local computation, or some incoming message.

Remark 3 (Extended view in a hybrid model). Consider a protocol π operates in
a h-hybrid model where h is some n-party functionality. (Recall that this means
that the parties can invoke a call to an ideal version of h.) In this case, the view
functionality and the extended view functionality (which are still well defined)
still form an MPRE of f just like in Proposition 3. However it will not satisfy
the syntax of Definition 7.
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4.2 BGW-based MPRE

The extended view functionality of the semi-honest protocol from [7], henceforth
denoted BGW, gives rise to the following MPRE.

Theorem 3 (BGW-based protocol-compatible encoding). Every n-party
functionality f can be perfectly encoded with threshold privacy of τ =

⌊
n−1

2

⌋
by a

protocol-compatible MPRE g of size O(S ·poly(n)) and depth O(D · log n) where
S denotes the circuit size of f and D denotes the multiplicative depth of f .

Jumping ahead, we mention that in order to derive our main theorem with
complexity which grows polynomially in the number of parties, it is crucial to
make sure that the depth of g is at most logarithmic in n.

Proof. We consider the BGW protocol π for computing f against a passive
adversary that corrupts up to τ parties. By Propositions 3 and 4, it suffices to
show that π can be implemented so that its extended-view functionality gπ is of
size O(S · poly(n)) and depth O(D · log n).

Recall that π interprets f as an arithmetic circuit over a sufficiently large
field F of size |F| > n and that each party i is associated with a fixed public field
element αi ∈ F (as a property of the protocol and independently of the input).
Thus the first n powers of each αi are to be treated as pre-computed constants.
The local computation L of every party for each multiplication gate (and for the
input gates) can be implemented by a poly(n)-size arithmetic circuit of constant
depth whose addition gates have unbounded fan-in and the multiplication gates
have fan-in 2. (Indeed, all local computation can be written as matrix-vector
multiplications.) This gives rise to an arithmetic circuit with bounded fan-in
gates, poly(n) size, O(log n) depth and constant multiplicative depth.

We continue by showing that such an arithmetic circuit L can be realized by
a Boolean NC1 circuit (of size poly(n), depth O(log n) and bounded-fan gates).
Indeed, letting F = GF[2O(logn)] be a binary extension field, we can trivially
implement field addition by a Boolean circuit of constant depth and O(log n)
size (and bounded-fan gates). Field multiplication can be implemented by an
AC0[⊕] circuit of size polylog(n) [19], and therefore by a Boolean circuit of size
polylog(n), depth log(polylog(n)) and bounded-fan gates. It follows that L is in
NC1.

Finally, we note that in BGW addition gates require only local computa-
tion. This local computation consists of O(n) parallel fan-in-2 additions of field
elements. Since F is a binary extension field this can be implemented by a con-
stant depth (NC0) circuit of size O(n log n). We conclude that the extended view
functionality gπ has the desired complexity.

5 Degree-2 Encodings for Protocol-Compatible
Functionalities

In this section we show that any protocol-compatible functionality f can be
encoded by a functionality f̂ with effective degree 2. That is, each output of f̂
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can be computed as a degree-2 function over n values that can be computed by
the parties locally (see Definition 1).

The following theorem will be proved in Section 5.1.

Theorem 4. Let (f, P ) be a protocol-compatible n-party functionality of depth d

and output length m. Then, f has a perfect n-private MPRE f̂ of effective-degree
2 and total complexity poly(2d,m).7

Remark 4 (Other properties of the MPRE). The encoding f̂ constructed in The-
orem 4 satisfies several additional properties that will not be used in our work,
but may be useful elsewhere.

1. The encoding f̂ is fully-decomposable and affine in x, that is for any fixing of
the private randomness the residual functionality f̂(x) is a degree-1 function

in x and each output bit of f̂ depends on at most a single bit of the input x.

2. The preprocessing functions (h1, . . . , hn) that achieve effective degree of 2
only manipulate the private randomness. That is, we construct hi(xi, ri) s.t.
hi(xi, ri) = (xi, h

′
i(ri)), where h′i is a degree-2 function.

5.1 Proof of Theorem 4

Let f : Xn → {0, 1}m be a protocol-compatible functionality of depth d. We
now show how to encode f via a functionality

f̂ : (X ×R)n ×R′ → Y ′

with effective degree of 2. In addition to the private randomness ri of each party,
the functionality f̂ uses internal randomness r′. (The latter can be removed via
Proposition 2 while keeping an effective degree of 2.)

Notation. Let C be the Boolean circuit that represents f (as per Definition 7).
Recall that the circuit C has m wires and it contains gates of two types: local
computation gates and transmission (identity) gates. We prove the theorem with
respect to circuits C in which the fan-out of transmission gates is one and the
fan-out of local computation gates is two. This is without loss of generality, since
any circuit C can be transformed to satisfy these restrictions while preserving
the size (up to a constant factor), and at the expense of increasing the depth to
d′ = d logm; we may ignore this overhead since poly(2d

′
,m) = poly(2d,m). For

every i ∈ [m], let P (i) ∈ [n] denote the party that holds the value of the ith wire
in C.

7 Note that the circuit size of f does not appear explicitly in this statement, however
for protocol-induced functionalities, the circuit size of f is equal to the output length
m.
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Randomness. Our MPRE employs the following random bits. For every wire
i ∈ [m], the party P (i) samples a random masking bit αi. In addition, for every
wire i, the functionality uses the internal randomness to sample a pair of random
strings (keys) s0

i , s
1
i of length ωi. The length ωi of an “output wire” (i.e., a wire

that does not enter any gate) is set to zero and the length of all other keys will
be defined recursively (from top-to bottom) later. We assume that both strings,
s0
i , s

1
i , are partitioned to two equal-size blocks, and index these blocks by a bit

b ∈ {0, 1}, where sa,bi denotes the bth block of sai .

The outputs of the MPRE. We traverse the circuit C gate-by-gate in reverse
topological order (from the output gates to the input wires), and let the func-

tionality f̂ deliver the following outputs to all parties.

– For every local computation gate g with incoming wires i, j and outgoing
wires k, `, we output four values (known as the gate table) defined as follows.
For every βi, βj ∈ {0, 1}, set

γ = G(αi ⊕ βi, αj ⊕ βj), (2)

where G(·, ·) is the function computed by the gate, and output the value

Qβi,βj
g := ((sγk‖γ ⊕ αk)‖(sγ` ‖γ ⊕ α`)) (3)

⊕ s
αi⊕βi,βj

i ⊕ s
αj⊕βj ,βi

j .

One should view Q
βi,βj
g as a ciphertext where the message is associated

with the outgoing wires (first line of Eq. 3) is encrypted using a one-time
pad under the combination of the keys associated with the incoming wires
(second line of Eq. 3). Correspondingly, we set the length ωi (resp., ωj) of
the keys s0

i , s
1
i (resp., s0

j , s
1
j ) to be 2(ωk + 1 + ω` + 1).

– Transmission gates are treated analogously. That is, for every transmission
(identity) gate g with incoming wire i and outgoing wire k, we output the
following two values. For every βi ∈ {0, 1}, set γ = βi ⊕ αi and output the
value

Qβi
g := (sγk‖γ ⊕ αk) ⊕ sαi⊕βi

i .

Correspondingly, we set the length ωi of the keys s0
i , s

1
i to be ωk + 1.

– For every input wire i, output the masked value xi⊕αi and the active key
sxi
i .

Effective degree and complexity. Observe that a term of the form sa can be
written as a degree-2 function of a and s (i.e., a · s1 + (1− a) · s0). Hence, all the
outputs of the encoding are of degree 2 except for ciphertexts that correspond
to local computation gates as in Eq. (3) in which the selection bit γ itself is a

degree-2 function (and so the overall degree of Q
βi,βj
g increases to 3). However,

since the party p = P (i) = P (j) knows both αi and αj , the value γ can be
locally pre-computed and so the effective degree of the encoding is 2.
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The complexity of the encoding is polynomial in the circuit size and the size
of the largest key. A proof by induction shows that the length ωi of the ith key
is at most O(4hi) where hi is the height of the ith wire (i.e., the length of the
longest path from i to an “output wire” that does not enter any gate). Following

this analysis, the complexity of f̂ is bounded by poly(2d,m).

Correctness. Fix some input x = (x1, . . . xn) ∈ Xn and let yi denote the value
induced by x on the ith wire. We show that the party P (i) can recover yi from
the encoding ŷ and its private randomness. Since the ith mask αi is given to
P (i) as part of its private randomness, it suffices to show that P (i) can recover
the masked value ŷi := yi ⊕ αi. Indeed, as in standard garbled circuits, every
party can recover the masked bit ŷk := yk ⊕ αk together with the active key
sykk , for every wire k. This is done by traversing the circuit from the inputs to
the outputs as follows. For input wires the pair ŷk, s

yk
k is given explicitly as part

of the encoding. For an internal wire k, that leaves a local computation gate g
with incoming wires i, j this is done by using the masked bits ŷi, ŷj of the input

wires to select the ciphertext Q
ŷi,ŷj
k and then decrypting (i.e., XOR-ing) it with

s
yi,ŷj
i ⊕ syj ,ŷij that can be computed based on the active keys of the incoming

wires. One can verify that this procedure recovers the desired values correctly.
The case of transmission gates is treated similarly.

Privacy. We first claim that an external observer (that does not see the private
randomness) can perfectly simulate the encoding given the list of masked values
(ŷk)k∈[m].

Claim 1. There exists a simulator Sim′ that takes as an input an m-bit vector
ŷ = (ŷi)i∈[m], runs in time poly(m, 2d) and satisfies the following guarantee. For
every input x and every fixing of α = (αi)i∈[m], the random variable

Sim′(y1 ⊕ α1, . . . , ym ⊕ αm),

where yi is the value induced by x on the ith wire, is distributed identically to
the encoding f̂(x) conditioned on the above fixing of α.

The claim is implicit in the standard proof of information-theoretic garbled cir-
cuit (cf. [22]); it is proved in the full version.

Based on Claim 1, we define a perfect simulator Sim for the MPRE. Fix an
arbitrary coalition T ⊆ [n] and let I be the set of wires owned by parties in T ,
i.e., I = {i : P (i) ∈ T}. Given the inputs x[T ] of T , and a vector of output values
(yi)i∈I , the simulator does the following. For i ∈ I, sample uniformly the local
randomness αi and set ŷi = yi ⊕ αi. For i /∈ I sample ŷi uniformly at random.
Next invoke the simulator Sim′ on ŷ = (ŷi)i∈[m] and output the result.

We prove that the simulation is perfect. Fix some input x, some αI = (αi)i∈I ,
and let y = f(x) and yI = (yi)i∈I . We claim that the distribution sampled

by Sim(T, x[T ], αI , yI) is identical to the joint distribution of the encoding f̂(x)
induced by the choice of α[m]\I , (s

0
i , s

1
i )i∈[m] (and conditioned on the above fixing

of αI). Indeed, since the marginal distribution of the vector of masked bits
(ŷ1, . . . , ŷm) is perfectly simulated, this follows from Claim 1.
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6 Putting It All Together

In this section we prove the following theorems using the tools we developed in
previous sections.

Theorem 5. Every n-party functionality f can be encoded by a perfect MPRE g
with privacy threshold of τ =

⌊
n−1

2

⌋
, effective degree 2 and complexity polynomial

in n and S where S is the size of the branching program that computes f .

Theorem 6. Every n-party functionality f can be encoded by a computational
MPRE g with privacy threshold of τ =

⌊
n−1

2

⌋
, effective degree 2 and complexity

polynomial in n and S where S is the size of the circuit that computes f . More-
over, the MPRE makes use of one-way functions in a balck-box way only as part
of the local preprocessing step.

Theorems 5 and 6 (whose proof is deferred to Sections 6.1 and 6.2) can be
used to derive our main results (Theorem 1 and 2).

Proof (Proof of Theorem 1 and 2). We prove Theorem 1 (resp., Theorem 2):
Given an n-party functionality f that is computable by a branching program of
size S (resp., computable by a Boolean circuit of size S), construct the perfect
MPRE g promised by Theorem 5 (resp., the computational MPRE g promised
by Theorem 6). By Proposition 1, f non-interactively

⌊
n−1

2

⌋
-reduces to g with

perfect privacy (resp., computational privacy). Since g has an effective degree 2,
the functionality g itself n-privately reduces to a degree-2 functionality g′ (in a
trivial way). A composition of these reductions yields the desired reduction.

To prove the second (“Consequently”) part of the theorem, we employ the
BGW protocol πg′ to privately compute g′ in 2 rounds (since its degree is 2)
and complexity of poly(n, S) at the presence of honest majority. Plugging this
protocol into the above reduction and using standard composition theorems
(cf. [9]), we get a 2-round protocol for f with similar complexity and perfect
(resp., computational) privacy.

6.1 Perfect MPRE for Branching Programs (Proof of Theorem 5)

Let f be an n-party functionality that is computable by a branching program of
size S. By [21], such a function has degree-3 perfect randomized encoding g1(x; r)
of poly(S) size. Recall that such an RE yields an n-private MPRE, and let us get
rid of the private randomness by applying Proposition 2. This gives us a degree-3
MPRE g2 of f whose complexity is poly(S) with privacy threshold of n. Next,
we encode g2 by the BGW-based protocol-compatible encoding (Theorem 3) and
get a protocol-compatible perfect MPRE g3 of size O(S ·poly(n)), depth O(log n)
and privacy threshold of τ =

⌊
n−1

2

⌋
. Using our information-theoretic encoding

from Theorem 4 (based on garbled circuits), we get a τ -private perfect MPRE
g4 of g3 with complexity poly(n, S) and effective degree 2. By the composition
lemma (Lemma 1), the MPRE g4 perfectly encode f with privacy threshold of
τ . ut
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6.2 Computational MPRE for Circuits (Proof of Theorem 6)

To prove the theorem we make use of the following MPRE that is based on the
BMR protocol [6].

Claim 2. Let f be an n-party functionality that is computable by an S-size cir-
cuit. Then f has a computational MPRC g that does not use internal randomness
and has privacy threshold of n− 1 and polynomial complexity in n and S. Most
importantly, the function g can be written as

A(B1(x1, r1), . . . , Bn(xn, rn)),

where the combining function A can be computed by a circuit of size poly(n, S)
and depth O(log(nS)), and each of the functions Bi (that correspond to local
computations) make a black-box use of a PRG.

The proof of the Claim appears in the full version. The proof of Theorem 6
proceeds as follows. It suffices to prove the theorem with respect to PRG, since
the latter reduce to OWF via a black-box reduction [18].

Let f be an n-party functionality with complexity S and let g denote the
computational MPRE

g(x, r) = A(B1(x1, r1), . . . , Bn(xn, rn)),

promised in Claim 2.
Since A can be computed by a circuit of size poly(n, S) and depth O(log(nS))

it can also be computed by a branching program of size S′ = poly(n, S). There-
fore, by Theorem 5, the function A admits a perfect MPRE

Â((y1, r
′
1), . . . , (yn, r

′
n))

with privacy threshold of τ =
⌊
n−1

2

⌋
, effective degree 2 and complexity poly(n, S′) =

poly(n, S). Consider the functionality ĝ obtained by substituting yi withBi(xi, ri),
i.e.,

ĝ ((x1, (r1, r
′
1)), . . . , (xn, (rn, r

′
n))) := Â ((B1(x1, r1), r′1), . . . , (Bn(xn, rn), r′n)) .

Observe that ĝ has an effective degree 2 and complexity of poly(n, S). Moreover,

since Â perfectly encodes A with τ -privacy, ĝ also perfectly encodes g with τ -
privacy. (Indeed, one can verify that this form of local substitution preserves
privacy and correctness.) By the composition property of MPRE (Lemma 2),
this means that ĝ is a computational τ -private MPRE of f as required. ut
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