International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

13 January 2025

Bhuvnesh Chaturvedi, Anirban Chakraborty, Nimish Mishra, Ayantika Chatterjee, Debdeep Mukhopadhyay
ePrint Report ePrint Report
Fully Homomorphic Encryption (FHE) allows a server to perform computations directly over the encrypted data. In general FHE protocols, the client is tasked with decrypting the computation result using its secret key. However, certain FHE applications benefit from the server knowing this result, especially without the aid of the client. Providing the server with the secret key allows it to decrypt all the data, including the client's private input. Protocols such as Goldwasser et. al. (STOC'13) have shown that it is possible to provide the server with the capability of conditional decryption that allows it to decrypt the result of some pre-defined computation and nothing else. While beneficial to an honest-but-curious server to aid in providing better services, a malicious server may utilize this added advantage to perform active attacks on the overall FHE application to leak secret information. Existing security notions fail to capture this scenario since they assume that only the client has the ability to decrypt FHE ciphertexts. Therefore, in this paper, we propose a new security notion named IND-CPA$^{\text{C}}$, that provides the adversary with access to a conditional decryption oracle. We then show that none of the practical exact FHE schemes are secure under this notion by demonstrating a generic attack that utilizes this restricted decryption capability to recover the underlying errors in the FHE ciphertexts. Given the security guarantee of the underlying (R)LWE hardness problem collapses with the leakage of these error values, we show a full key recovery attack. Finally, we propose a technique to convert any IND-CPA secure FHE scheme into an IND-CPA$^\text{C}$ secure FHE scheme. Our technique utilizes Succinct Non-Interactive Argument of Knowledge, where the server is forced to generate a proof of an honest computation of the requested function along with the computation result. During decryption, the proof is verified, and the decryption proceeds only if the verification holds. Both the verification and decryption steps run inside a Garbled Circuit and thus are not observable or controllable by the server.
Expand
Jeffrey Champion, Yao-Ching Hsieh, David J. Wu
ePrint Report ePrint Report
Registered attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data (like standard ABE), but without needing a central trusted authority. In a key-policy registered ABE scheme, users choose their own public and private keys and then register their public keys together with a decryption policy with an (untrusted) key curator. The key curator aggregates all of the individual public keys into a short master public key which serves as the public key for an ABE scheme.

Currently, we can build registered ABE for restricted policies (e.g., Boolean formulas) from pairing-based assumptions and for general policies using witness encryption or indistinguishability obfuscation. In this work, we construct a key-policy registered ABE for general policies (specifically, bounded-depth Boolean circuits) from the $\ell$-succinct learning with errors (LWE) assumption in the random oracle model. The ciphertext size in our registered ABE scheme is $\mathsf{poly}(\lambda, d)$, where $\lambda$ is a security parameter and $d$ is the depth of the circuit that computes the policy circuit $C$. Notably, this is independent of the length of the attribute $\mathbf{x}$ and is optimal up to the $\mathsf{poly}(d)$ factor.

Previously, the only lattice-based instantiation of registered ABE uses witness encryption, which relies on private-coin evasive LWE, a stronger assumption than $\ell$-succinct LWE. Moreover, the ciphertext size in previous registered ABE schemes that support general policies (i.e., from obfuscation or witness encryption) scales with $\mathsf{poly}(\lambda, |\mathbf{x}|, |C|)$. The ciphertext size in our scheme depends only on the depth of the circuit (and not the length of the attribute or the size of the policy). This enables new applications to identity-based distributed broadcast encryption.

Our techniques are also useful for constructing adaptively-secure (distributed) broadcast encryption, and we give the first scheme from the $\ell$-succinct LWE assumption in the random oracle model. Previously, the only lattice-based broadcast encryption scheme with adaptive security relied on witness encryption in the random oracle model. All other lattice-based broadcast encryption schemes only achieved selective security.
Expand
Colin Finkbeiner, Mohamed E. Najd, Julia Guskind, Ghada Almashaqbeh
ePrint Report ePrint Report
Selfish mining attacks present a serious threat to Bitcoin security, enabling a miner with less than 51% of the network hashrate to gain higher rewards than when mining honestly. A growing body of works has studied the impact of such attacks and presented numerous strategies under a variety of model settings. This led to a complex landscape with conclusions that are often exclusive to certain model assumptions. This growing complexity makes it hard to comprehend the state of the art and distill its impact and trade-offs.

In this paper, we demystify the landscape of selfish mining by presenting a systematization framework of existing studies and evaluating their strategies under realistic model adaptations. To the best of our knowledge, our work is the first of its kind. We develop a multi-dimensional systematization framework assessing prior works based on their strategy formulation and targeted models. We go on to distill a number of insights and gaps clarifying open questions and understudied areas. Among them, we find that most studies target the block-reward setting and do not account for transaction fees, and generally study the single attacker case. To bridge this gap, we evaluate many of the existing strategies in the no-block-reward setting—so miner’s incentives come solely from transaction fees—for both the single and multi-attacker scenarios. We also extend their models to include a realistic honest-but-rational miners showing how such adaptations could garner more-performant strategy variations.
Expand
James Clements
ePrint Report ePrint Report
Fix odd primes $p, \ell$ with $p \equiv 3 \mod 4$ and $\ell \neq p$. Consider the rational quaternion algebra ramified at $p$ and $\infty$ with a fixed maximal order $\mathcal{O}_{1728}$. We give explicit formulae for bases of all cyclic norm $\ell^n$ ideals of $\mathcal{O}_{1728}$ and their right orders, in Hermite Normal Form (HNF). Further, in the case $\ell \mid p+1$, or more generally, $-p$ is a square modulo $\ell$, we derive a parametrization of these bases along paths of the $\ell$-ideal graph, generalising the results of [1]. With such orders appearing as the endomorphism rings of supersingular elliptic curves defined over $\overline{\mathbb{F}_{p}}$, we note several potential applications to isogeny-based cryptography including fast ideal sampling algorithms. We also demonstrate how our findings may lead to further structural observations, by using them to prove a result on the successive minima of endomorphism rings of supersingular curves defined over $\mathbb{F}_p$.

[1] = https://eprint.iacr.org/2025/033
Expand
Omid Mirzamohammadi, Jan Bobolz, Mahdi Sedaghat, Emad Heydari Beni, Aysajan Abidin, Dave Singelee, Bart Preneel
ePrint Report ePrint Report
An anonymous credential (AC) system with partial disclosure allows users to prove possession of a credential issued by an issuer while selectively disclosing a subset of their attributes to a verifier in a privacy-preserving manner. In keyed-verification AC (KVAC) systems, the issuer and verifier share a secret key. Existing KVAC schemes rely on computationally expensive zero-knowledge proofs during credential presentation, with the presentation size growing linearly with the number of attributes. In this work, we propose two highly efficient KVAC constructions that eliminate the need for zero-knowledge proofs during the credential presentation and achieve constant-size presentations. Our first construction adapts the approach of Fuchsbauer et al. (JoC'19), which achieved constant-size credential presentation in a publicly verifiable setting using their proposed structure-preserving signatures on equivalence classes (SPS-EQ) and set commitment schemes, to the KVAC setting. We introduce structure-preserving message authentication codes on equivalence classes (SP-MAC-EQ) and designated-verifier set commitments (DVSC), resulting in a KVAC system with constant-size credentials (2 group elements) and presentations (4 group elements). To avoid the bilinear groups and pairing operations required by SP-MAC-EQ, our second construction uses a homomorphic MAC with a simplified DVSC. While this sacrifices constant-size credentials ($n+2$ group elements, where $n$ is the number of attributes), it retains constant-size presentations (2 group elements) in a pairingless setting. We formally prove the security of both constructions and provide open-source implementation results demonstrating their practicality. We extensively benchmarked our KVAC protocols and, additionally, bechmarked the efficiency of our SP-MAC-EQ scheme against the original SPS-EQ scheme, showcasing significant performance improvements.
Expand
Keitaro Hashimoto, Shuichi Katsumata, Thom Wiggers
ePrint Report ePrint Report
The Signal protocol relies on a special handshake protocol, formerly X3DH and now PQXDH, to set up secure conversations. Prior analyses of these protocols (or proposals for post-quantum alternatives) have all used highly tailored models to the individual protocols and generally made ad-hoc adaptations to "standard" AKE definitions, making the concrete security attained unclear and hard to compare between similar protocols. Indeed, we observe that some natural Signal handshake protocols cannot be handled by these tailored models. In this work, we introduce Bundled Authenticated Key Exchange (BAKE), a concrete treatment of the Signal handshake protocol. We formally model prekey bundles and states, enabling us to define various levels of security in a unified model. We analyze Signal's classically secure X3DH and harvest-now-decrypt-later-secure PQXDH, and show that they do not achieve what we call optimal security (as is documented). Next, we introduce RingXKEM, a fully post-quantum Signal handshake protocol achieving optimal security; as RingXKEM shares states among many prekey bundles, it could not have been captured by prior models. Lastly, we provide a security and efficiency comparison of X3DH, PQXDH, and RingXKEM.
Expand
Huayi Qi, Minghui Xu, Xiaohua Jia, Xiuzhen Cheng
ePrint Report ePrint Report
Verifiable random access machines (vRAMs) serve as a foundational model for expressing complex computations with provable security guarantees, serving applications in areas such as secure electronic voting, financial auditing, and privacy-preserving smart contracts. However, no existing vRAM provides distributed obliviousness, a critical need in scenarios where multiple provers seek to prevent disclosure against both other provers and the verifiers. Implementing a publicly verifiable distributed oblivious RAM (VDORAM) presents several challenges. Firstly, the development of VDORAM is hindered by the limited availability of sophisticated publicly verifiable multi-party computation (MPC) protocols. Secondly, the lack of readily available front-end implementations for multi-prover zero-knowledge proofs (ZKPs) poses a significant obstacle to developing practical applications. Finally, directly adapting existing RAM designs to the VDORAM paradigm may prove either impractical or inefficient due to the inherent complexities of reconciling oblivious computation with the generation of publicly verifiable proofs.

To address these challenges, we introduce CompatCircuit, the first multi-prover ZKP front-end implementation to our knowledge. CompatCircuit integrates collaborative zkSNARKs to implement publicly verifiable MPC protocols with rich functionalities beyond those of an arithmetic circuit, enabling the development of multi-prover ZKP applications. Building upon CompatCircuit, we present VDORAM, the first publicly verifiable distributed oblivious RAM. By combining distributed oblivious architectures with verifiable RAM, VDORAM achieves an efficient RAM design that balances communication overhead and proof generation time. We have implemented CompatCircuit and VDORAM in approximately 15,000 lines of code, demonstrating usability by providing a practical and efficient implementation. Our performance evaluation result reveals that the system still provides moderate performance with distributed obliviousness.
Expand
Zhongtang Luo, Yanxue Jia, Alejandra Victoria Ospina Gracia, Aniket Kate
ePrint Report ePrint Report
Stateless blockchain designs have emerged to address the challenge of growing blockchain size by utilizing succinct global states. Previous works have developed vector commitments that support proof updates and aggregation to be used as such states. However, maintaining proofs for multiple users still demands significant computational resources, particularly in updating proofs with every transaction. This paper introduces Cauchyproofs, a batch-updatable vector commitment enabling proof-serving nodes to efficiently update proofs in quasi-linear time relative to the number of users and transactions, utilizing an optimized KZG scheme to achieve complexity $O\left(\left(\left|\vec{\alpha}\right| + \left|\vec{\beta}\right|\right) \log^2 (\left|\vec{\alpha}\right| + \left|\vec{\beta}\right|)\right)$, compared to previous $O\left(\left|\vec{\alpha}\right|\cdot|\vec{\beta}|\right)$ approaches. This advancement reduces the computational burden on proof-serving nodes, allowing for efficient proof maintenance across large user groups. We demonstrate that our approach is approximately five times faster than the naive approach at the Ethereum-level block size. Additionally, we present a novel matrix representation for KZG proofs utilizing Cauchy matrices, enabling faster all-proof computations with reduced elliptic curve operations. Finally, we propose an algorithm for history proof query, supporting retrospective proof generation with high efficiency. Our contributions substantially enhance the scalability and practicality of proof-serving nodes in stateless blockchain frameworks.
Expand

10 January 2025

Nokia Bell Labs, Belgium
Job Posting Job Posting
Nokia Bell Labs is looking for PhD student (or PostDoc ) interns for 2025. We have two positions related to ZKP and FHE/MPC.

Note: We are strictly looking for technical researchers with programming skills.

Closing date for applications:

Contact: Emad Heydari Beni ([email protected])

Expand
King's College London
Job Posting Job Posting

We are inviting applications for a PhD studentship in the cryptography lab at King's College London. Specifically, we are looking for an applicant to work with Martin Albrecht and Benjamin Dowling.

The PhD could, for example, cover cryptanalysing existing cryptographic technologies/protocols, such as Telegram or WhatsApp, or modelling and designing new cryptographic protocols or primitives.

This PhD will work in a team consisting of social scientists, specifically ethnographers, and us cryptographers. Together, we study what the security needs and wants of participants in large-scale protests are and how these relate to the security guarantees provided by cryptographic solutions.

We encourage applicants to reach out to us to discuss the position informally before applying.

Fine print: This is a fully-funded positions covering both fees and maintenance. The latter is at the UKRI rate. We seek applicants with a strong background in mathematics and/or computer science, preferably with some background in cryptography. We will consider applications on a rolling basis.

Closing date for applications:

Contact: Martin Albrecht martin.albrecht_AT_kcl.ac.uk and Ben Dowling benjamin.dowling_AT_kcl.ac.uk

More information: https://martinralbrecht.wordpress.com/2025/01/07/phd-position-in-cryptography/

Expand
Aalto University, Finland
Job Posting Job Posting

We are looking for postdocs interested in working with us (Chris Brzuska and Russell Lai) on topics including but not limited to:

  • Lattice-based cryptography, with special focus on the design, application, and analysis of non-standard lattice assumptions
  • Succinct/zero-knowledge/batch proof and argument systems, functional commitments
  • Advanced (e.g. homomorphic, attribute-based, functional, laconic) encryption and (e.g. ring, group, threshold, blind) signature schemes
  • Time cryptography (e.g. time-lock puzzle, verifiable delay function, proof of sequential work)
  • Fine-grained cryptography (e.g. against bounded-space-time adversaries)
  • Lower bounds and impossibility results
  • Key exchange and secure messaging

Feel free to drop us an email for discussions about the topics.

For more details about the position, and for the instructions of how to apply, please refer to https://www.hiit.fi/hiit-postdoctoral-and-research-fellow-positions/.

Closing date for applications:

Contact: Chris Brzuska and Russell Lai

More information: https://www.hiit.fi/hiit-postdoctoral-and-research-fellow-positions/

Expand
Tokyo, Japan, 23 June - 25 June 2025
Event Calendar Event Calendar
Event date: 23 June to 25 June 2025
Submission deadline: 31 January 2025
Notification: 14 March 2025
Expand
Sofia, Bulgaria, 25 March 2025
Event Calendar Event Calendar
Event date: 25 March 2025
Submission deadline: 28 January 2025
Notification: 14 February 2025
Expand
Leuven, Belgium, 31 March - 4 April 2025
Event Calendar Event Calendar
Event date: 31 March to 4 April 2025
Expand
Madrid, Spain, 4 May -
Event Calendar Event Calendar
Event date: 4 May to
Submission deadline: 7 February 2025
Expand
Madrid, Spain, 4 May 2025
Event Calendar Event Calendar
Event date: 4 May 2025
Submission deadline: 28 February 2025
Notification: 15 March 2025
Expand
Ábel Nagy, János Tapolcai, István András Seres, Bence Ladóczki
ePrint Report ePrint Report
Proof-of-stake consensus protocols often rely on distributed randomness beacons (DRBs) to generate randomness for leader selection. This work analyses the manipulability of Ethereum's DRB implementation, RANDAO, in its current consensus mechanism. Even with its efficiency, RANDAO remains vulnerable to manipulation through the deliberate omission of blocks from the canonical chain. Previous research has shown that economically rational players can withhold blocks --~known as a block withholding attack or selfish mixing~-- when the manipulated RANDAO outcome yields greater financial rewards.

We introduce and evaluate a new manipulation strategy, the RANDAO forking attack. Unlike block withholding, whereby validators opt to hide a block, this strategy relies on selectively forking out an honest proposer's block to maximize transaction fee revenues and block rewards. In this paper, we draw attention to the fact that the forking attack is significantly more harmful than selfish mixing for two reasons. Firstly, it exacerbates the unfairness among validators. More importantly, it significantly undermines the reliability of the blockchain for the average user by frequently causing already published blocks to be forked out. By doing so, the attacker can fork the chain without losing slots, and we demonstrate that these are later fully compensated for. Our empirical measurements, investigating such manipulations on Ethereum mainnet, revealed no statistically significant traces of these attacks to date.
Expand

09 January 2025

Aydin Abadi, Yvo Desmedt
ePrint Report ePrint Report
It is imperative to modernize traditional core cryptographic primitives, such as Oblivious Transfer (OT), to address the demands of the new digital era, where privacy-preserving computations are executed on low-power devices. This modernization is not merely an enhancement but a necessity to ensure security, efficiency, and continued relevance in an ever-evolving technological landscape.

This work introduces two scalable OT schemes: (1) Helix OT, a $1$-out-of-$n$ OT, and (2) Priority OT, a $t$-out-of-$n$ OT. Both schemes provide unconditional security, ensuring resilience against quantum adversaries. Helix OT achieves a receiver-side download complexity of $O(1)$. In big data scenarios, where certain data may be more urgent or valuable, we propose Priority OT. With a receiver-side download complexity of $O(t)$, this scheme allows data to be received based on specified priorities. By prioritizing data transmission, Priority OT ensures that the most important data is received first, optimizing bandwidth, storage, and processing resources. Performance evaluations indicate that Helix OT completes the transfer of 1 out of $n=$ 16,777,216 messages in 9 seconds, and Priority OT handles $t=$ 1,048,576 out of $n$ selections in 30 seconds. Both outperform existing $t$-out-of-$n$ OTs (when $t\geq 1$), underscoring their suitability for large-scale applications. To the best of our knowledge, Helix OT and Priority OT introduce unique advancements that distinguish them from previous schemes.
Expand
Sebastian Faust, Maximilian Orlt, Kathrin Wirschem, Liang Zhao
ePrint Report ePrint Report
Unprotected cryptographic implementations are vulnerable to implementation attacks, such as passive side-channel attacks and active fault injection attacks. Recently, countermeasures like polynomial masking and duplicated masking have been introduced to protect implementations against combined attacks that exploit leakage and faults simultaneously. While duplicated masking requires $O(t * e)$ shares to resist an adversary capable of probing $t$ values and faulting $e$ values, polynomial masking requires only $O(t + e)$ shares, which is particularly beneficial for affine computation. At CHES'$24$, Arnold et al. showed how to further improve the efficiency of polynomial masking in the presence of combined attacks by embedding two secrets into one polynomial sharing. This essentially reduces the complexity of previous constructions by half. The authors also observed that using techniques from packed secret sharing (Grosso et al., CHES'$13$) cannot easily achieve combined resilience to encode an arbitrary number of secrets in one polynomial encoding. In this work, we resolve these challenges and show that it is possible to embed an arbitrary number of secrets in one encoding and propose gadgets that are secure against combined attacks. We present two constructions that are generic and significantly improve the computational and randomness complexity of existing compilers, such as the laOla compiler presented by Berndt et al. at CRYPTO'$23$ and its improvement by Arnold et al. For example, for an AES evaluation that protects against $t$ probes and $e$ faults, we improve the randomness complexity of the state-of-the-art construction when $t+e>3$, leading to an improvement of up to a factor of $2.41$.
Expand
Alex Evans, Nicolas Mohnblatt, Guillermo Angeris
ePrint Report ePrint Report
We introduce ZODA, short for 'zero-overhead data availability,' which is a protocol for proving that symbols received from an encoding (for tensor codes) were correctly constructed. ZODA has optimal overhead for both the encoder and the samplers. Concretely, the ZODA scheme incurs essentially no incremental costs (in either computation or size) beyond those of the tensor encoding itself. In particular, we show that a slight modification to the encoding scheme for tensor codes allows sampled rows and columns of this modified encoding to become proofs of their own correctness. When used as part of a data availability sampling protocol, both encoders (who encode some data using a tensor code with some slight modifications) and samplers (who sample symbols from the purported encoding and verify that these samples are correctly encoded) incur no incremental communication costs and only small additional computational costs over having done the original tensor encoding. ZODA additionally requires no trusted setup and is plausibly post-quantum secure.
Expand
◄ Previous Next ►