
Two-Round Adaptively Secure Multiparty
Computation from Standard Assumptions

Fabrice Benhamouda1, Huijia Lin2, Antigoni Polychroniadou3, and
Muthuramakrishnan Venkitasubramaniam4

1 IBM Research, Yorktown Heights, NY, US
2 University of California, Santa Barbara, CA, US

3 Cornell Tech, NY, US
4 University of Rochester, NY, US

Abstract. We present the first two-roundmultiparty computation (MPC)
protocols secure against malicious adaptive corruption in the common ref-
erence string (CRS) model, based on DDH, LWE, or QR. Prior two-round
adaptively secure protocols were known only in the two-party setting
against semi-honest adversaries, or in the general multiparty setting
assuming the existence of indistinguishability obfuscation (iO).
Our protocols are constructed in two steps. First, we construct two-
round oblivious transfer (OT) protocols secure against malicious adaptive
corruption in the CRS model based on DDH, LWE, or QR. We achieve this
by generically transforming any two-round OT that is only secure against
static corruption but has certain oblivious sampleability properties, into
a two-round adaptively secure OT. Prior constructions were only secure
against semi-honest adversaries or based on iO.
Second, building upon recent constructions of two-round MPC from two-
round OT in the weaker static corruption setting [Garg and Srinivasan,
Benhamouda and Lin, Eurocrypt’18] and using equivocal garbled circuits
from [Canetti, Poburinnaya and Venkitasubramaniam, STOC’17], we
show how to construct two-round adaptively secure MPC from two-round
adaptively secure OT and constant-round adaptively secure MPC, with
respect to both malicious and semi-honest adversaries. As a corollary, we
also obtain the first 2-round MPC secure against semi-honest adaptive
corruption in the plain model based on augmented non-committing en-
cryption (NCE), which can be based on a variety of assumptions, CDH,
RSA, DDH, LWE, or factoring Blum integers. Finally, we mention that
our OT and MPC protocols in the CRS model are, in fact, adaptively
secure in the Universal Composability framework.

1 Introduction

The notion of secure multi-party computation (MPC) allows N mutually distrust-
ful parties P1, . . . , PN to securely compute a functionality f(x̄) = f1(x̄), . . . , fN (x̄)
of their corresponding private inputs x̄ = x1, . . . , xN , such that party Pi receives
the value fi(x̄). Loosely speaking, the security requirements are that the parties
learn nothing more from the protocol than their prescribed output, and that



2 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

the output of each party is distributed according to the prescribed functionality.
This should hold even in the case that a malicious adversary seizes control of
an arbitrary subset of the parties and make them arbitrarily deviate from the
protocol. A major achievement in the 80’s is demonstrating that any function
that can be efficiently computed, can be efficiently computed securely [3, 29, 38].
Since then, the round complexity of computing general functionalities has been a
central question in the area of MPC.

Answering this question depends on what powers the adversaries have. In the
static corruption model, the adversary may seize control, or corrupt, a subset
of parties before the protocol begins, and dictate their behavior throughout
the protocol execution. A stronger and more realistic model is the adaptive
corruption model, where the adversary can decide to corrupt more parties at
any time during the execution of the protocol. The adaptive corruption model
captures “hacking attacks” where an adversary has the capability to seize control
of parties’ machines at any time, through for instance known vulnerabilities
or backdoor; in an extreme, the adversary may eventually corrupt all parties.
Protecting against such attacks provides stronger security guarantees. Moreover,
security against adaptive corruption is instrumental for achieving everlasting
security and leakage resilience.

In the static corruption model, a long line of research on two-round pro-
tocols [2, 6–9, 14, 20, 25–27, 31, 34, 36] that culminated in two recent works by
Benhamouda and Lin [5] and Garg and Srinivasan [28] has completely resolved
the round complexity of MPC from minimal assumptions. The works of [5] and
[28] constructed two-round MPC protocols from any two-round oblivious transfer
protocols, in the Common Reference String (CRS) model.5 Moreover, in the
semi-honest setting, these works provide two-round protocols in the plain model
(i.e., without CRS).

In contrast, the round-complexity of MPC in the adaptive corruption model
is far from being resolved. Prior works [14,16,22,26] constructed 2-round MPC
protocols secure against adaptive corruption, based on the strong assumption
of Indistinguishability Obfuscation (iO) for polynomial-sized circuits, and other
standard assumptions. However, the security of current indistinguishability obfus-
cation schemes is not well understood. When restricting to using only standard
assumptions, Damgård et al. [23] construct 3-round protocols based on LWE
for all-but-one corruptions and Canetti et al. [17] construct a constant round
protocol based on simulatable public key encryption for arbitrary corruptions.
Only in the most restricted case of 2-Party Computation (2PC) in the presence
of semi-honest adversaries, they gave a two-round protocol based on the minimal
assumptions. The state-of-affairs leaves the following basic questions open:

Can we have the following based on standard assumptions?
– Two-round MPC secure against adaptive corruption by semi-honest
adversaries in the plain model.

5 Actually, the protocol of [5] additionally relies on Non-Interactive Zero-Knowledge
(NIZK) proofs in the CRS model. But as observed in [28] and this work, the use of
NIZK can be removed.



Two-Round Adaptively Secure MPC from Standard Assumptions 3

– Two-round MPC secure against adaptive corruption by malicious
adversaries in the CRS model.

In fact, the second question remains open even for the special case of 2PC protocols
computing the Oblivious Transfer (OT) functionality. In the literature, there
are 2-round OT protocols secure against either static corruption by malicious
adversaries, or adaptive corruption by semi-honest adversaries, from various
assumptions [18, 19, 37]. However, when considering adaptive corruption by
malicious adversaries, the best protocols based on standard assumptions have
3 rounds whether assuming erasures [19] or not [1].6 Therefore, another basic
question that remains open so far is,

Can we achieve a two-round OT protocol that is secure against adaptive
corruption by malicious adversaries in the CRS model from standard
assumptions?

In this work, we answer all above questions affirmatively, obtaining two-round
MPC protocols secure against adaptive corruption by semi-honest adversaries in
the plain model from minimal assumptions, and 2-round protocols secure against
malicious adversaries in the CRS model from any of the following assumptions:
Decisional Diffie-Hellman (DDH), Quadratic Residuosity (QR), or Learning with
Error (LWE). Our constructions satisfy the stronger UC-security notion [10].

Our Results

We present our results in the local CRS model where every session of protocol
execution has a local independently sampled CRS. We believe that our protocol
constructions and security proofs can be easily adapted to the single CRS model
where all sessions share a single CRS as in [15]; see Section 2.4 for more discussion.

Towards constructing 2-round MPC protocols secure against adaptive cor-
ruption, or adaptive-MPC for short, we first show that this task can be reduced
to constructing a 2-round OT protocol secure against adaptive corruption, or
adaptive-OT for short, at the presence of either semi-honest or malicious adver-
saries. More precisely,

Theorem 1.1 (Informal). Assuming the existence of a two-round oblivious
transfer protocol and a constant-round MPC protocol secure against adaptive cor-
ruption by malicious adversaries in the CRS model (resp. semi-honest adversaries
in the plain model), there exists a 2-round MPC protocol for any functionality
f that is UC-secure against adaptive corruption of any subset of the parties by
malicious adversaries, in the CRS model (resp. or semi-honest adversaries in the
plain model).
6 Abdalla et al. [1] constructed a two-round OT protocol secure against the weaker
semi-adaptive corruption model where the adversary corrupts one of the two parties
at the beginning of the execution and the other party adaptively during or after the
execution. It is known that such a protocol can be generically converted to become
secure against adaptive corruption using NCE. However, the resulting protocol would
be 3-round.



4 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

At a high-level, our construction follows the blueprint of the recent construc-
tions of 2-round MPC from 2-round OT in the static corruption model [5, 28].
Their key idea is collapsing the number of rounds of arbitrary multi-round MPC
protocols into just 2, using just garbled circuits and 2-round OT. Following the
same technique, we show that adaptive security follows naturally, when the un-
derlying garbled circuits and OT are also adaptively secure. The work by Canetti
et al. [17] constructs adaptively secure garbled circuits, called equivocal garbling
scheme, from the minimal assumption of one-way functions. However, using
equivocal garbled circuits directly only allows us to collape rounds of constant-
round MPC protocols; otherwise, the resulting 2-round protocol would become
inefficient (see Section 2.3 for more discussion). The work of Canetti et al. [17]
also constructs constant-round adaptive-MPC protocols based on simulatable
PKE. Thus, it boils down to construct 2-round adaptive-OT.

When the adversaries are semi-honest, two-round adaptive-OT can be based
on augmented Non-Committing Encryption (NCE) [15], which in turn can be
based on CDH, RSA, DDH, LWE or factoring Blum-integers [18]. Furthermore,
constant-round MPC secure against adaptive corruption can be be constructed
from NCE (which is implied by augmented NCE) and semi-honest two-round
adaptive-OT [17]. Thus, we obtain the following corollary.

Corollary 1.2. Assuming augmented non-committing encryption, there exists a
2-round MPC protocol for any functionality f that is UC-secure against adaptive
corruption of any subset of the parties by semi-honest adversaries.

However, there are no known constructions of 2-round adaptive OT protocols
against malicious adversaries even in the (local) CRS model. The natural approach
of using non-interactive zero-knowledge proofs to convert a semi-honest adaptive-
OT protocol, say the one in [15], into a malicious adaptive-OT protocol require
additional rounds, specifically, to incorporate a coin-tossing protocol. The work of
[1] comes close by achieving a weaker notion of semi-adaptivity in two rounds based
on DDH. Our main technical contribution is constructing two-round adaptive-OT
against malicious adversaries from various assumptions. More precisely,

Theorem 1.3 (Informal). Assuming DDH, QR, or LWE, there exists a 2-
round OT protocol that is UC-secure against adaptive corruption by malicious
adversaries in the CRS model.

Combined with previous theorem and the construction of constant-round adaptive-
MPC in [17] (which can be constructed from simulatable PKE, which can itself
be build from DDH, QR, or LWE too [18]) we obtain as a corollary 2-round
adaptive-MPC against malicious adversaries from the same assumptions:

Corollary 1.4. Assuming DDH, QR, or LWE, there exists a 2-round MPC
protocol for any functionality f that is UC-secure against adaptive corruption of
any subset of the parties by malicious adversaries in the CRS model .

To achieve the above theorem, we provide a generic framework that compiles
any OT protocol secure against static corruption, or static-OT for short, with



Two-Round Adaptively Secure MPC from Standard Assumptions 5

appropriate “oblivious sampleability” properties, to a full-fledged adaptive-OT
protocol, in just 2-rounds. Roughly speaking, oblivious sampleability refers to the
following properties: i) Receiver-oblivious-sampleability:one can obliviously sample
the OT receiver’s message, and claim that an honestly generated receiver’s message
was obliviously sampled, and similarly ii) Sender oblivious sampleability: one can
obliviously sample the sender’s message, and claim that an honestly generated
sender’s message for random input strings was obliviously sampled. Then, we
show that static-OT with such oblivious sampleability can be instantiated from
various concrete assumptions, including DDH, or LWE, or QR.

2 Technical Overview

We start with an overview of our construction of 2-round adaptive-OT and then
move to 2-round adaptive MPC in the local CRS model. In the end, we briefly
discuss future work on extending our results to the single CRS model.

2.1 2-round Adaptive-OT

To construct a 2-round adaptive-OT Π3, we start with a basic 2-round static-OT7

Π with the special property of sender and receiver oblivious sampleability, and
transform it in three steps to gradually achieve security against different adaptive
corruption scenarios:

– Sender semi-adaptive corruption refers to the case where the receiver is cor-
rupted at the beginning of the protocol execution and the sender is corrupted
after the execution, i.e. post-execution.

– Receiver semi-adaptive corruption refers to the symmetric case where the
sender is corrupted from the beginning and the receiver is corrupted post-
execution.

– Semi-adaptive corruption refers to either of the above two scenarios. In com-
parison, full fledged adaptive corruption considers the additional scenario
where neither sender nor receiver is corrupted during execution, and both cor-
rupted post-execution in an arbitrary order; we refer to the latter semi-honest
post-execution corruption.

Starting with a static-OT Π with sender and receiver oblivious sampleability,

– In Transformation 1, we transform Π into Π1 that achieves security against
sender-semi-adaptive corruption (and preserves security in static corruption
scenarios). This step crucially relies on the sender oblivious sampleability of
Π, and preserves receiver oblivious sampleability.

– In Transformation 2, we rely on receiver oblivious sampleability to transform
Π1 into Π2 to achieve security under receiver-semi-adaptive corruption, while
preserving security under sender-semi-adaptive corruption. Π2 is now secure
under semi-adaptive corruption.

7 In fact, it suffices if the OT protocol Π is secure against semi-honest senders, and
malicious receivers.



6 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

– In Transformation 3, finally, we transform the semi-adaptive-OT Π2 into an
adaptive-OT Π3, using additionally augmented NCE.

Below, we describe ideas in these three transformation, starting with the third
transformation.

Transformation 3: Semi-Adaptive-OT to Adaptive-OT Consider a semi-adaptive
OT Π2, whose algorithms for generating the CRS, the sender, and receiver
messages are denoted as Setup, S2, R2. The only corruption scenario that Π2
does not handle is semi-honest post-execution corruption (i.e., neither sender nor
receiver is corrupted during execution, but both corrupted post-execution in an
arbitrary order). It is known that semi-adaptive OT can be transformed into
adaptive-OT by sending messages of the former using private channels imple-
mented by Non-Committing Encryption (NCE) [24], which, however, produces
a three-round protocol. In two rounds, the above corruption case alone can
be handled using augmented NCE as done in the construction of semi-honest
adaptive-OT by Canetti, Lindell, Ostrovsky, and Sahai (CLOS) [15]. Below, we
use their protocol to lift the security of Π2.
Augmented NCE. NCE is a public key encryption with the special property of
equivocality: one can simulate a pair of pubic key and ciphertext (pk, c) and
later “open” them to any plaintext m, by efficiently finding randomness ρ and
τ that “explains” the public key and ciphertext consistently w.r.t. m (meaning
c̃ = NEnc(p̃k,m; ρ), (p̃k, s̃k) = NGen(1λ; τ), m = NDec(s̃k, c̃)).

A NCE is “augmented” if it has i) oblivious key sampleability: one can
obliviously sample a public key pk′ without knowing any corresponding secret
key, and ii) inverse key sampleability: one can claim that an honestly generated or
simulated public key pk was sampled obliviously by efficiently finding randomness
that would make the oblivious key sampling algorithm produce pk.
“Patch” Semi-Adaptive-OT Π2 using Augmented NCE. To handle semi-honest
post-execution corruption, we run Π2 with the CLOS semi-honest adaptive-
OT from augmented NCE in parallel as depicted below. The instance of Π2 is
generated using the receiver’s choice bit σ and the sender’s messages padded with
two random strings (m0 ⊕ r0,m1 ⊕ r1). In the instance of CLOS, the receiver
samples one public key pkσ honestly with skσ, and another pk1−σ obliviously,
followed by the sender encrypting the two random pads r0, r1 using respectively
these two keys.

S(m0,m1) R(σ)ot1(σ)

ot2(m0 ⊕ r0,m1 ⊕ r1)

pk0, pk1

c0 ← NEnc(pk0, r0), c1 ← NEnc(pk1, r1)

To handle semi-honest post-execution, the trick is simulating the instance (ot1, ot2)
of Π2 using its simulator Sim2 for the case where the sender is statically corrupted
(recall that Π2 is secure under semi-adaptive corruption). This can be done as the
simulator can generate ot2 honestly using just random messages r′0, r′1: effectively,



Two-Round Adaptively Secure MPC from Standard Assumptions 7

the sender of Π2 is “corrupted” and instructed to act honestly with input r′0, r′1.
Thus, Sim2 can be used to simulate and equivocate the receiver’s messages. The
keys and ciphertexts in the instance of CLOS is simulated relying on properties
of augmented NCE. Later, for instance, when the sender is corrupted first post-
execution, the simulator, learning (m0,m1), finds the right “pads” r0 = m0 ⊕ r′0,
r1 = m1 ⊕ r′1, and uses the equivocality of NCE to “explain” that the keys and
ciphertexts are consistent with r0, r1. In the other case, when the receiver is
corrupted first post-execution, the simulator, learning σ,mσ, can explain pkσ
consistently with rσ, and claim that pk1−σ were obliviously sampled using the
inverse oblivious sampleability property.

It might seem that the above transformation can use any semi-honest adaptive
OT. This is indeed the case only if semi-honest post-execution corruption was
concerned. But, we also want the transformation to preserve security under
semi-adaptive corruption (when Π2 has this property). For that, we rely on
special properties of the CLOS protocol; in particular, it is already secure against
malicious sender, and simulated public keys from the receiver can be easily
equivocated. See Section 5.5 for more details.

Transformation 2: Handling Receiver-Semi-Adaptive Corruption. We now move to
handling the first scenario in semi-adaptive corruption, i.e. receiver semi-adaptive
corruption. When the sender is maliciously corrupted from the beginning and
the receiver is corrupted post-execution, the simulator needs to i) simulate the
receiver’s message õt1 without knowing the choice bit, ii) extract both sender’s
messages m0,m1, iii) and later equivocate õt1 to any choice bit σ. A common
approach in the literature for enabling equivocation is relying on appropriate
oblivious sampleability property. We follow this approach and formalize the
following receiver oblivious sampleability property.

Receiver Oblivious Sampleability: A two-round OT protocol (in the CRS
model) has receiver oblivious sampleability if 1) one can obliviously
sample receiver’s message õt1, and 2) can claim that an honestly generated
receiver’s message ot1 for any choice bit σ was obliviously sampled, by
efficiently finding consistent randomness ρ that would make the oblivious
sampling algorithm produce ot1. Furthermore, messages and randomness
produced in these two ways are indistinguishable

(crs, õt1, ρ̃) ≈ (crs, ot1, ρ) .

A Naive Idea and its Problem. Given Π1 with receiver oblivious sampleability,
the basic idea is to let the receiver of Π2 send two messages, where ot1σ is
generated honestly using the choice bit σ while õt11−σ is sampled obliviously.
The sender then replies ot20, ot21 respectively, where ot2b is generated honestly
w.r.t. ot1b using message mb at slot b and random message rb at slot 1− b. See
the depiction below on the left.



8 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

S(m0,m1) R(σ)ot10(0), õt11 if σ = 0
õt10, ot11(1) if σ = 1

ot20(m0, r0), ot21(r1,m1)

A Sim
ot10(0), ot11(1)

ot20, ot21

Left: Naive Protocol Right: Simulation

For the above protocol, simulation under receiver-semi-adaptive corruption can
be done as follows: i) the simulator can “plant” honestly generated receiver’s
messages ot10, ot11 for both choice bit 0 and 1. ii) Upon receiving sender’s
messages ot20, ot21, it uses the OT output strings as the extracted sender’s
messages. Finally, iii) the simulator equivocates the receiver’s messages w.r.t.
a choice bit by revealing the randomness ρσ used for generating ot1σ honestly,
and reverse sampling randomness ρ̃1−σ for claiming that ot11−σ were obliviously
sampled.

Though receiver-semi-adaptive corruption is resolved, unfortunately, the above
protocol is not secure against malicious receivers (even thoughΠ1 is), as a cheating
receiver can use the same strategy the simulator uses and violate sender’s privacy.
Fixing the Problem. To overcome this, the simulator needs to have some unique
advantage that malicious receivers do not have. Our idea is using an equivocal
commitment ECom (in CRS model). More specifically, the receiver should send a
ECom commitment c to its choice bit σ, so that, only the simulator can generate
a simulated commitment c̃ and open it to both 0 and 1, but not cheating receivers.
To incorporate this, the rest of the protocol needs to be modified accordingly: The
two instances of OT Π1 are replaced with two instances of 2 Party Computation
(2PC) : the b’th instance reveals to the receiver the message mb conditioned on
the receiver having a valid opening of c to b.

S(m0,m1) R(σ)

c = ECom(σ; τ),
{ot10,k(τk)}k, {õt11,k}k if σ = 0
{õt10,k}k, {ot11,k(τk)}k if σ = 1

(
{ot20,k(`0

k,0, `
0
k,1)}k,GC0

)
,
(
{ot21,k(`1

k,0, `
1
k,1)}k,GC1

)
Simulation in the receiver-semi-adaptive corruption scenario uses similar ideas
as described above w.r.t. the naive protocol. Again, the simulator “plants” valid
receiver’s messages for both choice bit 0 and 1. In particular, it generates a
simulated ECom commitment c̃ and two sets of ot1 messages corresponding to
both opening τ0, τ1 of c̃ to 0 and 1, {ot10,k(τ0

k )}k, {ot11,k(τ1
k )}k. To equivocate

to any choice bit σ, the simulator can again reveal the randomness used for
generating the set {ot1σ,k} of messages corresponding to τσ, and claim that the
other set {ot11−σ,k} was sampled obliviously. The advantage of this protocol is
that now malicious receiver cannot copy the simulator’s strategy, as it cannot
find opening of a ECom commitment to both 0 and 1.



Two-Round Adaptively Secure MPC from Standard Assumptions 9

Preserving Security under Sender-Semi-Adaptive Corruption. Furthermore, we
show that if Π1 is secure under sender-semi-adaptive corruption (i.e. where the
receiver is maliciously corrupted from the beginning and the sender is corrupted
post-execution), the above transformation preserves it. To this end, we need the
second message of 2PC to be equivocal. This can be achieved by implementing
2PC using Π1 and equivocal garbled circuits constructed by [17] from one-way
functions.

In summary, our transformation 2 produces a semi-adaptive OT, starting
from one that is only secure under sender-semi-adaptive corruption (and static
corruption of the sender by a semi-honest adversary). We remark that our
transformation is quite similar to the transformation presented in the recent
work of [28] for achieving some equivocal property of receiver’s message. However,
their notion of equivocality is tailored for simulation in static corruption cases,
and only need to provide partial randomness consistent with a choice bit σ. In
adaptive corruption, equivocation requires providing complete randomness for
generating the receiver’s message. Thus, the two transformation differ in details;
in particular, we crucially rely on receiver oblivious sampleability which is not
needed in [28].

Transformation 1: Handling Sender-Semi-Adaptive Corruption When the receiver
is maliciously corrupted from the beginning and the sender is corrupted post-
execution, the simulator needs to i) extract the choice bit σ from the receiver’s
message ot1, and then obtain the output message mσ, ii) next simulate the
sender’s message õt2 knowing only mσ, iii) and finally be able to equivocate õt2
w.r.t. arbitrary m1−σ. To enable equivocation, we again formulate an oblivious
sampleability property now w.r.t. sender’s messages.

Sender Oblivious Sampleability (Overly Simplified): Roughly speaking,
we want the property that 1) one can obliviously sample a sender’s
message õt2 (w.r.t. a crs and receiver’s message ot1), and 2) can claim that
an honestly generated sender’s message ot2 for random messages r0, r1
was obliviously sampled, by efficiently finding randomness ρ that would
make the oblivious sampling algorithm output ot2. Moreover, messages
and randomness generated in these two ways are indistinguishable:

(crs, ot1, õt2, ρ̃) ≈ (crs, ot1, ot2, ρ) .

We remark that unfortunately the above description is overly simplified; for the
proof to go through, the actual sender oblivious sampleability is more complex.
However, for simplicity of exposition, we use the above simple version in this
high-level overview.

Staring from a static-OT Π with sender oblivious sampleability, we construct
a bit-OT Π1 with security under sender semi-adaptive corruption. (Note that
constructing bit-OT is without loss of generality, as it implies string-OT with
the same security in different corruption scenarios.) The basic idea is again to let
sender of Π1 send multiple messages of Π. This redundancy allows simulation



10 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

to “plant” honestly generated sender’s messages for both input bit 0 and 1, at
either slot. Then, later to equivocate to m1−σ, the simulator can correctly open
the message generated with value m1−σ, and claim that the other message was
sampled obliviously.

S(m0,m1) R(σ)ot1(σ)

r00, r11, ot20,m0(r00, r01), õt20,1−m0 , ot21,m1(r10, r11), õt21,1−m1

ot2 messages are ordered by index in subscript

More specifically, Π1 (depicted above) works as follows. Upon receiving a single
receiver’s message ot1 of Π, the sender replies two pairs of sender’s messages of Π:
The b’th pair contains ot2b,mb , õt2b,1−mb , where the former is honestly generated
for random messages (rb0, rb1), and the latter obliviously sampled. The 4 ot2
messages are ordered according to their index. In addition, the sender reveals in
the clear r00 and r11. It is easy to see that an honest receiver with a choice bit σ
will recover exactly the string rσσ from message ot2σ,mσ , and from the order of
ot2σ,mσ in the 4 ot2 messages, it learns mσ.
Sender Semi-Adaptive Corruption. Simulation in the sender-semi-adaptive cor-
ruption scenario can now be achieved as follows. i) The simulator can extract the
receiver’s choice bit σ using the simulator of Π for the case with a (statically cor-
rupted) malicious receiver, and then learns the output string mσ. ii) To simulate
sender’s message, it generates the σ’th pair (ot2σ,mσ , õt2σ,1−mσ ) honestly as Π1
specifies, and simulates the 1− σ’th pair by generating both ot21−σ,0, ot21−σ,1
honestly, using the same message r1−σ,1−σ at slot 1 − σ and different random
strings at slot σ; in addition r00, r11 are revealed in the clear.

Sim Aot1(σ)

r00, r11, ot2σ,mσ (rσ,0, rσ,1), õt2σ,1−mσ
ot21−σ,0(r1−σ,1−σ, r1−σ,σ), ot21−σ,1(r1−σ,1−σ, r

′
1−σ,σ)

Both input messages to ot2, and ot2 messages themselves are ordered by index.

iii) Finally, to equivocate to sender’s true inputs (m0,m1), the simulator can
reveal the randomness used for generating the σ’th pair (ot2σ,mσ , õt2σ,1−mσ),
which were generated correctly using mσ. For the 1−σ’th pair ot21−σ,0, ot21−σ,1,
the simulator needs to “explain” w.r.t. m1−σ. This can simply be done by
revealing the randomness used for generating ot21−σ,m1−σ honestly, and claim
that ot21−σ,1−m1−σ were sampled obliviously.

Making the above idea work turns out to require a more complex formulation
of the sender oblivious sampleability property. Roughly speaking, the complexity
stems from the fact that when reducing to sender oblivious sampleability, to
simulate the adversary’s view, the reduction needs to obtain the choice bit σ of the
corrupted receiver (as simulation of sender’s message depends on σ). This means



Two-Round Adaptively Secure MPC from Standard Assumptions 11

sender oblivious sampleability needs to hold against adversaries (the reduction)
who receive help in “breaking” a receiver’s message of its choice. We omit the
complexity here and refer the reader to Section 5.3 for more detail.

Fortunately, we can achieve such strong sender oblivious sampleability, as well
as receiver oblivious sampleability, from various concrete assumptions, including
DDH, QR, and LWE.

2.2 Instantiation of Static-OT with Oblivious Sampleability

We now briefly summarize ideas behind our instantiation from concrete assump-
tions. To construct the static-OT with oblivious sampleability, we start from
a variant of the OT construction based on Smooth Projective Hash Functions
(SPHFs) from Halevi and Kalai [32] which generalizes the construction from Naor
and Pinkas [35]. In our setting, the SPHF we consider is a primitive which allows
some party to generate a hash value H of a pair (ct, σ′) of a ciphertext ct and a
value σ′, together with what is called a projection key hp so that: if ct is indeed a
ciphertext of σ′, it is possible to compute H from hp and the random coins used
to generated ct. But if ct is not a ciphertext of σ′, H looks completely random
even knowing hp.

The construction works as follows. The CRS contains a public key of an
encryption scheme. The receiver’s message is a ciphertext ct of the selection bit
σ. The sender then uses the SPHF to mask its inputs x0 and x1, so that only the
one corresponding to the plaintext of ct can be unmasked. More precisely, the
sender’s message consists of two projection keys hp0 and hp1 for the ciphertext
ct and the values 0 and 1 respectively, as well as the values H0 ⊕ x0 and H1 ⊕ x1
where H0 and H1 are the two hash values corresponding to hp0 and hp1. Using
the random coins used to generate ct, the receiver, can recover Hσ and then xσ.
But the value x1−σ will remain completely hidden, masked by H1−σ which looks
random to the receiver.

To achieve oblivious sampleability, we just need ciphertexts of the encryption
scheme and projection keys of the SPHF to be obliviously sampleable. We can
instantiate them using the ElGamal encryption scheme and the associated SPHF
from [21], which already satisfies the oblivious sampleability requirements. This
directly gives a static-OT with oblivious sampleability under the Decisional
Diffie-Hellman (DDH) assumption.

To instantiate the scheme under the Quadratic Residuosity assumption (QR),
we start from the Goldwasser-Micali [30] encryption scheme and the SPHF
from [21]. While the Goldwasser-Micali encryption scheme satisfies ciphertext
oblivious sampleability, we do not know how to obliviously sample the projection
keys of the associated SPHF. The issue is that projection keys are quadratic
residues which we do not know how to sample obliviously. To solve this issue,
we slightly change the SPHF to use the group of signed quadratic residues
instead [33].

Finally, we show how to achieve a slightly weaker variant of 2-round static-OT,
called half-OT, with oblivious sampleability under LWE. Roughly speaking, in
a half-OT, the sender has a bit b and a single message m, and the receiver



12 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

with choice bit σ only receives m if b = σ. We show that this weaker variant
of half-OT, is already sufficient for our transformation to obtain adaptive-OT.
We then instantiate half-OT essentially using the IND-CPA encryption scheme
and the SPHF from [4] based on LWE. At a very high-level, the encryption
scheme can be seen as the dual-Regev encryption scheme where decryption is
done using a full trapdoor for the lattice, to ensure that incorrect ciphertexts
are far away from the lattice in all directions (otherwise, we do not know how to
prove smoothness of the associated SPHF).

Please see Section 5.6 for more details of our instantiation.

2.3 From Adaptive-OT to Adaptive-MPC
Two recent works [5, 28] constructed 2-round static-MPC in the CRS model
from 2-round static-OT. Actually, the protocol presented in [5] additionally
relies on NIZK; but as implicitly observed in [28] and in this paper the use of
NIZK can be removed. Moving to the adaptive setting, the natural approach
is replacing static-OT with adaptive-OT and ask whether the resulting MPC
protocols become adaptively secure. We give affirmative answer. At a very high-
level, the proof follows similar ideas as in [5, 28]. Still, the formal proof requires
carefully examination of all adaptive corruption scenarios and new analysis. In
particular, the garbled circuits used in the protocols need to be equivocal for
adaptive security to hold.

A subtle issue arises when using equivocal garble circuits: If using them
modularly as black-box, we can only collapse rounds of constant-round MPC
protocols, as opposed to any polynomial-round protocols as in [5,28]. The overall
approach of [5, 28], followed by this work, is using garbled circuits and OT to
collapse rounds of a multi-round MPC protocol. The resulting protocol generates
chains of garbled circuits, where each circuit in a chain corresponds to one round
in the original MPC protocol, has the lables of the next garble circuit in the
chain hardcoded inside. Equivocating a chain entails recursively equivocating the
garbled circuits in it. Due to the complexity requirement of equivocal garbling
scheme, the size of the equivocal garbled circuits grows exponentially with the
length of the chain. As a result, we can only collapse rounds of constant-round
MPC protocols. (Note that this issue does not exist in the static setting, simulating
a chain of stardard garbled circuits does not lead to exponential size-growth.)
We can alternatively address the issue of exponential size-growth by applying the
techniques of [17] for constructing equivocal garbling scheme (instead of using
equivocal garbled circuits as black-boxe).8 For simplicity and modularity, we
take the first approach and collapse rounds of the constant-round MPC protocols
from [17] using the equivocal garbling scheme in the same work. See Section 6
for the new protocol and analysis.

In terms of writing, we follow the protocol of [5], but for convenience, we
present directly the entire protocol without using their intermediate abstraction
8 For example, the complexity of all equivocal garbled circuits can simply be propor-
tional to the entropy of the secrets that need to be equivocated, which in the case of
MPC are the inputs and randomness of the uncorrupted parties.



Two-Round Adaptively Secure MPC from Standard Assumptions 13

(namely witness selectors and garbled interactive circuits); this avoids re-defining
every intermediate notion in the adaptive setting, which would add unnecessary
complexity.

2.4 Future Work: Moving to the Single CRS Model

Our constructions are in the local CRS model, where every session of protocol
execution has its “local” independently sampled CRS. A more stringent model
is the single CRS model as formalized in [15], where all sessions share a single
CRS.9 We believe that our construction of 2-round adaptive-OT can be adapted
to the single CRS model, and when plugging such an OT in our construction
of MPC, the resulting 2-round adaptive MPC protocols also work with single
CRS. Recall that we gradually transform a static-OT with sender and receiver
oblivious sampleability into an adaptive-OT in three steps. We believe that
these transformation also works in the single CRS model. Thus it boils down
to instantiate static-OT with oblivious sampleability in the single CRS model
from concrete assumptions. The main difference from our current instantiation in
the local CRS model is that in the single CRS model, the protocols must satisfy
certain non-malleability or simulation-extractability property. But, they can be
easily achieved using CCA encryption, which is implied by DDH, QR, and LWE.
We leave the formal proof as future work.

3 Preliminaries

3.1 Notation

Throughout the paper λ ∈ N will denote the security parameter. We say that a
function f : N→ R is negligible if ∀c ∃ nc such that if n > nc then f(n) < n−c.
We will use negl(·) to denote an unspecified negligible function. We often use
[n] to denote the set {1, ..., n}. The concatenation of a with b is denoted by a||b.
Moreover, we use d← D to denote the process of sampling d from the distribution
D or, if D is a set, a uniform choice from it. If D1 and D2 are two distributions,
then we denote that they are statistically close by D1 ≈s D2; we denote that they
are computationally indistinguishable by D1 ≈c D2; and we denote that they are
identical by D1 ≡ D2.

For the sake of simplicity, we suppose that all circuits in a circuit class
have the same input and output lengths. This can be achieved without loss of
generality using appropriate padding. We recall that for any T -size circuit class
C = {Cλ}λ∈N, there exists a universal poly(T )-size circuit family {Uλ}λ∈N such
that for any λ ∈ N, any circuit C ∈ Cλ with input and output lengths n, l, and
any input x ∈ {0, 1}n, Uλ(C, x) = C(x).
9 We emphasize that the CLOS model of single CRS should be differentiated from
the global CRS model formalized in [11]. The key difference lies in that the latter
allows the environment to access the global CRS (and hence the CRS cannot be
programmed), whereas in the former all protocol execution can access the same CRS
but not the environment.



14 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

3.2 Equivocal Garbling Scheme

Definition 3.1 (Equivocal Garbling Scheme [17]). Let C = {Cλ}λ∈N be
a poly-size circuit class with input and output lengths n and l. A garbled
circuit scheme GC for C is a tuple of four polynomial-time algorithms GC =
(GC.Gen,GC.Garble,GC.Eval,GC.Sim):
Input Labels Generation: keys← GC.Gen(1λ) generates input labels keys =
{keysi}i∈[n] (with keysi[b] ∈ {0, 1}

κ being the input label corresponding to
the value b of the i-th input wire) for the security parameter λ, input length
n, and input label length κ;

Circuit Garbling: Ĉ ← GC.Garble(keys, C;σ) garbles the circuit C ∈ Cλ
into Ĉ;

Evaluation: y = GC.Eval(Ĉ, {keysi[xi]}i∈[n]) evaluates the garbled circuit Ĉ
using input labels keysi[xi] for input some input x = (x1, . . . , xn) and returns
the output y ∈ {0, 1}l;

Simulation: (k̃eys, C̃, st)← GC.Sim(1λ, y) simulates input labels k̃eys, a garbled
circuit C̃ and state st for the security parameter λ on the output y ∈ {0, 1}l;

Equivocation: (keys′, σ) ← GC.Equiv(C, x, st) such that given C and x, the
simulator generates (inactive) labels and fake randomness σ of the garbling
that makes C̃, keys′ look like a real garbling of C, x.

satisfying the following security properties:
Correctness: For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for any

input x ∈ {0, 1}n, for any keys in the image of GC.Gen(1λ) and any Ĉ in the
image of GC.Garble(keys, C):

GC.Eval(Ĉ, {keysi[xi]}i∈[n]) = C(x) .

Security: There exists a pair of PPT algorithm (S1, S2), such that any PPT
adversary A wins the following game with at most negligible advantage:
1. A gives a circuit C and an input x to the challenger;
2. The challenger flips a bit b.

If b = 0:
– It chooses random garbling key keys← GC.Gen(1λ);
– It sets (C̃ ← GC.Garble(keys, C;σ), x̃i = keysi[xi](i ∈ [n]);
– It sends C̃, x̃,keys, σ to the adversary.

If b = 1:
– It sets y = C(x);
– It runs the simulator (C̃, x̃, st)← S1(C, y)
– It runs the simulator (keys, σ)← S2(st, x)
– It sends C̃, x̃,keys, σ to the adversary.

3. The adversary outputs a bit b′.

The adversary wins if b = b′.

We recall that (equivocal) garbled circuit schemes can be constructed from
one-way functions.



Two-Round Adaptively Secure MPC from Standard Assumptions 15

Terminology of input labels. We note that, labels in boldface keys refer to all
labels corresponding to all input wires. keysi refers to the two input labels of the
i-th wire and keysi[b] refers to exactly one of them for b ∈ {0, 1}.

3.3 Equivocal Commitments

We define (adaptive) equivocal commitments (in the local CRS model).

Definition 3.2 (Non-Interactive Equivocal Commitment). A non-inter-
active equivocal commitment scheme C is a tuple of five polynomial-time algorithms
C = (C.Setup,C.Setupequiv,C.Com,C.Sim,C.Equiv)

Setup: ck ← C.Setup(1λ) expects as input the unary representation of the
security parameter λ and outputs a public parameter ck.

Equivocal Setup: (ck, trapq)← C.Setupequiv(1λ) outputs a public parameter ck
together with a trapdoor trapq (used for equivocation).

Commitment: com = C.Com(ck, x; r) generates a commitment com of x ∈
{0, 1}poly(λ) using random tape x ∈ {0, 1}poly(λ);

Simulation: (com, stc) = C.Sim(ck, trapq) outputs a simulated commitment and
a state used to equivocate the commitment;

Equivocation: r̃ = C.Equiv(ck, trapq, com, stc, x) equivocates the commitment
com to open to x;

satisfying the following properties:

Equivocality: For any polynomial-time circuit family A = {Aλ}λ∈N, there
exists a negligible function negl, such that for any λ ∈ N :∣∣∣∣∣Pr

Aλ(st, com, r) = 1 :
(ck, trapq)← C.Setupequiv(1λ);
(x, st)← A(ck);
com← C.Com(1λ, x; r)

−
Pr

Aλ(st, com, r̃) = 1 :

(ck, trapq)← C.Setupequiv(1λ);
(x, st)← A(ck);
(com, stc)← C.Sim(ck, trape);
r̃ ← C.Equiv(ck, trape, com, stc, x)


∣∣∣∣∣ ≤ negl(λ) .

Binding: For any polynomial-time circuit family A = {Aλ}λ∈N, there exists a
negligible function negl, such that for any λ ∈ N:

Pr
[

C.Com(x0; r0) = C.Com(x1; r1)
and x0 6= x1

: ck← C.Setup(1λ);
(x0, r0, x1, r1)← Aλ(ck)

]
≤ negl(λ) .

Indistinguishability of Public Parameters: We require that the two follow-
ing distributions are computationally indistinguishable:

{ck : ck← C.Setup(1λ)} , {ck : (ck, trapq)← C.Setupequiv(1λ)} .

Claim. Assuming the existence one-way functions, there exist equivocal commit-
ments.



16 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

Proof. We can use the construction that is implicit in Appendix B of the full
version of [28], using a pseudorandom generator G from {0, 1}λ to {0, 1}3λ:

Setup: ck← C.Setup(1λ) outputs a uniform string ck ∈ {0, 1}3λ.
Equivocal Setup: (ck, trapq) ← C.Setupequiv(1λ) generates a pair of uniform

strings trapq = (trapq0, trapq1) ∈ {0, 1}2λ and sets ck = G(trapq0)⊕G(trapq1).
Commitment: com = C.Com(ck, x; r) with r ∈ {0, 1}λ, sets com = G(r) if

x = 0 and com = G(r)⊕ ck if x = 1 (assuming messages x are bits, extension
to strings is straightforward by parallel repetition).

Simulation: (com, stc) = C.Sim(ck, trapq) sets com = G(trapq0) and stc =⊥.
Equivocation: r̃ = C.Equiv(ck, trapq, com, stc, x) returns r̃ = trapq0 if x = 0

and r̃ = trapq1 if x = 1.

Binding comes from the fact that with overwhelming probability over ck ∈
{0, 1}3λ, there does not exist r0 and r1 such that G(r0)⊕G(r1) = ck. Indistin-
guishability of public parameters and equivocality follows from the security of
the pseudorandom generator G.

3.4 (Augmented) Non-Committing Encryption

Let us now recall the definitions of non-committing encryption (NCE) and
augmented NCE from [12,15].

Definition 3.3 (Non-committing encryption). A non-committing (bit) en-
cryption scheme (NCE) consists of a tuple (NC.Gen,NC.Enc,NC.Dec,NC.Sim)
where (NC.Gen,NC.Enc,NC.Dec) is an encryption scheme and NC.Sim is the sim-
ulation satisfying the following property: for b ∈ {0, 1} the following distributions
are computationally indistinguishable:

{(pk, c, ρG, ρE) : (pk, sk)← NC.Gen(1λ; ρG), c = NC.Encpk(b; ρE)}λ,b ,
{(pk, c, ρbG, ρbE) : (pk, c, ρ0

G, ρ
0
E , ρ

1
G, ρ

1
E)← NC.Sim(1λ)}λ,b .

Definition 3.4 (Augmented non-committing encryption). An augmented
non-committing encryption scheme (NCE) consists of a tuple (NC.Gen,NC.Enc,
NC.Dec,NC.Sim,NC.GenObl,NC.GenInv) where (NC.Gen,NC.Enc,NC.Dec,NC.Sim)
is an NCE and:

Oblivious Sampling: NC.GenObl(1λ) obliviously generates a public key pk
(without knowing the associated secret key sk.

Inverse Key Sampling: NC.GenInv(pk) explains the randomness for the key pk.

satisfying the following property:

Obliviousness: The following distributions are indistinguishable:

{(pk, ρ) : pk← NC.GenObl(1λ; ρ)}λ ,

{(pk, ρ̃) : (pk, sk)← NC.Gen(1λ); ρ̃← NC.GenInv(pk)}λ .



Two-Round Adaptively Secure MPC from Standard Assumptions 17

4 Definitions of UC Adaptive MPC
4.1 General Definition of Universal Composability
We refer the reader to the full version and to [10] for the general definitions for
UC security.

General Functionality. We consider the general-UC N -party functionality F ,
which securely evaluates any polynomial-time (possibly randomize) function
f : ({0, 1}`in)N → ({0, 1}`out)N . The functionality Ff is parameterized with a
function f .

From deterministic to randomized functionalities. Our multi-party Protocol 1
UC-securely realizes the general functionality Ff when the function f is restricted
to be any deterministic poly-time function with N inputs and single output.
This functionality is defined in Figure 1. Standard techniques allow to obtain a
protocol that UC-securely realizes the general functionality Ff for any function f .
See details in the full version.

Functionality Ff

Ff parameterized by an N -ary deterministic single output function f , running with
parties P = {P1, . . . PN} (of which some may be corrupted) and an adversary S,
proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid,P, Pi, xi)
to the functionality. Upon receiving (input, sid,P, Pi, xi), record the tuple (Pi, xi),
send the message (input, sid,P, Pi) to the adversary S, and ignore subsequent
such messages for the same Pi.

2. Upon receiving the inputs from all parties, evaluate y ← f(x1, . . . , xN ). Send the
message (output, sid,P, y) to the adversary S if at least one party is corrupted,
and the message (output, sid,P) if no party is corrupted.

3. On receiving (deliver, sid,P, Pi) from S, output (output, sid,P, y) to Pi. (And
ignore the message if inputs from all parties in P have not been received or if
such a message has already been received for this party Pi.)

Fig. 1: General Functionality for Deterministic Single Output Functionalities.

Adversarial model. A static adversary A chooses the set of corrupted parties
before the protocol starts, as opposed to an adaptive adversary that can corrupt
the players during the protocol. We say that the adversary is semi-honest if A
follows the protocol but tries to extract some information about the other parties’
inputs from his view of the protocol. We say that the adversary is malicious if A
is allowed to deviate arbitrarily from the protocol specifications. We will say that
a protocol is semi-honest-secure if it is secure against a semi-honest adversary
and malicious-secure if it is secure against a malicious adversary. In this work,
we consider malicious security against an adaptive adversary.



18 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

Communication channel. In our results we consider a secure simultaneous message
exchange channel in which all parties can simultaneously send messages over the
channel at the same communication round in the presence of a rushing adversary.
In every communication round, a rushing adversary sees the messages from the
honest parties and only then chooses the messages on behalf of the malicious
parties. For simplicity, we assume that the parties can broadcast messages and
have authenticated channels. This can be achieved using standard methods.

4.2 The Local CRS Model

In the common reference string (CRS) model [13,15], all parties in the system
obtain from a trusted party a reference string, which is sampled according to a
pre-specified distribution D. The reference string is referred to as the CRS. In
the UC framework, this is modeled by an ideal functionality FDCRS that samples
a string ρ from a pre-specified distribution D and sets ρ as the CRS. FDCRS is
described in Figure 2.

Functionality FD
CRS

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r), where r
denotes uniform random coins, and send (crs, sid, ρ) to the adversary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Fig. 2: The Common Reference String Functionality.

5 Two-Round UC Adaptive-OT

5.1 Definition of Oblivious Transfer

(Two-out-of-one) oblivious transfer is a two-party functionality, involving a sender
S with input x0, x1, and a receiver R with input σ ∈ {0, 1}. R learns xσ (or ⊥ if
the protocol fails) and nothing else. S learns nothing about σ. The definition of
the ideal oblivious transfer functionality, denoted by FOT, appears in Figure 3.

Adversarial model. Our construction of 2-round OT secure against adaptive
corruption will start with 2-round OT that is only secure against static corruption
and has certain special properties, and gradually transform this property to handle
different adaptive corruption scenario. We list all the corruption scenarios we
consider below.

1. Static corruption where the adversary chooses the corrupted parties at the
beginning of the protocol execution.



Two-Round Adaptively Secure MPC from Standard Assumptions 19

Functionality FOT

FOT running with an oblivious transfer sender S, a receiver R and an adversary S
proceeds as follows:

1. Upon receiving a message (sender, sid, x0, x1) from S, where each xi ∈ {0, 1}λ,
record the tuple (x0, x1), send the message (sender, sid) to the adversary S, and
ignore subsequent such messages.

2. Upon receiving a message (receiver, sid,R, σ) from R, where σ ∈ {0, 1}, check if
a (sender, sid, x0, x1) message was previously received. If no such message was
received, do nothing. Otherwise, send (output, sid) to the adversary S if the
receiver R is not corrupted, and send (output, sid, xσ) to the adversary S.

3. Upon receiving (deliver, sid,R) from S, output (sid, xσ) to R. (And ignore the
message if inputs from all parties have not been received or if such a message
has already been received.)

4. Upon receiving (deliver, sid, S) from S, output (sid) to S. (And ignore the message
if inputs from all parties have not been received or if such a message has already
been received.)

Fig. 3: Oblivious Transfer Functionality.

2. Sender-semi-adaptive corruption where the adversary statically corrupts the
receiver from the beginning and adaptively chooses whether and when to
corrupt the sender during the execution of the protocol.

3. Receiver-semi-adaptive corruption where the adversary statically corrupts
the sender from the beginning and adaptively chooses whether and when to
corrupt the receiver during the execution of the protocol.

4. Semi-adaptive corruption where the adversary either performs sender-semi-
adaptive corruption or receiver-semi-adaptive corruption. In other words,
the adversary always corrupts one party from the beginning and adaptively
chooses whether and when to corrupt the other party during the execution.

5. Adaptive corruption where the adversary adaptively chooses whether and
when to corrupt any party during the execution. Note that adaptive corruption
covers semi-adaptive corruption, as well as the scenarios where the receiver
and/or sender are corrupted after the entire execution is complete.

Two-round oblivious transfer protocols. In this work, we consider 2-round oblivious
transfer protocols, denoted as Π = 〈S,R〉. For convenience, we often use S and R
to refer to the sender and the receiver. We also use them to denote the sender
and receiver algorithms, where the sender’s algorithm S(sid, x0, x1) takes input a
session id and two input strings, and receiver’s algorithm R(sid, σ) takes input a
session id and a selection bit. Below, for convenience of notation, in context where
the session id is clear, or can be arbitrary, we suppress sid from the algorithms.
For the cases where we consider 2-round oblivious transfer in the CRS-hybrid
model, we denote by K the CRS algorithm generation. We denote by SR (SS)
the ideal world simulator for FOT simulating the view of an adversarial receiver
(sender).



20 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

5.2 Oblivious Sampling

Definition 5.1 (Receiver-oblivious-sampleability). A 2-round oblivious trans-
fer protocol with receiver oblivious sampleability is a 2-round oblivious OT
protocol (Π = 〈S,R〉,K) with the additional algorithms (RObl, RInv), such that
for any bit σ ∈ {0, 1}, the following two distributions are computationally indis-
tinguishable:

{(crs, µ̃, ρ̃) : crs← K(1λ); ρ̃← {0, 1}λ; µ̃← RObl(crs; ρ̃)},
{(crs, µ, ρ) : crs← K(1λ); µ = R(crs, σ); ρ← RInv(crs, µ)}.

Definition 5.2. [Sender-oblivious-sampleability] A 2-round oblivious transfer
protocol with sender oblivious sampleability is a 2-round oblivious OT protocol
(Π = 〈S,R〉,K) with the additional algorithms (SObl,SInv) such that, for any
message x0, x1 ∈ {0, 1}λ, no PPT adversary A (acting as a malicious receiver),
can distinguish the following two experiments:
Real-world experiment:

1. A challenger C runs the simulator SR of Π, which interacts with A in a
straight-line: i) SR simulates the CRS crs for A; ii) when A sends a first OT
message µ, SR extracts from µ a selection bit σ.

2. C runs S to obtain an obliviously sampled OT second message ν ← SObl(crs, µ; ρ̃),
picks a random string t ← {0, 1}λ, and sends to A the selection bit σ, the
message ν, and the string t.

3. C sends ρ̃ to A.

Simulated-world experiment:

1. A challenger C runs the simulator SR of Π, which interacts with A in a
straight-line: i) SR simulates the CRS crs for A; ii) when A sends a first OT
message µ, SR extracts from µ a selection bit σ.

2. C runs S to obtain an honestly generated OT second message ν ← S(crs, µ, t0, t1)
for t0, t1 ← {0, 1}λ and sends to A the selection bit σ, the message ν, and
the string t1−σ.

3. C computes ρ← SInv(crs, ν) and sends ρ to A.

5.3 Transformation 1: Achieving Sender Equivocality

Proposition 5.3. Assume the existence of two-round oblivious transfer with the
following properties:

– UC-Security against static receiver corruption by a malicious adversary.
– UC-Security against static sender corruption by a semi-honest adversary.
– Sender oblivious sampleability.

Then, there exists a two-round oblivious transfer protocol in the CRS-hybrid model
with the following properties:



Two-Round Adaptively Secure MPC from Standard Assumptions 21

– UC-Security against static receiver corruption and post-execution sender
corruption (or UC-Security against sender-semi-adaptive corruption for short)
by a malicious adversary.

Additionally, the compilation preserves (1) receiver-oblivious-sampleability and
(2) UC-Security against static sender corruption by a semi-honest adversary, if
the original protocol satisfies either of the properties.

Our Protocol In this section we will present our UC oblivious transfer protocol
ΠOT secure against sender-semi-adaptive corruption, described in Figure 4. For
simplicity of exposition, in the sequel, we will assume that random coins are an
implicit input to the sender and receiver algorithms, unless specified explicitly.
The security proof is provided in the full version.

Protocol ΠOT

Let (Π = 〈S,R〉,K,SObl) be an oblivious transfer protocol with an oblivious sender
algorithm SObl.

Common Reference String: Generate crs← K(1λ).
Inputs: Sender holds two strings x0, x1 ∈ {0, 1} and receiver holds a bit σ.

1. Given input (receiver, sid, σ), receiver ROT runs S on input (receiver, sid, σ) to
obtain the message (sid, µ) which ROT sends to SOT.

2. Given input (sender, sid, x0, x1) and message (sid, µ), sender SOT generates random
strings r0, r1, s0, s1 ∈ {0, 1}λ and generates the following:

ν0,x0 = S(crs, µ, r0, s0) ν0,1−x0 = SObl(crs, µ)
ν1,x1 = S(crs, µ, s1, r1) ν1,1−x1 = SObl(crs, µ)

and sends (sid, r0, r1, ν0,0, ν0,1, ν1,0, ν1,1) to ROT.
3. Upon receiving the message (sid, r0, r1, ν0,0, ν0,1, ν1,0, ν1,1), ROT feeds R with

(sid, νσ,0) and (sid, νσ,1) in two parallel invocations to obtain y and y′. If y = rσ,
it outputs (sid, 0), and if y′ = rσ it outputs (sid, 1).

Fig. 4: Sender-semi-adaptive oblivious transfer ΠOT = 〈SOT,ROT〉 protocol.

5.4 Transformation 2: Achieving Receiver Equivocality against
Malicious Sender

Proposition 5.4. Assume the existence of two-round oblivious transfer with the
following properties:

– UC-Security against static sender corruption by a semi-honest adversary.



22 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

– UC-Security against a static receiver corruption and post-execution sender
corruption (or UC-Security against sender-semi-adaptive corruption for short)
by a malicious adversary.

– Receiver-Oblivious-sampleability.

Then there exists a two-round oblivious transfer protocol in the CRS-hybrid model
with the following properties:

– UC-Security against semi-adaptive corruption by a malicious adversary.

Our Protocol In this section we will present our UC oblivious transfer protocol
ΠOT secure against semi-adaptive corruption, described in Figure 5. The security
proof is provided in the full version.

5.5 Transformation 3: From Semi-Adaptive-OT to Adaptive-OT

Proposition 5.5. Assume the existence of augmented non-committing encryp-
tion and two-round oblivious transfer with the following property:

– UC-Security against semi-adaptive corruption by a malicious adversary.

Then there exists a two-round oblivious transfer protocol with the following prop-
erty:

– UC-Security against adaptive corruption.

Our Protocol In this section we will present our UC oblivious transfer protocol
ΠOT secure against adaptive corruptions, described in Figure 6. For simplicity of
exposition, in the sequel, we will assume that random coins are an implicit input
to the sender and receiver algorithms, unless specified explicitly. Furthermore,
to simplify notation, we suppose that the sender’s inputs are bits. Extension to
strings is straightforward: it just requires to use string NCE instead of bit NCE
(which can be constructed by parallel repetition of bit NCE). The security proof
is provided in the full version.

5.6 Instantiation of Static-OT with Oblivious Sampleability

In the full version, we show instantiations of static-OT with oblivious sampleability
from the DDH and the QR assumptions. We also construct a slightly weaker
variant of 2-round static-OT (called half-OT ) with oblivious sampleability from
LWE using a variant of the previous generic construction. Finally, we provide a
variant of Transformation 1 (Section 5.3) that starts from a half-OT instead of a
static-OT.



Two-Round Adaptively Secure MPC from Standard Assumptions 23

Protocol ΠOT

Let (Π = 〈S,R〉,K,RObl) be a UC static receiver corruption and sender-semi-
adaptive corruption oblivious transfer protocol with an oblivious receiver algorithm
RObl, let (NC.Gen,NC.Enc,NC.Dec,NC.Sim) be a somewhat NCE scheme, let
GC = (GC.Gen,GC.Garble,GC.Eval) be an equivocal garbling scheme and let
C = (C.Setup,C.Com) be a non-interactive equivocal commitment scheme.

Common Reference String: Generate crs′ ← K(1λ), ck ← C.Setup(1λ) and set
crs = (crs′, ck).
Inputs: Sender holds two strings x0, x1 ∈ {0, 1} and receiver holds a bit σ.

1. Given input (receiver, sid, σ), receiver ROT generates commitment com =
C.Com

(
σ; (r1‖r2‖...‖rT )

)
where ri ∈ {0, 1} and an NCE key pair (pk, sk) ←

NC.Gen(1λ). Send pk and for all i ∈ [κ], ROT invokes R to generate and send to
SOT the following:

µδ,i =
{

R(crs, ri) if δ = σ

RObl(crs) otherwise

2. Given input (sender, sid, x0, x1) and messages (sid, {µδ,i}), sender SOT proceeds
as follows:

(a) For δ ∈ {0, 1} generate circuit Cδ as follows:

Cδ(r1‖r2‖...‖rT ) =
{
output xδ if com = C.Com

(
δ; (r1‖r2‖...‖rT )

)}
(b) Generate the garble circuit Ĉδ, with input labels keysδ ← GC.Gen(1λ):

Ĉδ ← GC.Garble(keysδ, Cδ)

(c) For δ ∈ {0, 1} and i ∈ [T ] generate νδ,i = S(crs, µδ,i, keysδi );

and sends
(
sid, ct← NC.Enc(pk, {Ĉδ, νδ,i}δ∈{0,1},i∈[T ])

)
to ROT.

3. Upon receiving the message (sid, ct) compute {Ĉδ, νδ,i}δ∈{0,1},i∈[T ] =
NC.Dec(sk, ct), ROT feeds R with (sid, νδ,i) for all i ∈ [T ] to obtain the labels
{keysδi [ri]} corresponding to ri. Next, it evaluates the garbled circuits to get
xδ = GC.Eval(Ĉδ, keysδi [ri]). If xδ 6=⊥ for at least one δ ∈ {0, 1} then output
(sid, xδ) else output ⊥.

Fig. 5: Semi-adaptive oblivious transfer ΠOT = 〈SOT,ROT〉 protocol.

6 Two-Round UC Adaptive-MPC

In this section we upgrade the static construction of [5] to the adaptive setting.
The changes we make to the construction of [5] is to lift the security of the garble
circuit and oblivious transfer schemes to the adaptive setting. Unlike [5], we also
obtain security against adaptive malicious adversaries without NIZK.



24 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

Protocol ΠOT

Let (Π = 〈S,R〉,K) be a UC-secure semi-adaptive oblivious transfer protocol.
Let (NC.Gen,NC.Enc,NC.Dec,NC.Sim,NC.GenObl,NC.GenInv) be an augmented NCE
scheme.

Common Reference String: Generate crs← K(1λ).
Inputs: Sender holds two bits x0, x1 ∈ {0, 1} and receiver holds a bit σ.

1. Given input (receiver, sid, σ), receiver ROT does the following:

(a) run R on input (receiver, sid, σ) to obtain the message (sid, µ).
(b) generate an NCE key pair (pkσ, skσ)← NC.Gen(1λ).
(c) obliviously sample an NCE public key pk1−σ ← NC.GenObl(1λ).
(d) send (sid, µ, pk0, pk1) to the sender SOT.

2. Given input (sender, sid, x0, x1) and message (sid, µ), sender SOT does the following:

(a) pick two random strings r0, r1 ← {0, 1}λ
(b) run S on input (sender, sid, r0 ⊕ x0, r1 ⊕ x1) to obtain the message (sid, ν).
(c) encrypts x0 and x1 under pk0 and pk1 respectively: ct0 ← NC.Enc(pk0, x0)

and ct1 ← NC.Enc(pk1, x1).
(d) send (sid, ν, ct0, ct1) to the receiver ROT.

3. Upon receiving the message (sid, ν, ct0, ct1), ROT feeds R with (sid, ν) to obtain y.
It also decrypts ctσ into r: r = NC.Dec(skσ, ctσ) and output y ⊕ r.

Fig. 6: Adaptive oblivious transfer ΠOT = 〈SOT,ROT〉 protocol.

Protocol ΠMPC. We provide an intuitive description of the protocol. A formal
description appears in Protocol 1. The main idea is to collapse a constant L-
round adaptive N -party protocol π secure against malicious adversaries into a
two-round protocol based on equivocal garbled circuits and adaptive oblivious
transfer. The first round of the protocol acts as a catalyst for a virtual execution
of π via equivocal garbled circuits sent by all the parties in the second round.
In particular, each party Pi garbles their next-step circuit Nextmsgi(xi, ri, ?) in
an execution of the inner protocol π computing the desired functionality f . The
next-step circuit contains hardcoded the input and randomness (xi, ri) of party
Pi and produces Pi’s next message m`

i for round ` on input the messages received
from all parties in all previous rounds M<` = {m`′

j }j∈[N ],`′<`. We denote these
circuits by F̂`i . These garbled circuits expect as input messages from other parties
as well as output messages for other garbled circuits. There are certain barrier
to put this idea into practice. First of all, parties can perform residual attacks
on the honest parties inputs. To overcome this barrier, we use the first round
to “bind” the parties to their inputs via an oblivious transfer protocol. Next,
each party in the second round needs to generate verification circuits V̂i,j that
take as input a proof for each other party’s input message and verify that the
message is honestly generated from the inputs and random tapes committed in



Two-Round Adaptively Secure MPC from Standard Assumptions 25

the first round. This ensures that only the unique sequence of honestly generated
messages is accepted by honest parties’ F̂`i garbled circuits. Our protocol below
describes how to combine the above ideas.

6.1 The Protocol

In this section we present our adaptively secure two-round MPC protocol secure
against malicious adversaries, described in Protocol 1.

Protocol 1 (Adaptive malicious protocol ΠMPC). Let f be an arbitrary
N -party functionality. Protocol ΠMPC relies on the following components:

– An adaptive malicious constant L-round N -party protocol π = (Setupπ,
Nextmsg,Output) for f . Setupπ generates the CRS crsπ which is an implicit
input of Nextmsg and Output. Without loss of generality, we will assume that
in each round ` of π, each party Pi broadcasts a single message that depends
on its input xi, randomness ri and on the messages M<` = {m`′

j }j∈[N ],`′<`
that it received from all parties in all previous rounds such that m`

j =
Nextmsgj(xj , rj ,M<`). Nextmsgj is the next message function that computes
the message broadcast by Pj . In the last round L of π each party Pi locally
computes the output yi = Outputi(xi, ri,M) after receiving all the messages
M = {m`

j}j∈[N ],`∈[L].
– A malicious adaptive OT protocol (Π = 〈S,R〉,K) where K is the OT setup

algorithm.
– An equivocal garbling scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim).

Common Reference String: Generate crsOT ← K(1λ) and crsπ ← Setupπ(1λ,
1N ).10 Set the CRS to be crs = (crsOT, crsπ).
Input: Parties P1, . . . , PN are given input (x1, . . . , xN ), respectively.

– Round 1: For ` from L to 1 each party Pi? proceeds as follows:

1. Generate input labels cKeys`i? ← GC.Gen(1λ).
2. Garble a commitment circuit C`i? = Uλ(?, (xi? , ri?)), which is the univer-

sal circuit (with input size T ) partially evaluated on (xi? , ri?): Ĉ`i? ←
GC.Garble(cKeys`i? , C`i?) where ri? is the random tape for running pro-
tocol π.

3. For each k ∈ [|Ĉ`i? |], generate OT receiver messages for the k-th bit of
Ĉ`i? , denoted |Ĉ`i? |k:

µ`i?,k = R(crsOT, |C`i? |k; ρ`i?,k)

4. For each t ∈ [T ], for each bit b ∈ {0, 1}, generate OT receiver messages

µ`i?,t,b = R(crsOT, cKeys`i?,t[b]; ρ`i?,t,b)
10 Formally, we need a CRS crsOT for each instantiation of the OT protocol. For the

sake of simplicity, we assume that there is a single CRS.



26 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

Output c`i? = ({µ`i?,k}, {µ`i?,t,b})
– Round 2: For ` from L to 1 each party Pi? garbles the evaluation circuits

Fi? = {F`i?}`∈[L], defined in Fig. 7, as follows:

1. Generate input labels

{cirKeys`i?,j}j∈[N ], stateKeys`i? , {dataKeys`i?,j}j∈[N ] ← GC.Gen(1λ) .

2. Garble the evaluation circuit F`i? and broadcast F̂i? = {F̂`i?}`∈[L]:

F̂`i? ← GC.Garble({cirKeys`i?,j}j , stateKeys`i? , {dataKeys`i?,j}j ,F
`
i?) .

3. Generate OT sender messages on the received messages {µ`j,k}j,k:

ν`i?,j,k = S(crsOT, µ
`
j,k, cirKeys`i?,j,k[0], cirKeys`i?,j,k[1]) .

4. For each k ∈ [|Ĉ`i? |] output the randomness ρ`i?,k used to generate µ`i?,k.

– Output phase: Each party evaluates the evaluation garbled circuits. In
particular Pi? proceeds as follows in L iterations (` ∈ [L]):

1. For all i ∈ [N ], j ∈ [N ], and k ∈ [|Ĉ`j |], given ρ`j,k recover the labels
cirKeys`i,j,k[b] corresponding to the bit b = |Ĉ`j |k. For all i ∈ [N ], denote
all the [|Ĉ`j |] garble labels cirKeys`i,j,k[b] by γ`i,j .

2. If ` = 1, for i ∈ [N ], evaluate the evaluation garble circuit GC.Eval(F̂1
i ,

{γ1
i,j}j) to obtain (stateKeys2

i , {V̂1
i,j , ν

1
i,j,t, d

1
i,t}j,t, m

1
i ) for all j ∈ [N ]

and t ∈ [T ]. Note that for ` = 1, stateKeys1
i and {dataKeys1

i,j}j are the
empty set.

3. For every 1 < ` ≤ L, for i ∈ [N ] and for each j ∈ [N ] proceed as follows.
For all t ∈ [T ] set g`−1

j,t = |G`−1
j |

t
as the t-th bit of the circuit G`−1

j . For
simplicity of exposition, denote by α`−1

j,t = cKeys`−1
j,t [b] the garble label of

the commitment circuit corresponding to the bit b = g`−1
j,t and proceed

as follows:

(a) Given the randomness d`−1
j,t , used to generate the ΠOT message ν`−1

i,j,t ,
recover the κ garble labels {vKeys`−1

i,j,t′ [α
`−1
j,t ]}

t′
of the verification

circuit where (t− 1) · κ < t′ ≤ t · κ. Denote all of the κ · T labels by
β`i,j .

(b) Evaluate the verification circuit GC.Eval(V̂`−1
i,j , β

`
i,j) to receiver the

garble labels corresponding to the message m`−1
j of the evaluation

circuit i.e. dataKeys`i,j [m`−1
j ].

(c) Evaluate the evaluation circuit GC.Eval(F̂`i , {γ`i,j}j , stateKeys`i [M<`−1],
{dataKeys`i,j [m`−1

j ]}
j
) to obtain the values (stateKeys`+1

i [M<`], {V̂`
i,j ,

ν`i,j,k, d
`
i,t}j,t, m

`
j) for the next round `+ 1.



Two-Round Adaptively Secure MPC from Standard Assumptions 27

(d) For the case where ` = L, the evaluation circuit outputs the empty
set for the values stateKeys`+1

i [M<`] and {V̂`
i,j , ν

`
i,j,t}j .

4. After all L iterations, Pi? obtains the set of all messagesM , and computes
the output yi? = Outputi? (xi? , ri? ,M).

6.2 Security Proof

Theorem 6.1. Let f be an arbitrary N-party functionality. Assume the exis-
tence of two-round adaptively secure malicious oblivious transfer protocol ΠOT
in the FCRS-hybrid model and an N-party malicious constant-round adaptively
secure computation protocol π for f in FCRS. Then the two-round protocol ΠMPC,
presented in Protocol 1, UC-securely realizes the ideal functionality Ff in the
FCRS-hybrid model against adaptive corruption of any subset of the parties by a
malicious adversary.

The protocol π can be instantiated based on simulatable PKE [17] in the CRS
model. In the semi-honest setting, no CRS is required and the protocol π can be
instantiated based on augmented NCE [17]. See the full version for details.

The security proof is provided in the full version.

Acknowledgments. We thank the anonymous reviewers of TCC 2018 for their
insightful comments. Huijia Lin was supported by NSF grants CNS-1528178, CNS-
1514526, CNS-1652849 (CAREER), a Hellman Fellowship, the Defense Advanced
Research Projects Agency (DARPA) and Army Research Office (ARO) under
Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois.
Antigoni Polychroniadou was supported by the Junior Simons Fellowship awarded
by the Simons Society of Fellows. Muthuramakrishnan Venkitasubramaniam was
supported by Google Faculty Research Grant and NSF Award CNS-1526377
and this work was partly carried out during a visit to DIMACS supported by
the National Science Foundation under grant number CNS-1523467. The views
expressed are those of the authors and do not reflect the official policy or position
of the Department of Defense, the National Science Foundation, or the U.S.
Government.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Removing erasures with explainable
hash proof systems. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp.
151–174. Springer, Heidelberg (Mar 2017)

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (Apr 2012)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC. pp. 1–10. ACM Press (May 1988)



28 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

Circuit F`i

Hardwired Values: 1λ, crs, `, i, xi, ri, {µ`j,t,b}, stateKeys`+1
i ,

{dataKeys`+1
i,j }j∈[N ]

, {ρ`i,t,b}t∈[T ],b∈{0,1}.

Inputs: ({Ĉ`j}j ,M
<`−1, m̄`−1) where for ` > 1:

– Garble labels corresponding to the circuits Ĉ`j are denoted by cirKeys`i,j .
– The input messagesM<`−1 are the messages of protocol π of the first `−2 rounds.

Garble labels corresponding to this input are denoted by stateKeys`i .
– The input messages m̄`−1 := {m`−1

j }
j∈[N ]

are the `−1 round messages of protocol
π. Garble labels corresponding to this input are denoted by dataKeys`i,j .

Procedure:

1. Define the circuit G`j as G`j(?, ?) = Nextmsgj(?, ?,M<`−1, m̄`−1), for j ∈ [N ] and
set gj,t = |G`j |t as the t-th bit of G`j .

2. Compute the `-th round message of Pi of the inner protocol π:
m`
i = Nextmsgi

(
xi, ri, (M<`−1, m̄`−1)

)
.

3. Set d`i,t = ρ`i,t,b as the randomness used to generate Pi’s ΠOT messages (acting as
the receiver) corresponding to the bit b = gi,t.

4. Generate the verification circuits V`
i,j for all j ∈ [N ], t ∈ [T ]:

V`
i,j(αj,t) =

{
m`
j = GC.Eval(Ĉ`j , αj,t)

output dataKeys`+1
i,j [m`

j ]

5. Generate input labels vKeys`i,j ← GC.Gen(1λ) and garble the circuit V̂`
i,j ←

GC.Garble({vKeys`i,j}j ,V
`
i,j) for j ∈ [N ].

6. Generate Pi’s ΠOT message (acting as the sender) corresponding to the ΠOT
message of Pj (acting as the receiver) corresponding to the bit b = gj,t for all
j ∈ [N ], t ∈ [T ]:

ν`i,j,t = S(crsOT, µ
`
j,t,b, {vKeys`i,j,t′}t′)

Since the input αj,t to the verification circuit Vi,j is a κ-bit garbled label for the
commitment garble circuit Ĉj , each OT sender message νi,j,t includes κ pairs of
labels vKeys. That said, (t− 1) · κ < t′ ≤ t · κ.

7. Select the input labels stateKeys`+1
i [M<`−1, m̄`−1] for the next round (` + 1),

corresponding to the messages M<`−1, m̄`−1.

Output: (stateKeys`+1
i [M<`−1, m̄`−1], {V̂`

i,j , ν
`
i,j,k, d

`
i,k}j,k,m

`
i).

Fig. 7: Pseudocode of circuit F`i



Two-Round Adaptively Secure MPC from Standard Assumptions 29

4. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices
revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770,
pp. 644–674. Springer, Heidelberg (Mar 2018)

5. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg
(Apr / May 2018)

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and ex-
tensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 16. pp. 1292–1303. ACM Press (Oct 2016)

7. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: Optimizing
rounds, communication, and computation. In: Coron, J., Nielsen, J.B. (eds.) EU-
ROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Heidelberg
(Apr / May 2017)

8. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. To appear, ITCS (2018)

9. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (Aug 2016)

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)

11. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer,
Heidelberg (Feb 2007)

12. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC. pp. 639–648. ACM Press (May 1996)

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (Aug 2001)

14. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (Mar 2015)

15. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: 34th ACM STOC. pp. 494–503. ACM
Press (May 2002)

16. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round adaptive
multi-party computation. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175,
pp. 396–427. Springer, Heidelberg (Mar 2017)

17. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Equivocating yao: constant-
round adaptively secure multiparty computation in the plain model. In: Hatami,
H., McKenzie, P., King, V. (eds.) 49th ACM STOC. pp. 497–509. ACM Press (Jun
2017)

18. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (Dec 2009)

19. Choi, S.G., Katz, J., Wee, H., Zhou, H.S.: Efficient, adaptively secure, and com-
posable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (Feb / Mar
2013)

20. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 630–656. Springer, Heidelberg (Aug 2015)



30 F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam

21. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (Apr / May 2002)

22. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (Mar 2015)

23. Damgård, I., Polychroniadou, A., Rao, V.: Adaptively secure multi-party compu-
tation from LWE (via equivocal FHE). In: Cheng, C.M., Chung, K.M., Persiano,
G., Yang, B.Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 208–233. Springer,
Heidelberg (Mar 2016)

24. Garay, J.A., Wichs, D., Zhou, H.S.: Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (Aug 2009)

25. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (Feb 2014)

26. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (Mar 2015)

27. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps.
In: 58th FOCS. pp. 588–599. IEEE Computer Society Press (2017)

28. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Heidelberg (Apr / May 2018)

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987)

30. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

31. Gordon, S.D., Liu, F.H., Shi, E.: Constant-round MPC with fairness and guarantee
of output delivery. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (Aug 2015)

32. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. Journal of Cryptology 25(1), 158–193 (Jan 2012)

33. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(Aug 2009)

34. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 735–763. Springer, Heidelberg (May 2016)

35. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA. pp. 448–457. ACM-SIAM (Jan 2001)

36. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg
(Oct / Nov 2016)

37. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (Aug 2008)

38. Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS. pp. 80–91. IEEE Computer Society Press (Nov 1982)


	Two-Round Adaptively Secure Multiparty Computation from Standard Assumptions
	Introduction
	Technical Overview
	2-round Adaptive-OT
	Instantiation of Static-OT with Oblivious Sampleability
	From Adaptive-OT to Adaptive-MPC
	Future Work: Moving to the Single CRS Model

	Preliminaries
	Notation
	Equivocal Garbling Scheme
	Equivocal Commitments
	 (Augmented) Non-Committing Encryption

	Definitions of UC Adaptive MPC
	General Definition of Universal Composability
	The Local CRS Model

	Two-Round UC Adaptive-OT
	Definition of Oblivious Transfer
	Oblivious Sampling
	Transformation 1: Achieving Sender Equivocality
	Transformation 2: Achieving Receiver Equivocality against Malicious Sender
	Transformation 3: From Semi-Adaptive-OT to Adaptive-OT
	Instantiation of Static-OT with Oblivious Sampleability

	Two-Round UC Adaptive-MPC
	The Protocol
	Security Proof



