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Motivation and Previous Work

Alice Boba

I Alice and Bob want unconditional confidentiality.

I When Eve has enough messages she can guess the
key.

I If no eavesdropping occurs, the key can be
recycled.

I Is there a way to detect eavesdropping?
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Motivation and Previous Work
Using Quantum Mechanics

Quantum Authentication
I Detects eavesdropping.

I Is an encryption scheme (Barnum, Crépeau,
Gottesman, Smith, and Tapp).

Recycling Scheme by Oppenheim and Horodecki
I Uses standard quantum authentication.

I Key size 2(m + s).

I Key size 2(m + s ′) + m.

I 2m + s bits recycled when authentication succeeds.

I Entire key recycled.

I m + s bits recycled when authentication fails.

I 2m + s ′ bits recycled.
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Our Encryption with Key Recycling
Our Encryption — By Example

I Message: a = 0.

I Key: (z ,b) = (1,1).

I Perform “one-time-pad” with 1.

I Change quantum representation to basis 1.
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Our Encryption with Key Recycling
Our Encryption — Formally

I Wootters and Fields: 2n + 1 MUBs for n bits.

Encrypting

E(z ,b)(a) = Ub|a ⊕ z〉 (basis change Ub).

Data hiding property

ρa =
∑
(z ,b)

p(z ,b)E(z ,b)(a),

‖ρa − ρa′‖ < ε(n).

Theorem

H(K |a, E(z ,b)(a)) ≥ 2n − 1 (EUROCRYPT 04).
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Our Encryption with Key Recycling
Key Recycling

I Eavesdropping introduce almost random noise.

I Wegman Carter one-time authentication (hu ∈ H).

Encrypting

E ′(z ,b,u)(a) = E(z ,b)(a,hu(a)).

Recycling
I Bob decrypts, verifies authentication, and send

acc/rej to Alice.

I If Bob accepts the key is reused unmodified.

I If Bob rejects z is replaced.
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A Bound on Key Recycling
Defining Security of Key Recycling

I Two families of hash functions Rn,s
acc and Rn,t

rej .

I Bob announces R ∈ Rn,s
acc or R ∈ Rn,t

rej .

I k̂ = R(k) is recycled.

Indistinguishability property

Give a, Ek(a), and R to Eve.

ρk̂ =
∑

k∈R−1(k̂)

pk |k̂Ek(a),

E [

‖ρk̂ − ρk̂ ′‖

]

< δ(n).

Theorem
Under eavesdropping t ≤ n −m + 1 bits are recycled.
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A Bound on Key Recycling
Proving the Bound

I Assume n −m + 2 bits are recycled.

I k̂ has small pre-image

I I has high rank.

I The result follows by contradiction.
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Proof of Our Protocol

I Eve’s action: E = c1I + c2σ2 + · · · + c4nσ4n.

I Lawrence, Brukner and Zeilinger: Partitions define
MUBs.

2n+1



2n︷ ︸︸ ︷
I σ(1,2) · · · σ(1,2n)

I σ(2,2) · · · σ(2,2n)

I σ(3,2) · · · σ(3,2n)
...

...
I σ(2n+1,2) · · · σ(2n+1,2n)

I (0 ≤ |c1|2 ≤ 1) probability of no eavesdropping.

I pacc ≤ |c1|2 + negligible(n).
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Conclusion

I Detecting eavesdropping.

I Worst case quantum = classical.

I Best case: entire key can be reused.

Thomas B. Pedersen Quantum Key Recycling 11/11


	Outline
	Motivation and Previous Work
	Our Encryption with Key Recycling
	A Bound on Key Recycling
	Proof of Our Protocol
	Conclusion

