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Abstract. Fairness in classification has become an increasingly relevant
and controversial issue as computers replace humans in many of today’s
classification tasks. In particular, a subject of much recent debate is that
of finding, and subsequently achieving, suitable definitions of fairness in
an algorithmic context. In this work, following the work of Hardt et al.
(NIPS’16), we consider and formalize the task of sanitizing an unfair clas-
sifier C into a classifier C’ satisfying an approximate notion of “equalized
odds” or fair treatment. Our main result shows how to take any (possi-
bly unfair) classifier C over a finite outcome space, and transform it—Dby
just perturbing the output of C—according to some distribution learned
by just having black-box access to samples of labeled, and previously
classified, data, to produce a classifier C’ that satisfies fair treatment;
we additionally show that our derived classifier is near-optimal in terms
of accuracy. We also experimentally evaluate the performance of our
method.

1 Introduction

As algorithmic decision-making becomes ever more popular and widely-used in
today’s society, concerns are being raised about whether, and to what extent,
algorithms have the potential to discriminate, either as a result of malicious
designers or perhaps from learning biases inherent in previous decisions on which
an algorithm could be trained. In a well-known recent example, the COMPAS
recidivism analysis tool, one of an increasingly popular set of algorithmic criminal
“risk assessments” which are being used nationwide in sentencing and other
decisions pertaining to defendants in the criminal justice system, was shown to
exhibit highly disparate treatment between different races; a study by ProPublica
[12] showed that African-American defendants who ultimately did not recidivate
were almost twice as likely as white defendants to receive a high risk score from
the algorithm.
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As a result of these concerns, there has been extensive research in computer
science and other fields pertaining to how fairness, or non-discrimination, should
be defined in the context of a classification scenario. In this work, we will for-
malize and study one such definition, fair treatment, which is an approximate
and distribution-based version of the notion of equalized odds 6] or balance [7].

Fair Treatment (a.k.a. approzimate equalized odds). The originally proposed no-
tion of fairness in classification is that of statistical parity [5] (which is essentially
identical to the notion of causal effect [8]), which captures non-discrimination
between groups. Given a classifier C which assigns to individuals o from some
distribution D—each of which has some subset of observable features O(o)—an
outcome C(O(o)) (e.g., a risk score), and given a function f(o) representing an
individual’s actual class (e.g., whether they will recidivate), statistical parity
simply requires that the output of the classifier be independent (or almost inde-
pendent) of the group of the individual; that is, for any two groups X and Y,
the distributions {C(O(ox))} and {C(O(oy))} are e-close in statistical distance.
This is a very strong notion of fairness, and in many contexts it may not make
sense. In particular, if the base rates (e.g., the base percentages of people from
each race who actually recidivate) are different, we should perhaps not expect
the output distribution of the classifier to be the same across groups. Indeed, as
the ProPublica article points out, in the COMPAS example, the overall recidi-
vism probability among African-American defendants was 56%, whereas it was
42% among white defendants. Thus, in such situations, one would reasonably
expect a classifier to on average output a higher risk score for African-American
defendants, which would violate statistical parity. Indeed, the issue raised by
ProPublica authors was that, even after taking this base difference into account
(more precisely, even after conditioning on individuals that did not recidivate),
there was a significant difference in how the classifier treated the two races.
The notion of equalized odds due to Hardt et al. [6] formalizes the desiderata
articulated by the authors of the ProPublica study (for the case of recidivism)
in a general setting by requiring the output of the classifier to be independent of
the group of the individuals, after conditioning on the class of the individuals.
Very similar notions of fairness appear also in works such as [3,7] using different
names; for instance, Kleinberg et al. |7] consider a notion of “balance” which is an
approximate version of equalized odds, albeit one which is tailored to scoring-
based classifiers over a binary class space and only requires the conditioned
expectation of the outcome (i.e., the score) to be close between groups. We here
consider a more general approximate version of this notion which applies to all
classifiers with a finite outcome space, which we refer to as e-fair treatment. This
requires that, for any two groups X and Y and any class ¢, the distributions

- {C(O(ox)) | flox) =c}
- {C(O(ay)) | floy) = c}

are e-close with respect to some appropriate distance metric to be defined shortly.
That is, in the COMPAS example, if we restrict to individuals that actually do
not recidivate (respectively, those that do), the output of the classifier ought



to be essentially independent of the group of the individual (just as intuitively
desired by the authors of the ProPublica study, and as explictly put forward
in [6]).

We will effectively use the notion of maz-divergence to determine the “dis-
tance” between distributions; this notion, often found in areas such as differen-
tial privacy (see [4]), represents this distance as (the logarithm of) the mazimum
multiplicative gap between the probabilities of some element in the respective
distributions. We argue that using such a multiplicative distance is important
to ensure fairness between groups that may be under-represented in the data
(see Section . Furthermore, as we note in the same appendix, such a notion
is closed under “post-processing”: if a classifier C satisfies e-fair treatment with
respect to a context P = (D, f, g, 0), then for any (possibly probabilistic) func-
tion M, C'(-) = M(C(:)) will also satisfy e-fair treatment with respect to P.
Closure under post-processing is important as we ultimately want the output of
any subsequent classifier that uses only the output of a prior fair classifier to be
fair as well [

Can we sanitize an “unfair” classifier? As shown in the ProPublica study, the
COMPAS classifier has a considerably large error in balance between races and
hence also has a large error in the stronger notion of fair treatment. A natural
question, then, would be whether we can “post-process” the output of this unfair
classifier (or others) to satisfy some notion of balance or fair treatment. Indeed,
there is a considerable amount of research devoted to achieving various defini-
tions of fairness in practice. This is a highly non-trivial problem, in fact; early
nalve approaches, such as just removing protected attributes from the feature
set, fail due to redundant encodings for such features in the data (as discussed
in [5]).

This question was more recently addressed in the work of Hardt et al. [6],
who examine various methods by which a potentially unfair classifier can be
post-processed into a fair binary classifier. They formalized the notion of a C-
derived classifier: namely a classifier C’ obtained from C by first running C, and
then “perturbing” the output of C. More precisely, such a C derived classifier
may be specified by a “perturbation matrix” P where entry P; ; indicates with
what probability output ¢ gets perturbed into output j. Hardt et al. showed that
for classifiers C over a binary outcome spaces, we can construct non-trivial C-
derived classifiers that satisfy their notion of equalized odds (in our terminology
“perfect” fair treatment). Subsequent work [9] using this method showed that,
for a binary version of the COMPAS classifier (which only attempts to predict
recidivism and not output a risk score), it can produce a perfectly fair classifier
with only an overall loss in accuracy of roughly 1.5%. Their method, however,
requires “perfect” knowledge of the distribution D as well as of the classifier C

3 Remarking once again on the earlier definition of Kleinberg et al., we note that
while it is equivalent to our definition for the case of binary outcomes, it is weaker
for non-binary outcomes (as in the case of the COMPAS classifier). Furthermore, as
with most expectation-based definitions, it is not closed under post-processing.



in order to demonstrate optimality; additionally, as mentioned, it only applies
to binary outcomes (and as such, does not directly apply to a risk assessment
setting such as COMPAS)H

Thus, the literature leaves open the questions of (1) whether we can efficiently
find a C-derived classifier (without having perfect knowledge of D and C), and
(2) whether sanitization can be done for non-binary outputs.

Towards addressing this problem, we first formalize the notion of black-box
sanitization: how to efficiently find a C-derived classifier given just black-box
access to a “sampling oracle” which samples random individuals ¢ < D and
outputs (O(o), f(0),C(0O(0)),g(0)) (that is, the individual’s observable features,
prior classification C, actual class, and group, which is essentially the data used
by the ProPublica authors to investigate the fairness of COMPAS).

Definition 1 (Informally stated.). We call an algorithm B a black-box san-
itizer if, given a distribution D and a sequence of prior classifiers {C,} such
that C,, takes as input n-bit descriptions O, (o) of individuals’ featureﬂ then,
for each n, it:

— runs in time polynomial in n, and

— outputs some Cp-derived classifier C|, which, with overwhelming probability
1 —wv(n) for some v(-) negligz'bltﬂ in n, satisfies approximate fair treatment
(with some small error e(n)) for individuals o <+ D,

while only making “black-box” queries to the prior classifier. (That is, B can-
not use any information about D or C, aside from querying random samples

(On(0"), f(0"),Cn(On(0")), g(0")) for o’ < D.)

Our key result is the construction of an efficient (i.e., polynomial-time in
n) black-box sanitizer B that works for any distribution D and prior classifier
sequence {Cp} over a fixed outcome space, and produces a classifier which not
only satisfies approximate fair treatment but also can be shown to be near-
optimal in terms of prediction accuracy (though the same also holds for a more
general class of linear loss functions, which are formalized in the main statement
of the result):

Theorem 1 (Informally stated). For any fized outcome space 2, group space
G, and inverse polynomial €(n), there exists a black-box sanitizer B with fair
treatment error €(n) such that, with probability at least 1 —v(n) over B’s queries
for some inverse-exponential v(-), the accuracy loss of the classifier C' output by
B (compared to the optimal C-derived classifier over the same D, f, and C) is
bounded by |2|(e(n) + e(n)*|G|/32).

4 Hardt et al [6] also presented a method for sanitizing a classifier outputting a risk-
score (just as COMPAS), but the final, derived, classifier again would only output
a single bit.

5 Here we consider a sequence of classifiers for the sake of defining “computational
efficiency” of a sanitizer; in particular, we would like the running time of our sanitizer
to be polynomial in the feature length n.

5 That is, asymptotically smaller than any inverse polynomial 1/p(n).



We note that while Hardt et al. demonstrate a classifier satisfying errorless
fair treatment, our derived classifier only satisfies e-approximate fair treatment
for some small €, but this is unavoidable as we do not assume knowledge of the
distribution D. In contrast, we show how this classifier can be efficiently found
without this knowledge of D; additionally, our method applies to classifiers over
any finite outcome space, as opposed to just binary outcomes.

In the full version of this paper, we also experimentally evaluate the accuracy
of our post-processing technique using a data set from the COMPAS recidivism
analysis tool |1]. We investigate the fair treatment rates of the original data
set and subsequently use the above technique to create classifiers satisfying fair
treatment with varying errors while optimizing three different loss functions,
amounting to overall accuracy (when considering a binary version of the classifier
where scores 0-5 get mapped to a 0, and 6-10 get mapped to 1) and two notions
of the similarity of the derived classification to the original classification. We find
that our method is able to produce derived classifiers satisfying fair treatment
with a relatively small amount of loss (with respect to this experimental data).

1.1 Proof Outline for Theorem [i]

We show our sanitization theorem in three steps. First, we consider an arbitrary
C-derived classifier, and we demonstrate constraints for a linear program that
can be used to efficiently find the optimal such classifier C’ satisfying fair treat-
ment. We note that these constraints are precisely a generalized version of those
which Hardt et al. [6] demonstrate for binary classifiers C (though they also con-
sider C with larger outcome spaces); we, however, also leverage our approximate
definition to create constraints for approzimate fair treatment. We further note
that solving this linear program will require time polynomial in the number of
possible outcomes |O|.

Of course, our linear constraints, as well as the loss function we wish to opti-
mize, may in general depend on features of D and C that we may in this model
only approximate with black-box queries. So, towards approximating this opti-
mal classifier in a black-box setting, we show that it suffices to use experimental
probabilities derived from these queries rather than actual probabilities to build
the linear program, since over sufficiently many queries, and as long as real prob-
abilities are sufficiently large, it is overwhelmingly likely by a simple Chernoff
bound that the experimental probabilities will be very close to accurate. To deal
with the case when real probabilities may be quite small (and prone to large
multiplicative error in estimation due to variance in samples), we additionally
add a very small amount of random noise to the classifier in order to smooth
out the multiplicative distance between real and experimental probabilities, ef-
fectively by increasing the minimum possible probability of events (noting that
the noise is optional when the probabilities we wish to calculate experimentally
are reasonably large). By solving this approximate version of the linear pro-
gram, we may obtain a near-optimal derived classifier satisfying approximate
fair treatment with respect to a given loss function.



However, the loss function we wish to minimize in the linear program is also
potentially dependent on certain probabilities of events over C and D which re-
quire non-black-box knowledge to derive exactly; to overcome this, we show that
the constructed sanitizer can in fact estimate these accurately using black-box
queries by the same argument as that for the linear program’s coefficients, and
S0, given enough samples, an approximate loss function derived from experimen-
tal probabilities is overwhelmingly likely to be close to the real loss function.
Of course, while the approximation of the loss function is close, it is unclear as
to whether the optimum of the approximate loss function is necessarily close to
optimal over the real loss function; we show, through leveraging properties of the
loss function and the space over which it is defined, that in fact this is the case
for accuracy (and other loss functions, including natural classes of loss functions
that are linear in the probabilities Pr{o <— D : f(o) =i AC(O(0)) = j]), which
completes our argument of near-optimality.

2 Preliminaries and Definitions

2.1 Notation

Conditional probabilities. Given some random variable X and some event F,
we let Pr[p(X) | E] denote the probability of a predicate p(X) holding when
conditioning the probability space on the event E. If the probability of E is 0,
we slightly abuse notation and simply define Pr[p(X) | E] = 0.

Multiplicative distance. The following definition of multiplicative distance will
be useful to us. We let the multiplicative distance p(z,y) between two real
numbers x,y > 0 be defined as

ln<max<%,%)) ife >0,y >0
w@,y) =10 ifr=y=0
00 otherwise

2.2 Classification Contexts

We start by defining classification contexts and classifiers.

Definition 2. A classification context P is denoted by a tuple (D, f,g,0)
such that:

— D is a probability distribution with some finite support Xp (the set of all
possible individuals to classify).

— f: Xp = ¥Up is a surjective function that maps each individual to their
class in a set Up.

— g : Xp — Gp is a surjective function that maps each individual to their
group in a set Gp.



- 0:Yp = {0,1}* x Gp is a function that maps each individual o to their
observable features (O'(0),g(0)); note that we by default assume that an
individual’s group can be observed.

We note that f and g are deterministic; this is without loss of generality as
we can encode any probabilistic features that f and g may depend on into ¢ as
“unobservable features” of the individual.

Given such a classification context P, we let ¥p denote the range of f, and
Gp denote the range of g. Whenever the classification context P is clear from
context, we drop the subscript; additionally, whenever the distribution D and
group function g are clear from context, we use o to denote a random vari-
able that is distributed according to D, and ox to denote the random variable
distributed according to D conditioned on g(o) = X.

2.3 Classifiers

A classifier C for a classification context P = (D, f, g, O) is simply a (possibly
randomized) algorithm that acts on the support of O (the observable description
of an individual). We let £2% denote the support of the distribution {C(O(o))}.

We also must formalize what it means for a classifier to be “derived” from
another classifier; hence, we define the following notion of a classifier C’ that
“perturbs” the output of some original classifier C. Given an individual o, C’
will run C and then “post-process” the output according only to the output
C(O(o)) and o’s group.

Definition 3. [6] Given a classifier C, we say that a classifier C' is a C-derived
classifier if, in any context P = (D, f,g,0), the outcome C' is only dependent
on C(O(0)) and o’s group g(o). (Equivalently, C' is a classifier over the context

P’ = (D, f,9,(C(0()).9()).)

Formally, we can represent this as a |2%] x [2%] x |Gp| vector Per of the
probabilities
Pf; = PrlC'(C(O(ay)).g9) = jIC(O(ay)) = i]

and let C' be a classifier that, given an individual o, runs C on that individual,
observes its outcome i = C(O(0)) and group g(o), and assigns that individual

the distribution of outcomes {j with pr. P{}.

3 Defining Fair Treatment

Next, we define the notion of fair treatment for a classifier C, which is an ap-
proximate version of the notion of “equalized odds” from Hardt et al. [6] (which
in turn was derived from notions implicit in the ProPublica study [2]).

Definition 4. (Fuair treatment, a.k.a. approzimate equalized odds [6].) We say
that a classifier C satisfies e-fair treatment with respect to a context P =



(D, f,9,0) if, for any groups X, Y € Gp, any class ¢ € Up, and any outcome
o€ _Q%, we have that

n(PriC(O(ox)) = o flox) =d, PriC(O(oy)) =o| f(oy) =d]) <€

For the case of binary classification tasks and binary classifiers (i.e., when
p = 25 = {0,1}), fair treatment is equivalent to requiring “similar” false
positive and false negative rates [7].

3.1 On the Use of Multiplicative Distance

As defined here, fair treatment essentially requires that the maz-divergence be-
tween the conditional distributions of outcomes is small between groups. Max-
divergence is a distance measure often found in areas such as differential privacy
(see [4]); we stress here, through two arguments following very similar logic to
differential privacy, that using such a multiplicative distance is important to en-
sure fairness between groups that may be under-represented in the data, and
also that fair treatment defined using multiplicative distance exhibits desirable
properties that other distance metrics may not.

First, to motivate our statement that multiplicative distances are important
for parity between under-represented groups, consider as an example a classifier
used to determine whether to search people for weapons. Assume such a classifier
determined to search 1% of minorities at random, but only the minorities (and
no others). Such a classifier would still have a fair treatment error of 0.01 if we
used standard statistical distance, while the max-divergence would in fact be
infinite (and indeed, such a classification would be blatantly discriminatory).

Our use of max-divergence between distributions for our definitions is reflec-
tive of the fact that, in cases where we have such small probabilities, discrimi-
nation should be measured multiplicatively, rather than additively. In addition,
when we may have a large number of possible classes, the use of max-divergence
(in particular, the mazimum of the log-probability ratios) means that we always
look at the class with the most disparity to determine how discriminatory a
classification is, rather than potentially amortizing this disparity over a large
number of classes.

3.2 Closure under Post-Processing

We also remark that our definition of fair treatment is closed under “post-
processing”. If a classifier C satisfies e-fair treatment with respect to a context
P = (D, f,g,0), then any C-derived classifier which acts independently of an
individual’s group (i.e., whose decision is based only on the outcome of C) will
also satisfy e-fair treatment with respect to P.

Theorem 2. Let C; be a classifier satisfying e-fair treatment with respect to
context P = (D, f,g,0). Let Cy be any classifier whose output for an individual
o is strictly a (possibly probabilistic) function of C1(O(c)). Then Ca satisfies
e-fair treatment with respect to P.



Proof. Let C; be a classifier satisfying e-fair treatment w.r.t. some context P.
Consider some groups X, Y € Gp, some class ¢ € ¥p, and some outcome o € .Q% ;
we need to show that

u(Pr[C2(C1(O(ox))) = o flox) = c|,Pr[C2(C1(O(ay))) =0 floy) =c]) <€
Towards doing this, note that

Pr[C2(C1(O(ox))) = ol f(ox)
= Y Pr[C(o1) = ol f(ox) = ¢,Ci(O(ox)) = 01]Pr[C1(O(0x)) = 01| f(ox)

C
o1 697)1

q

d

= Y Pr[C(01) = 0]Pr[C1(O(ex)) = 01| f(ox) = ]

o1 E.Qg,l

where the last step follows from the fact that Co depends only on C;. By the
same argument applied to Y, we also have that:

Pr[Co(C1(O(ay))) = o floy) =]
= > Pr[Cy(01) = oPr[C1(O(oy)) = 01 | foy) =]

o1 E.Qf;,l

These two probabilities are e-close since, by fair treatment, Pr[C;(O(ox)) =
o1 ] flox) = ¢] and Pr[C1(O(oy)) = 01 | f(oy) = ¢] are e-close, and further-
more multiplicative distance is preserved under linear operationsﬂ This proves
the theorem. O

We also remark that, in general, earlier “expectation-based” definitions of
fair treatment are not preserved under post-processing.

4 Black-Box Sanitization

Next, we provide a novel definition of the type of sanitizer we shall construct in
our main theorem.

For the purposes of defining a “computationally efficient” sanitizer, let us
define a notion of an “ensemble” of classification contexts, wherein we assume a
parameter n (similar to the idea of a security parameter in cryptography) so that
each individual’s observable features can be represented in n bits. In particular,
this means that, for some setting of n there may be up to 2™ distinct descriptions
of individuals in a distribution D, and so a computationally efficient black-box
classifier which runs in polynomial time with respect to n could not, for instance,
query every possible feature description.

" That is, if u(a,b) < € and p(a’,b') < € then pu(aa + Ba’, ab+ Bb') < e.



Definition 5. Let a classification context ensemble Il be given by a se-
quence of classification contexts {Pptnen = {(D, f,9,0n)}nen (note that D, f, g
remain the same as n varies), such that, whenever 2™ > |Gp, | (i.e., n is suffi-
ciently large to describe g(o)), Op maps the space Xp, of individuals to {0,1}",
the space of n-bit descriptions.

Notably, the contexts are effectively describing the same distribution of in-
dividuals, but using different feature lengths for each context in the ensemble.
Also, because D, f, and g are the same throughout, this implies that the space
of individuals X'p, and the class and group spaces ¥p, and Gp, are likewise the
same for every n.

In our proofs, we will also consider deriving our classifier from a sequence of
prior classifiers x = {C, }nen, where the classifier C; is used to classify individuals
in the context P; (that is, individuals having feature length 7).

Lastly, we wish to represent the fact that a sanitizer may, given a prior clas-
sifier sequence x over a distribution ensemble I, wish to make black-box queries
to a distribution of labeled “training data” representing individuals’ observable
features, classes, groups, and prior classifications. We shall denote this distribu-
tion for a specific parameter n by

T,11(1") & {0 < D : (0n(0), f(0),Cn(On(0)), 9(0))}

Notationally, let B™ 7 (1")E| denote that a sanitizer B may make black-box
queries to the distribution 7, ;7(1™) for some parameter n. Finally, we are able
to formalize the notion of a “black-box sanitizer” given the above:

Definition 6. We say that an algorithm B") is an €(-)-black-box sanitizer if
[IATH

— Efficient: there exists a polynomial p(-,-) such that, for any m € N, and for
any context ensemble I = {Py, }nen and sequence x = {C,, }nen of classifiers
for which |¥p | < m, |Gp,| < m, and |(27C;.’:L| < m (i.e., the class, group,
and output spaces have size bounded by m), B™1(1™) runs in time at most
p(m,n) for alln € N.

— Fair: for any context ensemble II = {P, }nen and any sequence x = {Cp, }nen
of classifiers, there exists negligible V()ﬂ such that, for all n € N, with proba-
bility at least (1—v(n)) over the samples it queries from Ty, (1), B77(1™)
outputs a Cp-derived classifier C’H which satisfies e(n)-fair treatment with
respect to P,,.

8 The input of 1", or a string of n ones, is provided simply as a cryptographic con-
vention, so that we can assert that the running time of 5 is polynomial in its input
length. When implicit or clear from context, we shall for notational simplicity omit
this input.

9 That is, v(n) < 1/p(n) for every polynomial p(-) and sufficiently large n.

10 That is, B outputs the probabilities }3(7/ corresponding to the derived classifier C’.



4.1 Loss Functions

Lastly, we need to define “optimality” for derived classifiers in this context. In
particular, we assume some loss function ¢(-) bounded in [0, 1] which may either
be fixed or based on D, f, and C (in which case we write ¢p s c(-) for clarity).
Intuitively, ¢(C’) represents the “loss” in utility incurred by classifying an indi-
vidual o with outcome C'(O(c)) when their actual class is f(o). As a concrete
example, if we consider classifiers which attempt to classify each individual ac-
cording to their correct class f(o) € ¥, one might consider the overall inaccuracy
as a loss function, which is given by:

tp sc(C’) =1-Pr[C'(O(0)) = f(o)]

We can define the error of a derived classifier to be its loss compared to the
optimal perfectly fair derived classifier, as follows:

Definition 7. For some context P = (D, f,g,0) and prior classifier C, given
some loss function €p s that maps any classifier to its loss in [0,1], letting S
be the set of all C-derived classifiers satisfying (errorless) 0-fair treatment, then
we define the error of some C-derived classifier C' with respect to {p ¢ to be

Aypfc(C') = maic-cs(p,f,c(C') — lp 5.c(C*))

We note that, because we compare a classifier (which may be only approx-
imately fair) to the optimal perfectly fair classifier, certain particularly good
classifiers may in fact have a negative loss. We could, when considering e-
approximately fair classifiers, generalize this notion to consider the loss over
all f(e)-fair classifiers for some f(€) < € and derive a similar optimality result to
what we prove here, but for simplicity and consistency over different parameters
e we consider the case when f(e) = 0.

Linear loss functions. Furthermore, with respect to derived classifiers, we con-
sider the class of loss functions ¢p ¢ which are linear in the probabilities P/,
constituting the derived classifier—that is:

Definition 8. We say that a loss function {p s c(-) is a linear loss function for
a context P = (D, f,g,0) and prior classifier C if it can be represented as some

|28 | x| 02%] x |Gp| vector Ip f.c so that the loss of a derived classifier C' is given
as the inner product

(lp.fc. Py = Y (lpse)l ;P

1,j€02%,9€Gp
of this vector with the probabilities constituting the derived classifier C’.

We can define error slightly more specifically for linear loss functions using the
vector form:

App (€)= maxcres((fp s, Per) — (bp s.c, Pe-))



We will focus on the specific subclass of linear loss functions whose coefficients
(the coefficients of Pf ) can either be constant or up to d*"-degree polynomials

in probabilities Pr[g(o) = 7] and Pr|[f(o,) =i AC(O(og4)) = j], which can be
formalized as follows:

Definition 9. We shall define a linear loss function with t-term coeffi-
cients of degree d as one that can be represented as

pse(C) = af;(p)P,

4,5,9

or equivalently .

(Up,r0)i; = a;(p)
where p denotes the set of all variables given by the probabilities Pr(g(o) =]
and Pr{f(oy) =x AC(O(ay)) =y] (for any v, z,y), Pfj is the vector represen-
tation of C', and each q;{j(~) is a d""-degree polynomial in the variables of p which
contains at most t monomials which themselves are bounded in [0,1] whenever
the variables in p are likewise bounded.

We note that overall inaccuracy as described above is in fact a linear loss function
with (|£25] — 1)-term coefficients of degree 2, as we shall shortly demonstrate;
furthermore, a wide variety of other useful loss functions are also linear with
degree-2 coefficients. Returning to the example of COMPAS from the introduc-
tion, for instance, we see that the space of outcomes is a “risk score” from 1 to
10, while the space of classes is binary (either recidivating or not), so rather than
overall accuracy (which as noted above requires the spaces to be identical) we
will need another notion of loss. We exhibit three useful loss functions for this
scenario in the experimental evaluation section in the full version, all of which
will have degree-2 coefficients, which we will use to evaluate the quality of the
fair classifiers we derive from COMPAS. Returning to investigating the notion
of overall inaccuracy:

Claim 1. For a context P and for any classifier with Q% =Up = O, the overall
inaccuracy loss function

{p,1c(C’) =1=Pr[C'(O(a)) = f(o)]
is a linear loss function with (|2%| — 1)-term coefficients of degree 2.

Proof. The inaccuracy of a classifier, conditioning on a group g, can be expressed
as a linear function in Pigj if D, f,C are fixed:

Pr(f(oy) # C'(O(oy))] = 1= Pr[f(a,) =C'(O(ay))]

=1- Z Pr[f(o,) =7 AC(O(ay)) = j]

jeoO

=1- Y Prlf(o,) =jAC(O(ay)) =i AC'(O(ay)) = j]

i,j€O



=1- Y Pr[f(oy) =jAC(O(ay)) = i| Pr[C'(O(0y)) = jlf(og) = j AC(O(ay)) = ]

i,j€O
Recalling that the output of C’ is based only on an individual’s group and the
output of C:

=1- Y Pr[f(e,) = jAC(O(ay)) = i| Pr[C'(O(oy)) = jIC(O(ay)) = i

i,j€EO

=1- Y Pr[f(a,) =jAC(O(ay)) =i] P,

1,j€O

This can be expanded into the overall inaccuracy of C’ if we sum over groups,
ie.,

1— > Prlg(e) =1]Pr[f(a,) = jAC(O(0,)) = i] P

1,j€EO;vEGP

or, equivalently,

> =9 Pr[f(o,) = kAC(O(a,)) =] P},

1,j€EO;vEGP k#j

This suggests that we can, as previously described, write this loss function as a
vector ED _t.c over the space of probabilities Pfj, in particular such that
(Ip.sc)l; =Prlg(a) =41 _Prf(e,) =k AC(O(oy)) =]
k#j

Notably, each of these coefficients has O — 1 = |£2%| — 1 monomials bounded
in [0,1] which are degree 2 in the probabilities of the form Pr[g(e) =] and
Pr(f(oqy) =2 AC(O(oy)) = y], as desired. O

5 Theorem: Achieving Fair Treatment by Post-Processing

We now show that it is possible to achieve fair treatment, even in non-binary
classification scenarios, by post-processing starting from a prior classification
that may be unfair. We note that, though our theorems only state existence, we
provide our concrete construction of the black-box sanitizer in the body of the
proof. Focusing first on the specific example above where we use inaccuracy as
a loss function, we show the following positive result:

Theorem 3. For any fized outcome space §2, any polynomial q(n), and any
e(n) € [ﬁ, 1), there exists an €(-)-black-box sanitizer B which, given any context
ensemble IT = {P, }neN (such that |Gp,| = m) and any classifier sequence x
such that ¥p, = Q m = {2, there exists negligible v(-) such that, with probability
1 —v(n) over the samples it quertes from 7y (1), B outputs a classifier C"
which both satisfies €(n)-fair treatment and has error

Ap 1,e(C”) < 12)(e(n) +m(|2] = 1)e(n)*/32)



with respect to the overall inaccuracy loss function

tp,fc(C") = 1= Pr[C"(O(0)) = f(o)]

This is in fact implied directly by the following more general result, which
we shall prove in its stead:

Theorem 4. For any fized outcome space §2, any polynomial g(n), and any
e(n) € [ﬁ, 1), there exists an €(-)-black-box sanitizer B which, given any context
ensemble IT = {P,, }nen and any classifier sequence x, there exists negligible v(-)
such that, with probability 1 — v(n) over the samples it queries from 1, 7 (1™), B
outputs a classifier C" which both satisfies e(n)-fair treatment and has error

Aup1,e(C") < 19257 |(e(n) + (G, |e(n)*dt /64)
with respect to any linear loss function with t-term coefficients of degree d.

In the example above where we consider overall inaccuracy, we have (by
Claim |l)) d = 2 and t = |2| — 1, directly implying Theorem [3| Next, we outline
the proof of Theorem

Achieving fair treatment with distributional knowledge. We begin with the sim-
plifying assumption that the sanitizer we construct does have perfect knowl-
edge of the context IT and classifier x = {C,}nen, and we show (Claim
that for each n we can use the probabilities of events in those distributions
to construct a set of linear constraints for fair treatment over the probabilities
P/, = Pr[C'(O(a,)) = jICa(O(a,)) = i]. Then, given a loss function which is
also linear in Pi"f ;j» We can construct a linear program (Corollary [1)) to efficiently
minimize loss subject to the constraints for fair treatment. Since, by construc-
tion, any C,-derived C’'(o) which satisfies fair treatment will lie within the region
determined by our constraints, we have shown that it is possible to efficiently
determine the optimal fair C,-derived classifier (with respect to any linear loss
function) in a non-black-box setting.

Black-box approximation. Next, we work towards discarding the assumption of
non-black-box knowledge of IT and x. In particular, we use a Chernoff-type
bound to show (Lemma [3)) that, given a sufficiently large (yet still polynomial
in n) number of labeled and classified samples from 7, ;7(1"), with very high
probability (i.e., probability 1 — v(n)) all of the experimental probabilities rele-
vant to our linear program will be close enough to their actual counterparts so
that any solution to the linear program formulated from the experimental prob-
abilities will also satisfy approximate fair treatment with respect to the actual
probabilities. However, we note that the Chernoff bound will only apply when
the real probabilities of the events in question are sufficiently large; if we are
not guaranteed that this is the case, we additionally add a very small amount of



noise to the classifier C’ to deal with the possibility that events with very small
real probability are measured to have a wildly different experimental probability
due to sampling variance. This random noise will ensure that these events are ac-
counted for when approximating the linear program while adding only a minimal
error to the approximation. So, combined with the previous step, this suggests
the approach that we will use to construct the final sanitizer B; specifically, we
can do as follows:

— Use a sufficiently large (yet polynomial in n) number of samples from the
training distribution 7, ;7(1™) to estimate the parameters of the linear con-
straints from the previous step, in particular using a fairness error signifi-
cantly smaller than e(n) in order to account for variance in samples and ran-
dom noise that will be added, yet one large enough to not rule out optimal
classifiers that may not be perfectly fair. Also use the samples to estimate
any distributionally dependent parameters of the loss function.

— Use standard linear programming techniques to optimize the derived loss
function over the derived constraint region in polynomial time, and take the
optimal solution as the “transformation parameters” of a derived classifier
C' (i.e., the probabilities P/;).

— Output the (slightly noisy) classifier " which, except with a small proba-
bility, applies the transformation given by the above solution to the output
of the prior classifier; the rest of the time, it returns a random outcome.

If parameterized correctly, this classifier will still satisfy e-approximate fair-
ness whenever all of the above Chernoff bounds hold; furthermore, as we sub-
sequently show, the output will also not incur much loss due to estimating pa-
rameters and adding noise when these bounds hold.

Showing near-optimality. In particular, we must account both for the noise added
to the solution C’ to the linear program and for the fact that the loss function over
which B optimizes may be imprecise, as we have remarked that loss functions
such as accuracy are in general dependent on features of the context or the
classifier (which our sanitizer must estimate using samples). However, once again,
we show (Claim [5)) that this can be overcome by using another Chernoff-type
bound (Lemma o show that, with high probability, the experimentally derived
coefficients of the loss function are very close to the corresponding coefficients
of the actual loss function. Then we demonstrate that a slightly noisy variant of
the optimal C,-derived classifier is always derivable by B when the bounds hold,
and furthermore use linearity to show that, in that case, the actual loss of the
output C” must not differ by much from that of the optimal C,,-derived classifier
(in particular, the possible degree of difference depends on the degree and number
of terms of the loss function’s coefficients and the number of variables, i.e., the
number of groups and outcomes possible), even when the intermediate classifier
C’ itself might differ from this classifier due to the optimum over the approximate
loss function being different from the optimum over the actual loss function.



Notation. For brevity and notational simplicity, in the body of the proof we will
abbreviate the probability Pr [E(oy)] (i.e., the probability of some event E hold-
ing for o drawn from group g) as Pry [E(0)], and the probability Pr[g(o) = 7]
as Pr[y].

Furthermore, we abbreviate the event f(o) = ¢ as f;, and similarly for any
classifier C abbreviate C(O(c)) =i as C;.

5.1 Step 1: Achieving Fair Treatment

For our first step, we prove the following result, showing that an optimal derived
classifier can always be found efficiently given “perfect” knowledge of a context
and a prior classifier:

Claim 2. Let C be an arbitrary classifier over context P = (D, f,g,0). Then
there exists a set of polynomially many (in |¥p|, |Gp|, and [25|) satisfiable
linear constraints in the variables P{; = Pry[C'(0) = j|C(0) = i] that define the
set of C-derived classifiers C' which satisfy e-fair treatment with respect to P.

Corollary 1. Let C be an arbitrary classifier over context P = (D, f,g,0), and
let Up s.c be a loss function which is linear over the probabilities P{; as defined
above. Then the C-derived C' which minimizes €p s c(-) while satisfying e-fair

treatment with respect to P can be found efficiently (i.e., in time polynomial in
|LD73|; |GP|) and |“Q7CDU

The corollary will follow immediately from Claim [2| by the efficiency of solv-
ing linear programs (that is, the well-known fact that a linear program with a
polynomial number of variables and constraints may be solved in polynomial
time). We now prove Claim

Proof. Assume we have a discrete classifier C that classifies individuals from a
context P = (D, f,g,0), and we wish to produce C’ that satisfies e-fair treat-
ment with respect to P. Consider the C-derived classifier defined by the set of
|Gp||25|? variables
P!, =Pr, [C}[C;]

for i,j € .Q% and g € Gp.

Next, we directly translate the definition of fair treatment into a set of con-
straints, which represents the space of all possible derived classifiers satisfying
e-fair treatment:

Vi,j € 25,Y9 € Gp : PY; € [0,1]
Vi€ 25 Vg € Gp : Z P=1
jens
Vj € 025,Vk € Up,VX,Y € Gp : Prx [C)| ] < ePry [C)|f]

Y If p,f.c(-) is not linear, it is of course findable, but not necessarily efficiently, as we
no longer have a linear program.



Notice, however, that:

1

Pry [G154] = 5y (P 60 €)= 507

Pry [fi] > Pr [fi ACHACH]

ieNs

As observed earlier (see the proof of Claim , because we assign outcomes in C’
based only on C and g(c), it must be the case that Pry [C}|C;] = Pry [C}|Ci A fi],
or, expanding using conditional probability,

Pry [C;ACi]  Pry [fu AC)AC]
Prg [Ci] N Pr, [f& A Ci]

which implies

Prg [fk A Cl] PI‘g [Cj/ A Cz]
PI‘g [Cl]

Pry [fr NC;AC| =

= Pry [f ACi] Pry [C}C;] = Pry [fi A Ci) PY

So our conditions of the form Prx [C; |fk] < e‘Pry [C; |fk] can be rewritten (after
substituting and multiplying through) as

Pry [fi] | Y Prx [fe ACIPY | <ePrx[fi] | Y Pry [fs AC]P
i€Qg, €N

We can also reformat the second set of conditions into inequality constraints

by selecting j* € (276,, replacing each Pfj with 1 — ZJGQC \j* P J, and requiring

Ejeng\j* Pig’j < 1. Then our final set of constraints becomes:

Vie Q5,Vj € 25\ VgeGp: P! >0,P!, <1

v 4,7
Vie 025 Vg € Gp Z P <1
JeRENG*

Vie 2%\ " Vk e Up VXY € Gp :

Pry [fx] ( > Prx [fi ACI Pf;) < ePrx [fx] ( > Pry [fi ACH Pfj)

i C i C
€025 €025

Vk € Up,VX,Y € Gp

Pry fk (Z PI“X fk/\C ( Z ))
i€NS jeR&\5*

<6PI‘X f}c (Z PI‘y fk/\C ( Z ))
€S JEQE\*



which is a system of 2|Gp |25 |>+|Gp|?| 2% ||¥p| equations in |Gp||25|(|25]—1)
variables.

Furthermore, we know that this system necessarily has a solution on its
domain, since taking Pf ;=1 / |(27C>| for each 4, j, and g corresponds to a classifier
C’ where all individuals are offered a uniform distribution over outcomes; this
classifier trivially satisfies fair treatment (and indeed, one can easily verify that
it satisfies the above conditions for any C and P). O

Thus, finding assignments for P; ; in order to construct a classifier C’ satis-
fying fair treatment with respect to C becomes a linear optimization problem—
that is, to find an assignment that satisfies the sets of conditions above while
minimizing some linear loss function.

5.2 Step 2: Approximate Fairness From Experimental Probabilities

Of course, we have only established so far that C’ constructed in such a manner
satisfies fair treatment if we already know the exact probabilities Pr, [fz] and
Pry [fx A C;] for each group g. This of course requires non-black-box knowledge
of P and C; however, we will now show by a Chernoff bound that, assuming B is
given experimental probabilities Pr [f] and Pr, [fi A C;] from a sufficiently large
“training set” of individuals randomly drawn from the distribution 7, (1), C’
constructed according to the above linear program, and with a small amount
of random noise added to prevent interference due to experimental variance in
observing extremely rare events, will still satisfy e-approzimate fair treatment
with overwhelming probability. Specifically, it can be proven that the probability
of C' not satisfying approximate fair treatment is extremely small given a suffi-
ciently large number of random samples (i.e., a number inversely polynomial in
the desired fair treatment error €).

To formalize what we mean by adding “a small amount of random noise”,
given some derived classifier C’ (which we recall can be expressed as an |25 x
|25 | perturbation matrix), and letting (1),,x, be an m x n matrix of all ones,

we shall let
r

Q-(C) = @(I)IQ%IX\Q%\ +(1=r)
be the derived classifier that with probability r outputs a random outcome and
otherwise outputs an outcome according to the classifier C’. (Hence, Q,.(C')(0)
is identical to C’'(o) with probability 1 —r.)

We will herein make use of the following well-known bound (for ease of no-
tation, we denote exp(x) = €®):

Lemma 1. (Hoeffding Bound.) Let X1,...,Xn be independent binary random
variables (i.e., X; € {0,1}). Let m be the expected value of their average and X*
their actual average. Then, for any 0 € (0,1):

Pr{|X* —m| > 6] <2 exp (—26°N)



In particular, when ¢ and m are fixed, this probability is inversely exponential
(i.e., negligible) in the number of random variables N. To take advantage of this,
consider our scenario where we have some classifier C trained using some number
of individuals drawn (independently) from the distribution from the distribution
Ty, (1), and we wish to measure the probability of some event E; occurring
conditioned on a subgroup g. Notationally, we will henceforth denote by Ex[E]
the experimental probability of an event E over a set of random samples—i.e.,
letting S be the set of samples and 1g(, the indicator variable which is 1 if £
is true for a sample s and 0 if not:

1
3] PR
seS

We will denote by Ex,[E] the experimental probability of E conditioned on a
group g, or Ex[E A g]/Ex[g]. Then we prove the following lemma:

Lemma 2. Given a distribution D, event E, and group g, then, letting Ex denote
the experimental probability as derived from N independent samples from the
distribution Ty 7 (1™), for any ¢ € (0,1), with probability at least

e (_2 <5p;«[g]>2N>

over the samples, the following two conditions hold:

1. |Ex4[E] — Pry[E]| < 0
2. |Ex[g] — Prlg]| < ¢

Specifically, this states that the probability of the experimental and real
probabilities diverging for some fixed event FE is inverse-exponential in the size
of C’s training set.

Proof. First we prove the following claim:

Claim 3. Given positive real numbers a, b, ¢, d, € such that |a—b| < € and |c—d| <
€, then

ab' (a+c)e

¢ d| cle—e)
Proof. The following three facts suffice:
a b 1
1
cd celc—e)

lad — be| < |a(c+€) — (a —€)c| = e(a+¢)



So, as long as |Ex[g] — Pr[g]| < ¢ and |EX[E A g] — Pr[E A g]| < §, then
Pr[EAg] Ex[EAg] (Pr[E Ag]+Prig))d
Prlg]  Ex[g] ‘ Prg] (Pr[g] —0)

which means that, by Lemma

] - Pr, [£]] = |

Pt (Pr[E Ag]+Prg])o
PﬂBM”P“mQ HM@WF®}

< Pr[|Ex[g] — Pr[g]| > 6] + Pr[|EX[E A g] = Pr[E A g]| > 0] < 4 exp (—26°N)

This follows because, for each of the (unconditioned) probabilities in question,
we can use a Chernoff bound with N variables Xi,...,X,, equal to 1 if the
respective event occurs for a sampled individual and 0 otherwise; then X* is
equal to the experimental probability of the event and m (its expectation) is by
definition equal to the actual probability.

Finally, let

5 — (Pr(EAgl+Prlg)s _ (Pry[E]+1)6
Pr{g] (Pr[g] - 9) Prlg] -6
Then
8 (Prlg] — ) = (Pry [E] +1)6
§'Prigl = (Pry[E]+1+46")0
§'Pr[g] _
Pry[E]+1+¢
And so

Pr [|[Exy[E] — Pry [E]| > 6'] < 4 exp (—26°N)

o (2L ) < o (2281

since ¢’ < 1 by assumption and Pry [E] < 1 trivially. Furthermore, when we
show that |Ex,[E] — Pry [E]| < ¢’, we do so by showing that

0'Prlgl o

|Pr[g] — Ex[g]| < [6 :}m <

which completes the other part of the argument. a
Now we can prove our key lemmas using this consequence.

Lemma 3. Given context P = (D, f,g,0) and € € (0,1), let C' be a C-derived
classifier satisfying a modification of the linear constraints in Corollary |1 for
(€2 /4)-fair treatment where the coefficients are determined by the experimen-
tal (rather than actual) probabilities of the respective events given N random
samples (O(o), f(0),C(0),g(0)) from the distribution 7, 7(1"™). Then the classi-
fier Q26|9%|/3(C’) satisfies e-approximate fair treatment with respect to P except
with probability negligible in N over the selection of samples—in particular, with
probability 1 — O(e(_“E4N)) for some constant ¢ dependent only on D.



Proof. Let ¢ = 1Zzming Pr[g ]>. Notice that ¢ is not dependent on n or, for that
matter, on anything besides the (fixed) distribution D.

First let us consider the classifier C' before noise is added. Because C’ is
derived from C according to Corollary [I} we have, by the respective constraints

for fair treatment for each j € (27‘;, XY € Gp, and k € Up:

[ V)

| Exy[fi] ZEXX[fk/\Ci]Pi)j' s Exx [ f] ZEXY[fk/\Ci}-P;/j S%

i€0g 0:

Wthh smce both sides are at most 1 and thus can differ additively by at most
1—e </ < €2 /4, implies:

[

Exy £l | D Bxxlfi ACIPYS | —Bxxlfil | 30 Bxvl[fuACIRY || < 5

iens i€Ns

where Pfg and Plyj are derived from solving the constraints. Applying Lemma

(1) once for each k € ¥p to the event fi and group Y (with 6 = €2/48) then
gives us that

Pryfk (ZEXX k/\C]ZJ)EXka (ZEXY kAC )

i€ 28 i€ S

e &

Tt

<

o~
0

except with probability no greater than

o (2L ) (e )

— 4exp (— (264(1111&94? [QDQ> N) = 4exp(—ce*N))

for each choice of k, or, over all of the |¥p| choices of k, no greater than
4|Wp|(exp(—ce*N)) by the union bound. Symmetrically for each event f; and

group X

Pry [fx] (Z Exx [fr A Ci] ZJ>Prx [fx] (Z Exy [fx A Ci] ”>

i€ S i€ S

62 62
+ J—

<
— 4 2

except with the same failure probability. We then do the same for the events
fx AC; (for each of the |Wp| choices of k) conditioned on X and Y to obtain that

Pryfk (ZPI‘X fk/\C] )PI‘X fk (ZPry[fk/\C] )‘
i€ 28 i€ S

2 62

3

2
€
<
<7+

»—l‘m
)



except with probability 16(exp(—ceNV)) for each choice of k (or, over all choices,
16|¥p|(exp(—ce*N))). By the union bound over all classes k € ¥p and over all
(fewer than |Gp|?) pairs of groups X and Y, the total failure probability from
applying these bounds to all constraints is at most 16|Gp|?|¥p|(exp(—ce*N)) =
O(exp(—ce*N)), which is of course negligible in the number of samples N. So,
with probability at least 1 — O(exp(—ce*N)) over the drawn samples, all of the
above constraints will hold.
This is not quite identical to the statement

p (Prx [Cilfi] , Pry [Cjlfi]) < e

(i.e., fair treatment for C’); particularly, if the probability of some outcome is
very small, then a bound on the additive distance between real and experimental
probabilities has no impact on whether the multiplicative distance is bounded.
To overcome this issue, we will consider the classifier Q¢ | /3(C’) that, as de-
fined above, runs C’ and outputs the result except with probability 2|_Q7C,|e/3,
in which case it will pick an output uniformly at random. This guarantees that
the probability of any outcome occurring (even conditioned on any group) must
be at least 2¢/3; hence, except with the aforementioned failure probability, the
multiplicative distance between the real and experimental probabilities for any
such conditional outcome can be at most either

2
I 2¢/3 +¢€°/3
2¢/3

for all e < 1. O

):1n(1+6/2)<6

or

Remark. While it may seem counterintuitive for the classifier output by our
sanitizer to output a uniformly random class with small probability, in fact
this “random noise” is only necessary due to the possibility of arbitrarily small
probabilities Pr, [fx A C;] occurring in the distribution D; specifically, if some
such event occurs with small enough probability, it would likely be measured
to have probability 0, potentially causing an unbounded multiplicative fairness
error in the derived classifier. If there instead exists a constant lower bound for
these probabilities (or even, once parameterized, an asymptotic lower bound of
€(n)), then we can directly obtain the result above without having to add noise
to the outcome of the derived classifier.

Importantly, we can also apply Lemma [3]| in reverse, transforming from the
exact conditions to the modified conditions with experimental probabilities, un-
der precisely the same conditions. This will be useful to demonstrate optimality
(i.e., that the optimal fair classifier is derivable by B as it is overwhelmingly
likely to satisfy approximate versions of the constraints) in the following section.

Lemma 4. Given context P = (D, f,g,0), let C' be a C-derived classifier sat-
isfying the conditions in Corollary [1| for 0-fair treatment with respect to P.



Then, for any e € (0,1), the classifier Qez‘Q%‘/4(C/), with at least probability

1—0(e ="M (for some constant ¢ dependent only on D) over N random sam-
ples (O(o), f(0),C(0), g(0)) from the distribution 7, m(1™), satisfies the modifi-
cation of the linear constraints in C’omllaryfor (€2 /4)-fair treatment where the
coefficients are determined by the experimental (rather than actual) probabilities
of the respective events given the random samples.

Proof. We proceed very similarly to Lemma[3] except changing the error param-
eter € and reversing Ex|[...] with Pr|[...]. Since we know that C’ satisfies perfect
fair treatment, we have, this time with respect to the real probabilities:

Pry [fi] | Y Prx [ ACGIPYS | =Prx [fi] | D Pry [fa ACIPY || =0

€08 i€

Next we apply Lemma [2] (1) with 6 = ¢*/128 to all events fx and fx A C; for
groups X and Y just as in Lemma [3] obtaining that

Exy [fu] | D Exx[fe AGIPY | — Exx[fi] | Y Exy[fs AGIP)

i€0S 0

4 4
<4 )=
- \128) 32

except with probability O(e(*“sN )) over the N samples taken (for some small
constant C dependent only on D). To convert this into multiplicative distance, we
use the classifier Qe gc | /4(C’) so that the probability of any outcome is at least
€2/4. Then, as long as the conditions of Lemma [2| are true, the multiplicative
distance between the real and experimental probabilities for any such conditional
outcome can be at most either

2/4+et/32 9 9
ln(€2/4) =In(1+€/8) <e/4

for all e < 1. O

or

5.3 Step 3: Optimality over Derived Classifiers

Now we can construct an ¢(+)-black box sanitizer for any inverse polynomial ¢(n)
using Corollary [I]and Lemmal3] In particular, given some context ensemble IT =
{(D, f,9,0) }nen and a sequence of classifiers x = {Cy, }nen, if, for any n, we use
Corollary [1f on experimental probabilities (given enough samples from 7, 7(1™))
to produce a C,-derived classifier which is fair with respect to those probabilities,



Lemma 3allows us to assert that a slightly noisy version of the resulting classifier
is still approximately fair, even though we only have black-box access to the
training data set 7, ;7(1™) (whereas notably our original formulation in Corollary
requires non-black-box access to determine the exact probabilities Pry [fs]
and Pry [fx AC;] for the optimization constraints). We propose the following
construction and subsequently prove its correctness as a black-box sanitizer,
amounting to the first part (existence) of the proof of Theorem

Constructing the Black-Box Sanitizer. Consider the following algorithm for B,

on input 1", where we assume some fairness parameter e(n) > ﬁ for polyno-
mial ¢(-) and some loss function ¢p fc(-) which is linear in the probabilities P/,

but may depend on probabilities observed in D, f, and C:

— (Estimating constraints by sampling.) Use queries to 7, 7(1"™) to produce
(for some ¢ > 0 and polynomial p(n) = 2(q(n)¥7<)) N = p(n) samples
(On ("), f(0"),Cn(On(0")), g(c")) for o’ <— D, so that the failure probabilities
described in both Lemmas [3| and |4 are negligible in n. (In particular, this
failure probability will be at most O(e_Cp(”)/Q(”)S) = O(e_C"EI)7 which is
negligible since ¢ depends only on the fixed distribution D.)E

— (Estimating the loss function.) Furthermore, use the experimental probabil-
ities of the samples to estimate any distributionally-dependent parameters
of the loss function ¢. Call the approximate loss function ¢'(-).

— (Solving the derived constraints.) Use Corollary [1| to produce probabilities
P, for a Cp-derived classifier which minimizes ¢'(-) with respect to the con-
straints for (e(n)?/4)-fair treatment generated from the experimental prob-
abilities Exg[fx] and Ex,[fx A C;] over the N samples.

— (Adding noise and producing the derived classifier.) Output the C,-derived
classifier ¢ = QZe(n)\Q%" |/3(C’) (which with probability 26(n)|97(;j1|/3 out-

puts a uniformly random element of (Z%L, and which otherwise uses the

probabilities Pzr‘f- found from the optimiznation to classify o according to
Cn(On(0)) and o’s group g(o)—i.e., draws from the distribution {j with pr.

Pgn(o-)aj}).

Claim 4. For any e(n) > ﬁ for polynomial q(-), the above construction of
By is an €(-)-black-box sanitizer.

Proof. By Lemma [3] the classifier " = Q26(n)|9703n ‘/3(6/) output by B satisfies

e(n)-fair treatment with probability at least 1 — v(n) (where v(-) is negligible)
for any given n.

Furthermore, we note that the algorithm for B is efficient; for any context
ensemble IT and classifier sequence x such that |Gp,| < m, [¥p, | < m, and

12 We use w(g(n)®) samples so that we can later assert that Lemma holds with all-
but-negligible probability in the optimality step. For the current step, only w(g(n)?)
samples are necessary.



|.Q7C;;| < m, it runs in time polynomial in m and polynomial in n. The former
bound comes from the running time of the linear program in Corollary [I} and
the latter bound comes from Lemma [3| and the fact that we make N = p(n)
oracle queries to gather “training data”. Hence B(.) must be an ¢(-)-black-box
sanitizer. a

Notably, the running time of this algorithm is proportional to GU%)g, which
is natural in that, to derive a more accurate approximation of the real probabil-
ities with training data, more samples are required. (In fact, as we shall show,
decreasing € and/or respectively increasing the number of samples will reduce
both the fairness and optimality errors.)

Finally, we remark on the loss function ¢p ¢ (-) and the optimality of our
construction. Of course, the entries of ZD, #,c—that is, the probabilities Pr [g] and
Pr, [f(0) = k AC(0) = i]—are in general unknown to the black-box sanitizer B,
and this is why our construction uses its training samples to also calculate the
experimental probabilities needed to approximate the loss function. Now we will
show that using the experimentally derived loss function (naturally) increases
the error bound of C”, but only slightly (albeit dependent on the degree and
number of terms of the coefficients of Pf ; in £). The following claim essentially
states that, as the optimum of a linear loss function changes at most minimally
if the coefficients change minimally, the loss of the classifier output by B over
the predicted loss function will not be much worse than the loss over the correct
loss function. This fact, combined with the fact that (a slightly noisy version of)
the optimal perfectly fair classifier can always be derived by B if it knows the
correct loss function, suffices to show that the classifier actually derived by B
will not be much worse than the optimal fair classifier, hence proving the final
part of Theorem

Claim 5. With probability at least 1 —v(n) (for negligible v(-)) over B’s queries,
the C" output by B, (1") constructed above has error

A¢p.1.c(C") < 1925 |(e(n) + |G, le(n)*dt/64)

with respect to any linear loss function with t-term coefficients of degree d given
by lp 5,c(C").

Proof. Herein we shall for consistency refer to the loss function optimized by
B by deriving from the experimental probabilities as ¢'(-), and the “true” loss
function as £(-).

Let C* be the optimal C,-derived classifier satisfying perfect fair treatment,
let C** & Qf(n)z\f?%’,il/4 (C*) be a noisy version of C*, and, as in the construction
of B, let C' be the classifier that optimizes ¢ over the experimentally derived
constraints and C” = Qac(n)] s | /3(0’ ) the noisy version of C’. Towards bounding

the quantity ¢(C"") — ¢(C*) and thus the error, we bound the difference in loss
between successive pairs of classifiers:



— Beginning with C”, the actual output, we notice that the difference in loss
between C’ and C” must be small because C” is by definition identical to C’
except with small probability.

— Next, we can bound the difference in loss between C** and C’ by noticing
that Lemma [4] provides that C** with high probability satisfies (¢2/4)-fair
treatment with respect to the experimentally derived constraints and can
thus be derived by B. So this means that B must find a classifier which is as
good as C** or better with respect to ¢'; by analyzing the similarity between
¢ and ¢ we can also conclude that C** is not much better than C’ in terms
of the true loss function ¢.

— Finally, the difference in loss between C* and C** is once again bounded by
the fact that C** is nearly identical to C*.

Formally, we present the following subclaims:
Subclaim 1. ¢(C") —¢(C") < 2€(n)|ﬁ7c,z|/3 with probability 1.

Proof. C" is identical to C’ except with probability 2€(n)|(27c,; /3 (i.e., no prob-
ability P;; can differ between the two by more than that amount). As such,
since the loss function ¢ is bounded in [0,1] by assumption and linear in the

probabilities Pfj, the subclaim follows by linearity. Formally:

r

HQr(Ch) =1 <|Q7CD|(1)|Q,C,|x9$, +(1 - T)C/>

1 /
=l (m(l)ngxog) + (1 =)

and so:

(Q.(C)) — €(C) = rt (|91%|(1)ng|9$,|> (@) < r(1-0)=r

a

Subclaim 2. ¢(C") — ¢(C*) < |Q%Z||Gpn|dte(n)4/64 with probability at least
1 —wv(n) (for negligible v(-)) over B’s queries.

Proof. We show this through three lemmas.
First, it is important to observe how far the experimental loss function ¢’
might be from the real function ¢. Denote by Ei ; the entry of £ corresponding

to the coefficient of P/, (resp. for 7). Then:

Lemma 5. With probability 1 — v'(n) (for negligible v'(+)), if £ is a linear loss
function with t-term coefficients of degree d, then for any i,j,g it is true that
|67 — 05| < dte(n)*/128.

,J



Proof. By Lemma for each event fi, AC; and each group g with § = €(n)*/128,
we have |Ex,[fi ACi] —Pry [fx ACi]| < €(n)*/128 and |Pr [g] —Ex[g]| < €(n)*/128
for any i, k, g except with probability v/(n) = O(e(*“(”)sp(”))) (which is negligi-
ble in n as B takes p(n) = 2(e(n)~®+<)) samples for ¢ > 0).

As we consider loss functions whose coefficients are polynomial in the above
probabilities, we can note the following identity to bound the error between the
coefficients in £ and ¢': if we have x1, ..., zn, 21,..., 2, €[0,1] and |z; —2}| < ¢

for each i, ther["}
H €Ty — Hl’; S Z €;

So, given some coefficient 5;‘{ ; in the loss function which is a polynomial
in the respective probabilities, the respective additive error between the real
and experimental value of any degree-d monomial in that coefficient (which is
bounded in [0, 1], i.e., does not contain a constant term greater than 1) will be at
most de(n)?/128; this can be seen by taking n = d in the above identity, letting
x; represent a real probability, a} the corresponding experimental probability,
and noting that as shown above ¢; < €(n)*/128 for each 4. In turn, the coeffi-
cient itself, or the sum of ¢ of these monomials, cannot have error greater than
dte(n)?/128 (adding the error bounds from each individual monomial). So, for
any variable Pfj, except with the aforementioned negligible probability:

|67 — 0] < dte(n)*/128

as desired. O

Next, we compare the value of the experimental loss function ¢ between C**
and C’, which is easily done since B optimizes C’ with respect to £’ over a region
that we can show includes C**:

Lemma 6. ¢'(C') < ¢/(C**) with probability at least 1 — v""(n) (for negligible
V'(-)) over B’s queries.

Proof. By Lemma [4] except with some negligible probability v”/(n) (again negli-
gible since B takes p(n) = w(e(n)~®) samples), C** = Qe(ny2| 0 |/4(C*) satisfies
P

€(n)? /4-fair treatment with respect to the experimental probabilities derived by
B, since C* satisfies perfect (errorless) fair treatment with respect to the actual

13 Proof: If x1x2 > x}xh, then:
! / / ! / ! !
|12 — 21Xy = w12 — 2125 < T1(xy + €2) — (X1 — €1)Ty = €221 + €125 < €1 + €2
and otherwise:
! I I I I I !
|T1m2 — T x| = T1Te — T1w2 < (w1 + €1)Ty — T1(Th — €2) = €115 + €211 < €1 + €2

Applying the same to z1z2 and 3 gives |(z172)xs — (z17h)xs| < (€1 + €2) + €3, and
iteratively repeating to include all ¢ ultimately gives the conclusion.



probabilities. However, recall that the C’' recovered by B can by construction
(Corollary [1]) lie anywhere within the set of derived classifiers satisfying e(n)?/4-
fair treatment with respect to the same derived experimental probabilities. Since
B optimizes ¢’ over that region, we know that, with all but the above negligible
probability:

é/(c/) S El(c**)

as desired, because, since C** is always findable by B, B can always find either
C** itself or something with a smaller value of ¢. O

Finally, let k £ |.Q7C)Z| and recall the Li-norm ||@ — b]|; = > ;(a; — b;) between

two vectors. Henceforth let (FPc/)]; denote the entry of the vector form P
corresponding to P/; for C’, and respectlvely for C**. Towards relating ¢'(C") —
2(C**) to £(C") —¢(C**) (the quantity we wish to bound), we show the following:

Lemma 7. ||C' —C**||; <

Proof. Consider the |Gp, |k(k — 1)-dimensional space defined by the variables

Pﬁ ;» in which we have assumed the loss functions £ and ¢’ to be linear |**| Consider

moving between the points in this space which represent C** and C’. Each of the
k sets of coordinates (Plgl, ..., P?, ;) must sum to at most 1, because each set
represents a probability dlstribufion; hence, considering that moving from C**
and C’ may decrease some number of coordinates in each such set by up to a
total of 1 and correspondingly add up to a total of 1, the Li-norm between these
two points is bounded by:

IC" = C™* [y =Y |(Per)?; — (Pe==)? ;| < Y 11+ 1] = 2k|Gp, |
4,459 49
This completes the argument. a
Since ¢ and ¢ are linear, we know that

0(C) = 0(C) = (0, Per) — (0}, Pewr) = (', Per — Pr.-)

= Zz (Per)!; — (Pes)? )
i,5,9
Also, using Lemma [5s bound on the difference between entries of ¢ and ¢':

(e — ey =3 b = (Pe=)i )

45,9

<3 (4 L ) (et = (P}

4,5,9

14 While there are 2k? variables in total, notice that Pi‘f i is fully determined by Pﬁl
through P! 1



dte(n)* dte(n)? .

4,7,9

— g/(c/) _ [/(C**) +

where the final step follows because, by Lemma@ (except with negligible prob-
ability) ¢/(C") < £/(C**), or £'(C’) — £'(C**) < 0. So, using Lemma [7s bound of
2k|Gp, | on the Li-norm, we obtain that

0(C") — £(C**) < 2K|Gp, |(dte(n)*/128)
= k|Gp,|dte(n)* /64 = |25 ||Gp, |dte(n)* /64
as desired, with all but negligible probability v(n) £ v/(n) 4+ v (n). O
Subclaim 3. £(C**) — £(C*) < e(n)2|!27c,z|/4 with probability 1.

Proof. C** = Qe(n)z‘ S|4 (C*), so this follows by linearity, similarly to Subclaim
m ! O

So, adding the differences from the above subclaims (and recalling e(n) < 1),
the error of C” is at most:

£(C") = £(C™) = (L(C") = £(C")) + (L(C") — £(C™™)) + (£(C*™) — £(C™))
< 26(n) |25 /3 + |25 ||Gp, |dte(n)* /64 + e(n)?|25 | /4
< 10257 [(e(n) + |Gp, |e(n)*dt/64)

with probability at least 1 — v(n) (as given in Subclaim [2|) over B’s queries, as
desired. a

Claims [4] and [f] taken together suffice to prove Theorem [
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