International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

12 February 2025

Xinhai Wang, Lin Ding, Zhengting Li, Jiang Wan, Bin Hu
ePrint Report ePrint Report
The ChaCha stream cipher has become one of the best known ARX-based ciphers because of its widely use in several systems, such as in TLS, SSH and so on. In this paper, we find some errors in the attacks on ChaCha256 from IEEE TIT and INDOCRYPT 2024, and then corrected cryptanalytic attacks on ChaCha256 are given. However, the corrected attacks have extremely large time and data complexities. The corrected results show that the technique proposed in IEEE TIT may not be able to obtain improved differential-linear attacks on ChaCha.
Expand
Arad Kotzer, Bence Ladóczki, János Tapolcai, Ori Rottenstreich
ePrint Report ePrint Report
Payment channels are auspicious candidates in layer-2 solutions to reduce the number of on-chain transactions on traditional blockchains and increase transaction throughput. To construct payment channels, peers lock funds on 2-of-2 multisig addresses and open channels between one another to transact via instant peer-to-peer transactions. Transactions between peers without a direct channel are made possible by routing the payment over a series of adjacent channels. In certain cases, this can lead to relatively low transaction success rates and high transaction fees. In this work, we introduce pliability to constructing payment channels and graft edges with more than two endpoints into the payment graph. We refer to these constructions as hyperedges. We present hyperedge-based topologies to form hypergraphs and compare them to Bitcoin's Lightning network and other state-of-the-art solutions. The results demonstrate that hyperedge-based implementations can both increase transaction success rate, in addition to decreasing the network cost by more than 50% compared to that of the Lightning Network.
Expand
Guilherme Rito, Christopher Portmann, Chen-Da Liu-Zhang
ePrint Report ePrint Report
Deniable Authentication is a highly desirable guarantee for secure messaging: it allows Alice to authentically send a message $m$ to a designated receiver Bob in a *Plausibly Deniable* manner. Concretely, while Bob is guaranteed Alice sent $m$, he cannot convince a judge Judy that Alice really sent this message---even if he gives Judy his secret keys. This is because Judy knows Bob *can* make things up. This paper models the security of Multi-Designated Verifier Signatures (MDVS) and Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE)---two (related) types of schemes that provide such guarantees---in the Constructive Cryptography (CC) framework (Maurer and Renner, ICS '11).

The only work modeling dishonest parties' ability of "making things up" was by Maurer et al. (ASIACRYPT '21), who modeled the security of MDVS, also in CC. Their security model has two fundamental limitations: 1. deniability is not guaranteed when honest receivers read; 2. it relies on the CC-specific concept of specifications.

We solve both problems. Regarding the latter, our model is a standard simulator-based one. Furthermore, our composable treatment allowed to identify a new property, Forgery Invalidity, without which we do not know how to prove the deniability of neither MDVS nor MDRS-PKE when honest receivers read. Finally, we prove that Chakraborty et al.'s MDVS (EUROCRYPT '23) has this property, and that Maurer et al.'s MDRS-PKE (EUROCRYPT '22) preserves it from the underlying MDVS.
Expand
Intak Hwang, Seonhong Min, Yongsoo Song
ePrint Report ePrint Report
Homomorphic Encryption (HE) is a privacy-enhancing technology that enables computation over encrypted data without the need for decryption. A primary application of HE is in the construction of communication-efficient Two-Party Computation (2PC) protocols between a client and a server, serving as the key owner and the evaluator, respectively. In this context, it is reasonable to assume that the evaluation circuit involves some confidential information of the server; otherwise, the client could compute it on their own. However, the 2PC protocol built on an HE scheme is not necessarily secure, as the standard IND-CPA security of HE does not guarantee the privacy of the evaluation circuit. Several enhanced security notions for HE, such as circuit privacy and sanitization, have been proposed to address this issue, but they require significant overhead in terms of parameter size or complexity.

In this work, we introduce a novel security notion for HE, called ciphertext simulatability, which precisely captures the security requirements of HE in the construction of 2PC. Then, we provide a concrete construction of ciphertext-simulatable HE from the BFV scheme by modifying its evaluation algorithm. We provide theoretical analysis and demonstrate experimental results to ensure that our solution has insignificant overhead in terms of parameter size and error growth. As a matter of independent interest, we demonstrate how our approach of designing ciphertext-simulatable BFV can be further extended to satisfy stronger security notions such as sanitization.
Expand
Alex B. Grilo, Ami Paz, Mor Perry
ePrint Report ePrint Report
Distributed certification is a set of mechanisms that allows an all-knowing prover to convince the units of a communication network that the network's state has some desired property, such as being $3$-colorable or triangle-free. Classical mechanisms, such as proof labeling schemes (PLS), consist of a message from the prover to each unit, followed by on-e round of communication between each unit and its neighbors. Later works consider extensions, called distributed interactive proofs, where the prover and the units can have multiple rounds of communication before the communication among the units. Recently, Bick, Kol, and Oshman (SODA '22) defined a zero-knowledge version of distributed interactive proofs, where the prover convinces the units of the network’s state without revealing any other information about the network’s state or structure. In their work, they propose different variants of this model and show that many graph properties of interest can be certified with them.

In this work, we define and study distributed non-interactive zero-knowledge proofs (dNIZK); these can be seen as a non-interactive version of the aforementioned model, and also as a zero-knowledge version of PLS. We prove the following:

- There exists a dNIZK protocol for $3$-coloring with $O(\log n)$-bit messages from the prover and $O(\log n)$-size messages among neighbors. This disproves a conjecture from previous work asserting that the total number of bits from the prover should grow linearly with the number of edges.

- There exists a family of dNIZK protocols for triangle-freeness, that presents a trade-off between the size of the messages from the prover and the size of the messages among neighbors. Interestingly, we also introduce a variant of this protocol where the message size depends only on the maximum degree of a node and not on the total number of nodes, improving upon the previous non-zero-knowledge protocol for this problem.

- There exists a dNIZK protocol for any graph property in NP in the random oracle models, which is secure against an arbitrary number of malicious parties. Previous work considered compilers from PLS to distributed zero-knowledge protocol, which results in protocols with parameters that are incomparable to ours.
Expand
Hyeonhak Kim, DongHoe Heo, Seokhie Hong
ePrint Report ePrint Report
Quantum money is the cryptographic application of the quantum no-cloning theorem. It has recently been instantiated by Montgomery and Sharif (Asiacrypt'24) from class group actions on elliptic curves. In this work, we propose a novel method to forge a quantum banknote by leveraging the efficiency of evaluating division polynomials with the coordinates of rational points, offering a more efficient alternative to brute-force attack. Since our attack still requires exponential time, it remains impractical to forge a quantum banknote. Interestingly, due to the inherent properties of quantum money, our attack method also results in a more efficient verification procedure. As our algorithm employs the rational points and the quadratic twists to verify the cardinality of the superposition of elliptic curves, we expect it to inspire future research on elliptic-curve-based quantum cryptography.
Expand
Hao Guo, Liqiang Peng, Haiyang Xue, Li Peng, Weiran Liu, Zhe Liu, Lei Hu
ePrint Report ePrint Report
Multiplication and other non-linear operations are widely recognized as the most costly components of secure two-party computation (2PC) based on linear secret sharing. Multiplication and non-linear operations are well known to be the most expensive protocols in secure two-party computation (2PC). Moreover, the comparison protocol (or $\mathsf{Wrap}$ protocol) is essential for various operations such as truncation, signed extension, and signed non-uniform multiplication. This paper aims to optimize these protocols by avoiding invoking the costly comparison protocol, thereby improving their efficiency.

We propose a novel approach to study 2PC from a geometric perspective. Specifically, we interpret the two shares of a secret as the horizontal and vertical coordinates of a point in a Cartesian coordinate system, with the secret itself represented as the corresponding point. This reformulation allows us to address the comparison problem by determining the region where the point lies. Furthermore, we identify scenarios where the costly comparison protocol can be replaced by more efficient evaluating AND gate protocols within a constrained range. Using this method, we improve protocols for truncation, signed extension and signed non-uniform multiplication, all of which are fundamental to 2PC. In particular, for the one-bit error truncation protocol and signed extension protocols, we reduce the state-of-the-art communication complexities of Cheetah (USENIX’22) and SirNN (S\&P’21) from $\approx \lambda (l + 1)$ to $\approx \lambda$ in two rounds, where $l$ is the input length and $\lambda$ is the security parameter. For signed multiplication with non-uniform bit-width, we reduce the communication cost of SirNN's by 40\% to 60\%.
Expand
Mi-Ying Miryam Huang, Xinyu Mao, Jiapeng Zhang
ePrint Report ePrint Report
We propose a sublinear-sized proof system for rank-one constraint satisfaction over polynomial rings (Ring-R1CS), particularly for rings of the form $Z_{Q}[X]/(X^N+1)$. These rings are widely used in lattice-based constructions, which underlie many modern post-quantum cryptographic schemes. Constructing efficient proof systems for arithmetic over these rings is challenged by two key obstacles: (1) Under practical popular choices of $Q$ and $N$, the ring $Z_{Q}[X]/(X^N+1)$ is not field-like, and thus tools like Schwartz–Zippel lemma cannot apply; (2) when $N$ is large, which is common in implementations of lattice-based cryptosystems, the ring is large, causing the proof size suboptimal. In this paper, we address these two obstacles, enabling more efficient proofs for arithmetics over $Z_{Q}[X]/(X^N+1)$ when $Q$ is a `lattice-friendly' modulus, including moduli that support fast NTT computation or power-of-two moduli. Our primary tool is a novel \emph{ring switching} technique. The core idea of ring switching is to convert the R1CS over $Z_{Q}[X]/(X^N+1)$ into another R1CS instance over Galois rings, which is field-like and small (with size independent with $N$). As (zero-knowledge) proofs have many applications in cryptography, we expect that efficient proof systems for polynomial ring arithmetic could lead to more efficient constructions of advanced primitives from lattice assumptions, such as aggregate signatures, group signatures, verifiable random function, or verifiable fully holomorphic encryption.
Expand
Song Bian, Haowen Pan, Jiaqi Hu, Zhou Zhang, Yunhao Fu, Jiafeng Hua, Yi Chen, Bo Zhang, Yier Jin, Jin Dong, Zhenyu Guan
ePrint Report ePrint Report
This work proposes an encrypted hybrid database framework that combines vectorized data search and relational data query over quantized fully homomorphic encryption (FHE). We observe that, due to the lack of efficient encrypted data ordering capabilities, most existing encrypted database (EDB) frameworks do not support hybrid queries involving both vectorized and relational data. To further enrich query expressiveness while retaining evaluation efficiency, we propose Engorgio, a hybrid EDB framework based on quantized data ordering techniques over FHE. Specifically, we design a new quantized data encoding scheme along with a set of novel comparison and permutation algorithms to accurately generate and apply orders between large-precision data items. Furthermore, we optimize specific query types, including full table scan, batched query, and Top-k query to enhance the practical performance of the proposed framework. In the experiment, we show that, compared to the state-of-the-art EDB frameworks, Engorgio is up to 28x--854x faster in homomorphic comparison, 65x--687x faster in homomorphic sorting and 15x--1,640x faster over a variety of end-to-end relational, vectorized, and hybrid SQL benchmarks. Using Engorgio, the amortized runtime for executing a relational and hybrid query on a 48-core processor is under 3 and 75 seconds, respectively, over a 10K-row hybrid database.
Expand
Budapest, Hungary, 19 June - 20 June 2025
Event Calendar Event Calendar
Event date: 19 June to 20 June 2025
Submission deadline: 20 March 2025
Expand
University of Versailles St-Quentin-en-Yvelines, France
Job Posting Job Posting
In view of its ongoing development, the CRYPTO group of the University of Versailles St-Quentin-en-Yvelines (France) invites applications for the following full-time position.

A tenured Professor faculty position (“Professeur des universités”) is open to highly qualified candidates who are committed to a career in research and teaching. Preference will be given to candidates with very strong research achievements in one or several of the areas related to the general fields of cryptology and information security.

Responsibilities include research leadership and dissemination, supervision of doctoral students, development of national or international research projects, and strong commitment to teaching at undergraduate or graduate level.

Deadline for submitting applications: Friday, April 4, 2025, 4 PM, Paris time (France).

For selected candidates, in person auditions will take place in Versailles.

IMPORTANT NOTE: Except for candidates who are currently “Maître de conférences” in France and hold an HDR diploma (“Habilitation à diriger des recherches”), a “Qualification aux fonctions de professeur des universités” certificate from the french “Conseil National des Universités” is usually required to apply. However candidates who already hold a tenured Professor (or equivalent) position may in some cases be exempted from this certificate.

Closing date for applications:

Contact: Louis Goubin, Full Professor, head of the "Cryptology and Information Security" group

e-mail: louis.goubin (at) uvsq.fr

Expand
IBM Research Zurich, Switzerland
Job Posting Job Posting

We have an opening of two PhD positions (one starting September 2025, one starting in 2026) and 1 postdoc (starting September 2025) in the Foundational Cryptography group at IBM Research Zurich. The PhD positions are fully funded for 4 years. The Foundational Cryptography team currently consists of 9 permanent researchers and 7 PhD students.

The research project that the students and postdoc will be working on is about developing post-quantum cryptographic algorithms for human authentication, PIN-based protocols, and the IoT. A background in any of lattice-based cryptography, multi-party computation, or password-authenticated key exchange is helpful but not a requirement. We will explore both theoretical limitations and usable solutions, and depending on the interest of the applicant, either a more foundational or practical direction can be taken.

Applicants need to have a passion for the mathematical analysis of algorithms in general and cryptography in particular. A master's degree in mathematics or computer science and fluently written and spoken English is required.

The IBM Research Zurich lab is located on the beautiful Lake Zurich, close to the Swiss Alps. Research divisions include IT Security, Quantum, AI, and Hybrid Cloud Systems. IBM fosters an inclusive and diverse working environment. Applicants from minorities are particularly encouraged to apply.

Closing date for applications:

Contact: Julia Hesse

Expand

11 February 2025

Tim Beyne, Michiel Verbauwhede
ePrint Report ePrint Report
It is shown that the stream cipher proposed by Carlet and Sarkar in ePrint report 2025/160 is insecure. More precisely, one bit of the key can be deduced from a few keystream bytes. This property extends to an efficient key-recovery attack. For example, for the proposal with 80 bit keys, a few kilobytes of keystream material are sufficient to recover half of the key.
Expand
Dimitri Koshelev, Antonio Sanso
ePrint Report ePrint Report
The present article is a natural extension of the previous one about the GLV method of accelerating a (multi-)scalar multiplication on elliptic curves of moderate CM discriminants $D < 0$. In comparison with the first article, much greater magnitudes of $D$ (in absolute value) are achieved, although the base finite fields of the curves have to be pretty large. This becomes feasible by resorting to quite powerful algorithmic tools developed primarily in the context of lattice-based and isogeny-based cryptography. Curiously, pre-quantum cryptography borrows research outcomes obtained when seeking conversely quantum-resistant solutions or attacks on them.

For instance, some $2$-cycle of pairing-friendly MNT curves (with $-D \approx 100{,}000{,}000$, i.e., $\log_2(-D) \approx 26.5$) is relevant for the result of the current article. The given $2$-cycle was generated at one time by Guillevic to provide $\approx 128$ security bits, hence it was close to application in real-world zk-SNARKs. Another more performant MNT $2$-cycle (with slightly smaller security level, but with much larger $D$) was really employed in the protocol Coda (now Mina) until zero-knowledge proof systems on significantly faster pairing-free (or half-pairing) $2$-cycles were invented. It is also shown in the given work that more lollipop curves, recently proposed by Costello and Korpal to replace MNT ones, are now covered by the GLV technique.
Expand
Paco Azevedo-Oliveira, Andersson Calle Viera, Benoît Cogliati, Louis Goubin
ePrint Report ePrint Report
In Dilithium, the rejection sampling step is crucial for the proof of security and correctness of the scheme. However, to our knowledge, there is no attack in the literature that takes advantage of an attacker knowing rejected signatures. The aim of this paper is to create a practical black-box attack against Dilithium with a weakened rejection sampling. We succeed in showing that an adversary with enough rejected signatures can recover Dilithium's secret key in less than half an hour on a desktop computer. There is one possible application for this result: by physically preventing one of the rejection sampling tests from happening, we obtain two fault attacks against Dilithium.
Expand
Sarisht Wadhwa, Julian Ma, Thomas Thiery, Barnabe Monnot, Luca Zanolini, Fan Zhang, Kartik Nayak
ePrint Report ePrint Report
The decentralized nature of blockchains is touted to provide censorship resistance. However, in reality, the ability of proposers to completely control the contents of a block makes censorship relatively fragile. To combat this, a notion of inclusion lists has been proposed in the blockchain community. This paper presents the first formal study of inclusion lists. Our inclusion list design leverages multiple proposers to propose transactions and improve censorship resistance. The design has two key components. The first component is a utility-maximizing input list creation mechanism that allows rational proposers to achieve a correlated equilibrium while prioritizing high-value transactions. The second component, AUCIL (auction-based inclusion list), is a mechanism for aggregating the input lists from the proposers to output an inclusion list.
Expand
Julien Béguinot, Loïc Masure
ePrint Report ePrint Report
We exhibit a gap between the average random probing model, as defined by Dziembowski et al. at Eurocrypt 2015, and the same model, as defined in the recent paper of Brian et al. at Eurocrypt 2024. Whereas any noisy leakage can be tightly reduced to the former one, we show in this paper that it cannot be tightly reduced to the latter one, unless requiring extra assumptions, e.g., if the noisy leakage is deterministic. As a consequence, the reduction from noisy leakages to random probings — without field size loss — remains unproven.
Expand
Shivam Bhasin, Dirmanto Jap, Marina Krček, Stjepan Picek, Prasanna Ravi
ePrint Report ePrint Report
Machine learning (ML) has been widely deployed in various applications, with many applications being in critical infrastructures. One recent paradigm is edge ML, an implementation of ML on embedded devices for Internet-of-Things (IoT) applications. In this work, we have conducted a practical experiment on Intel Neural Compute Stick (NCS) 2, an edge ML device, with regard to fault injection (FI) attacks. More precisely, we have employed electromagnetic fault injection (EMFI) on NCS 2 to evaluate the practicality of the attack on a real target device. We have investigated multiple fault parameters with a low-cost pulse generator, aiming to achieve misclassification at the output of the inference. Our experimental results demonstrated the possibility of achieving practical and repeatable misclassifications.
Expand
Cruz Barnum, David Heath
ePrint Report ePrint Report
It is often desirable to break cryptographic primitives into two components: an input-independent offline component, and a cheap online component used when inputs arrive. Security of such online/offline primitives must be proved in the input-adaptive setting: the adversary chooses its input adaptively, based on what it sees in the offline-phase. Proving security in the input-adaptive setting can be difficult, particularly when one wishes to achieve simulation security and avoid idealized objects like a random oracle (RO).

This work proposes a framework for reasoning about input-adaptive primitives: adaptive distributional security (ADS). Roughly, an ADS primitive provides security when it is used with inputs drawn from one of two distributions that are themselves hard to distinguish. ADS is useful as a framework for the following reasons: - An ADS definition can often circumvent impossibility results imposed on the corresponding simulation-based definition. This allows us to decrease the online-cost of primitives, albeit by using a weaker notion of security. - With care, one can typically upgrade an ADS-secure object into a simulation-secure object (by increasing cost in the online-phase). - ADS is robust, in the sense that (1) it enables a form of composition and (2) interesting ADS primitives are highly interconnected in terms of which objects imply which other objects. - Many useful ADS-secure objects are plausibly secure from straightforward symmetric-key cryptography.

We start by defining the notion of an ADS encryption (ADE) scheme. A notion of input-adaptive encryption can be easily achieved from RO, and the ADE definition can be understood as capturing the concrete property provided by RO that is sufficient to achieve input-adaptivity. From there, we use ADE to achieve ADS variants of garbled circuits and oblivious transfer, to achieve simulation-secure garbled circuits, oblivious transfer, and two-party computation, and prove interconnectedness of these primitives. In sum, this results in a family of objects with extremely cheap online-cost.
Expand

10 February 2025

Madrid, Spain, 3 April - 3 May 2025
Event Calendar Event Calendar
Event date: 3 April to 3 May 2025
Submission deadline: 14 March 2025
Expand
◄ Previous Next ►