International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News

If you have a news item you wish to distribute, they should be sent to the communications secretary. See also the events database for conference announcements.

Here you can see all recent updates to the IACR webpage. These updates are also available:

email icon
via email
RSS symbol icon
via RSS feed

11 April 2025

Anand Kumar Narayanan
ePrint Report ePrint Report
Weyman and Zelevinsky generalised Vandermonde matrices to higher dimensions, which we call Vandermonde-Weyman-Zelevinsky tensors. We generalise Lagrange interpolation to higher dimensions by devising a nearly linear time algorithm that given a Vandermonde-Weyman-Zelevinsky tensor and a sparse target vector, finds a tuple of vectors that hit the target under tensor evaluation. Tensor evaluation to us means evaluating the usual multilinear form associated with the tensor in all but one chosen dimension. Yet, this interpolation problem phrased with respect to a random tensor appears to be a hard multilinear system. Leveraging this dichotomy, we propose preimage sampleable trapdoor one-way functions in the spirit of Gentry-Peikert-Vaikuntanathan (GPV) lattice trapdoors. We design and analyse ``Hash-and-Sign'' digital signatures from such trapdoor one-way functions, yielding short signatures whose lengths scale nearly linearly in the security parameter. We also describe an encryption scheme.

Our trapdoor is a random Vandermonde-Weyman-Zelevinsky tensor over a finite field and a random basis change. We hide the Vandermonde-Weyman-Zelevinsky tensor under the basis change and publish the resulting pseudorandom tensor. The one way function is the tensor evaluation derived from the public tensor, restricted so as to only map to sparse vectors. We then design the domain sampler and preimage sampler demanded by the GPV framework. The former samples inputs that map to uniform images under the one-way function. The latter samples preimages given supplementary knowledge of the trapdoor. Preimage sampling is a randomised version of interpolation and knowing the basis change allows efficient translation between interpolation corresponding to the public and trapdoor tensors. An adversary seeking a preimage must solve a pseudorandom multilinear system, which seems cryptographically hard.
Expand
Tomer Keniagin, Eitan Yaakobi, Ori Rottenstreich
ePrint Report ePrint Report
Set reconciliation is a fundamental task in distributed systems, particularly in blockchain networks, where it enables the synchronization of transaction pools among peers and facilitates block dissemination. Existing traditional set reconciliation schemes are either statistical, providing success probability as a function of the communication overhead and the size of the symmetric difference, or require parametrization and estimation of the size of the symmetric difference, which can be prone to error. In this paper, we present CertainSync, a novel reconciliation framework that, to the best of our knowledge, is the first to guarantee successful set reconciliation without any parametrization or estimators in use. The framework is rateless and adapts to the unknown symmetric difference size. The set reconciliation is guaranteed to be completed successfully whenever the communication overhead reaches a lower bound derived from the symmetric difference size and the universe size. Our framework is based on recent constructions of Invertible Bloom Lookup Tables (IBLTs) ensuring successful element listing as long as the number of elements is bounded. We provide a theoretical analysis to prove the certainty in the set reconciliation for multiple constructions. The approach is also validated by simulations, showing the ability to synchronize sets with efficient communication costs while maintaining reconciliation guarantees compared to other baseline schemes for set reconciliation. To further improve communication overhead for large universes as blockchain networks, CertainSync is extended with a universe reduction technique to minimize communication overhead. We compare and validate the extended framework UniverseReduceSync against the basic CertainSync framework through simulations using real blockchain transaction hash data from the Ethereum blockchain network. The results illustrate a trade-off between improved communication costs and maintaining reconciliation guarantees without relying on parametrization or estimators, offering a comprehensive solution for set reconciliation in diverse scenarios.
Expand
Yackolley Amoussou-Guenou, Lionel Beltrando, Maurice Herlihy, Maria Potop-Butucaru
ePrint Report ePrint Report
Byzantine Reliable Broadcast is one of the most popular communication primitives in distributed systems. Byzantine reliable broadcast ensures that processes agree to deliver a message from an initiator, even if some processes (possibly including the initiator) are Byzantine. In asynchronous settings, it is known since the prominent work of Bracha \cite{Bracha87} that Byzantine reliable broadcast can be implemented deterministically if the total number of processes, denoted by $n$, satisfies $n \geq 3t+1$ where $t$ is an upper bound on the number of Byzantine processes. Here, we study Byzantine Reliable Broadcast when processes are equipped with \emph{trusted components}, special software or hardware designed to prevent equivocation. Our contribution is threefold. First, we show that, despite common belief, when each process is equipped with a trusted component, Bracha's algorithm still needs $n \geq 3t+1$. Second, we present a novel algorithm that uses a single trusted component (at the initiator) that implements Byzantine Reliable Asynchronous Broadcast with $n \geq 2t+1$. \yag{Lastly, building on our broadcast algorithm, we present TenderTee, a transformation of the Tendermint consensus algorithm by using trusted component, giving better Byzantine resilience. Tendertee works with $n \geq 2t+1$, where Tendermint needed $n=3t+1$.}
Expand
Sanjay Deshpande, Yongseok Lee, Cansu Karakuzu, Jakub Szefer, Yunheung Paek
ePrint Report ePrint Report
This work presents SPHINCSLET, the first fully standard-compliant and area-efficient hardware implementation of the SLH-DSA algorithm, formerly known as SPHINCS+, a post-quantum digital signature scheme. SPHINCSLET is designed to be parameterizable across different security levels and hash functions, offering a balanced trade-off between area efficiency and performance. Existing hardware implementations either feature a large area footprint to achieve fast signing and verification or adopt a coprocessor-based approach that significantly slows down these operations. SPHINCSLET addresses this gap by delivering a 4.7$\times$ reduction in area compared to high-speed designs while achieving a 2.5$\times$ to 5$\times$ improvement in signing time over the most efficient coprocessor-based designs for a SHAKE256-based SPHINCS+ implementation. The SHAKE256-based SPHINCS+ FPGA implementation targeting the AMD Artix-7 requires fewer than 10.8K LUTs for any security level of SLH-DSA. Furthermore, the SHA-2-based SPHINCS+ implementation achieves a 2$\times$ to 4$\times$ speedup in signature generation across various security levels compared to existing SLH-DSA hardware, all while maintaining a compact area footprint of 6K to 15K LUTs. This makes it the fastest SHA-2-based SLH-DSA implementation to date. With an optimized balance of area and performance, SPHINCSLET can assist resource-constrained devices in transitioning to post-quantum cryptography.
Expand
Alhad Daftardar, Jianqiao Mo, Joey Ah-kiow, Benedikt Bünz, Ramesh Karri, Siddharth Garg, Brandon Reagen
ePrint Report ePrint Report
(Preprint) Zero-Knowledge Proofs (ZKPs) are rapidly gaining importance in privacy-preserving and verifiable computing. ZKPs enable a proving party to prove the truth of a statement to a verifying party without revealing anything else. ZKPs have applications in blockchain technologies, verifiable machine learning, and electronic voting, but have yet to see widespread adoption due to the computational complexity of the proving process.Recent works have accelerated the key primitives of state-of-the-art ZKP protocols on GPU and ASIC. However, the protocols accelerated thus far face one of two challenges: they either require a trusted setup for each application, or they generate larger proof sizes with higher verification costs, limiting their applicability in scenarios with numerous verifiers or strict verification time constraints. This work presents an accelerator, zkSpeed, for HyperPlonk, a state-of-the-art ZKP protocol that supports both one-time, universal setup and small proof sizes for typical ZKP applications in publicly verifiable, consensus-based systems. We accelerate the entire protocol, including two major primitives: SumCheck and Multi-scalar Multiplications (MSMs). We develop a full-chip architecture using 366.46 mm$^2$ and 2 TB/s of bandwidth to accelerate the entire proof generation process, achieving geometric mean speedups of 801$\times$ over CPU baselines.
Expand
Nicolas Desmoulins, Antoine Dumanois, Seyni Kane, Jacques Traoré
ePrint Report ePrint Report
eIDAS 2.0 (electronic IDentification, Authentication and trust Services) is a very ambitious regulation aimed at equipping European citizens with a personal digital identity wallet (EU Digital Identity Wallet) on a mobile phone that not only needs to achieve a high level of security, but also needs to be available as soon as possible for a large number of citizens and respect their privacy (as per GDPR - General Data Protection Regulation).

In this paper, we introduce the foundations of a digital identity wallet solution that could help move closer to this objective by leveraging the proven anonymous credentials system BBS (Eurocrypt 2023), also known as BBS+, but modifying it to avoid the limitations that have hindered its widespread adoption, especially in certified infrastructures requiring trusted hardware implementation. In particular, the solution we propose, which we call BBS#, does not rely, contrary to BBS/BBS +, on bilinear maps and pairing-friendly curves (which are not supported by existing hardware) and only depends on the hardware implementation of well-known digital signature schemes such as ECDSA (ISO/IEC 14888-3) or ECSDSA (also known as ECSchnorr, ISO/IEC 14888-3) using classical elliptic curves. More precisely, BBS# can be rolled out without requiring any change in existing hardware or the algorithms that hardware supports. BBS# , which is proven secure in the random oracle model, retains the well-known security property (unforgeability of the credentials under the (gap) q-SDH assumption) and anonymity properties (multi-show full unlinkability and statistical anonymity of presentation proofs) of BBS/BBS+.

By implementing BBS# on several smartphones using different secure execution environments, we show that it is possible to achieve eIDAS 2.0 transactions which are not only efficient (around 70 ms on Android StrongBox), secure and certifiable at the highest level but also provide strong (optimal) privacy protection for all European ID Wallet users.
Expand
Jayamine Alupotha, Mariarosaria Barbaraci, Ioannis Kaklamanis, Abhimanyu Rawat, Christian Cachin, Fan Zhang
ePrint Report ePrint Report
Modern life makes having a digital identity no longer optional, whether one needs to manage a bank account or subscribe to a newspaper. As the number of online services increases, it is fundamental to safeguard user privacy and equip service providers (SP) with mechanisms enforcing Sybil resistance, i.e., preventing a single entity from showing as many. Current approaches, such as anonymous credentials and self-sovereign identities, typically rely on identity providers or identity registries trusted not to track users' activities. However, this assumption of trust is no longer appropriate in a world where user data is considered a valuable asset. To address this challenge, we introduce a new cryptographic notion, Anonymous Self-Credentials (ASC) along with two implementations. This approach enables users to maintain their privacy within an anonymity set while allowing SPs to obtain Sybil resistance. Then, we present a User-issued Unlinkable Single Sign-On (U2SSO) implemented from ASC that solely relies on an identity registry to immutably store identities. A U2SSO solution allows users to generate unlinkable child credentials for each SP using only one set of master credentials. We demonstrate the practicality and efficiency of our U2SSO solution by providing a complete proof-of-concept.
Expand
Jeremy Guillaume, Maxime Pelcat, Amor Nafkha, Ruben Salvador
ePrint Report ePrint Report
Side-channel attacks consist of retrieving internal data from a victim system by analyzing its leakage, which usually requires proximity to the victim in the range of a few millimetres. Screaming channels are EM side channels transmitted at a distance of a few meters. They appear on mixed-signal devices integrating an RF module on the same silicon die as the digital part. Consequently, the side channels are modulated by legitimate RF signal carriers and appear at the harmonics of the digital clock frequency. While initial works have only considered collecting leakage at these harmonics, late work has demonstrated that the leakage is also present at frequencies other than these harmonics. This result significantly increases the number of available frequencies to perform a screaming-channel attack, which can be convenient in an environment where multiple harmonics are polluted. This work studies how this diversity of frequencies carrying leakage can be used to improve attack performance. We first study how to combine multiple frequencies. Second, we demonstrate that frequency combination can improve attack performance and evaluate this improvement according to the performance of the combined frequencies. Finally, we demonstrate the interest of frequency combination in attacks at $15$ and, for the first time to the best of our knowledge, at $30$ meters. One last important observation is that this frequency combination divides by $2$ the number of traces needed to reach a given attack performance.
Expand
Juan Garay, Aggelos Kiayias, Yu Shen
ePrint Report ePrint Report
A set of unacquainted parties, some of which may misbehave, communicate with each other over an unauthenticated and unreliable gossip network. They wish to jointly replicate a state machine $\Pi$ so that each one of them has fair access to its operation. Specifically, assuming parties' computational power is measured as queries to an oracle machine $H(\cdot)$, parties can issue symbols to the state machine in proportion to their queries to $H(\cdot)$ at a given fixed rate. Moreover, if such access to the state machine is provided continuously in expected constant time installments we qualify it as fast fairness.

A state machine replication (SMR) protocol in this permissionless setting is expected to offer consistency across parties and reliably process all symbols that honest parties wish to add to it in a timely manner despite continuously fluctuating participation and in the presence of an adversary who commands less than half of the total queries to $H(\cdot)$ per unit of time.

A number of protocols strive to offer the above guarantee together with fast settlement — notably, the Bitcoin blockchain offers a protocol that settles against Byzantine adversaries in polylogarithmic rounds, while fairness only holds in a fail-stop adversarial model (due to the fact that Byzantine behavior can bias access to the state machine in the adversary's favor). In this work, we put forth the first Byzantine-resilient protocol solving SMR in this setting with both expected-constant-time settlement and fast fairness. In addition, our protocol is self-sufficient in the sense of performing its own time keeping while tolerating an adaptively fluctuating set of parties.
Expand
Pierrick Méaux
ePrint Report ePrint Report
Weightwise degree-$d$ functions are Boolean functions that, on each set of fixed Hamming weight, coincide with a function of degree at most $d$. They generalize both symmetric functions and the Hidden Weight Bit Function (HWBF), which has been studied in cryptography for its favorable properties. In this work, we establish a general upper bound on the algebraic immunity of such functions, a key security parameter against algebraic attacks on stream ciphers like filtered Linear Feedback Shift Registers (LFSRs). We construct explicit low-degree annihilators for WWdd functions with small $d$, and show how to generalize these constructions. As an application, we prove that the algebraic immunity of the HWBF is upper bounded by $3\sqrt{n}$ disproving a result from 2011 that claimed a lower bound of $n/3$. We then apply our technique to several generalizations of the HWBF proposed since 2021 for homomorphically friendly constructions and LFSR-based ciphers, refining or refuting results from six prior works.
Expand
Yi Liu, Junzuo Lai, Peng Yang, Anjia Yang, Qi Wang, Siu-Ming Yiu, Jian Weng
ePrint Report ePrint Report
Secure two-party computation (2PC) enables two parties to jointly evaluate a function while maintaining input privacy. Despite recent significant progress, a notable efficiency gap remains between actively secure and passively secure protocols. In S\&P'12, Huang, Katz, and Evans formalized the notion of \emph{active security with one-bit leakage}, providing a promising approach to bridging this gap. Protocols derived from this notion have become foundational in designing highly efficient actively secure 2PC protocols. However, a critical challenge identified by Huang, Katz, and Evans remains unexplored: these protocols face significant weaknesses in ensuring fairness for honest parties when employed in standalone settings rather than as components within larger protocols. While the authors proposed two potential solutions to mitigate this issue, both approaches are prohibitively expensive and lack formalization of security guarantees.

In this paper, we first formally define an enhanced notion called \emph{active security with one-bit-advantage bound}, in which the adversaries' advantages are strictly bounded to at most one bit beyond what honest parties obtain. This bound is enforced through a \emph{progressive revelation} mechanism, where the evaluation result is disclosed incrementally bit by bit. In addition, we propose a novel approach leveraging label structures within garbled circuits to design a highly efficient constant-round 2PC protocol that achieves active security with one-bit advantage bound. Our protocol demonstrates \emph{runtime performance nearly identical to that of passively secure garbled-circuit counterparts} in duplex networks (\eg $1.033\times$ for the {\tt SHA256} circuit in LAN), with \emph{low overhead} for output progressive revelation (only $80$ communicated bytes per bit release).

With its strengthened security guarantees and minimal overhead, our protocol is highly suitable for practical 2PC applications.
Expand
Onur Gunlu, Maciej Skorski, H. Vincent Poor
ePrint Report ePrint Report
Semantic communication systems, which focus on transmitting the semantics of data rather than its exact reconstruction, redefine the design of communication networks for transformative efficiency in bandwidth-limited and latency-critical applications. Addressing these goals, we tackle the rate-distortion-perception (RDP) problem for image compression, a critical challenge in achieving perceptually realistic reconstructions under rate constraints. Formulated within the randomized distributed function computation (RDFC) framework, we establish an achievable non-asymptotic RDP region, providing finite blocklength trade-offs between rate, distortion, and perceptual quality, aligning with semantic communication objectives. We extend this region to also include a secrecy constraint, providing strong secrecy guarantees against eavesdroppers via physical-layer security methods, ensuring resilience against quantum attacks. Our contributions include (i) establishing achievable bounds for non-asymptotic RDP regions under realism and distortion constraints; (ii) extending these bounds to provide strong secrecy guarantees; (iii) characterizing the asymptotic secure RDP region under a perfect realism constraint; and (iv) illustrating significant reductions in rates and the effects of secrecy constraints and finite blocklengths. Our results provide actionable insights for designing low-latency, high-fidelity, and secure image compression systems with realistic outputs, advancing applications, e.g., in privacy-critical domains.
Expand

08 April 2025

Ga Hee Hong, Joo Woo, Jonghyun Kim, Minku Kim, Hochang Lee, Jong Hwan Park
ePrint Report ePrint Report
Recently, $\mathsf{NTRU}$+$\mathsf{Sign}$ was proposed as a new compact signature scheme, following `Fiat-Shamir with Aborts' (FSwA) framework. Its compactness is mainly based on their novel NTRU-based key structure that fits well with bimodal distributions in the FSwA framework. However, despite its compactness, $\mathsf{NTRU}$+$\mathsf{Sign}$ fails to provide a diverse set of parameters that can meet some desired security levels. This limitation stems from its reliance on a ring $\mathbb{Z}_q[x]/\langle x^n+1 \rangle$, where $n$ is restricted to powers of two, limiting the flexibility in selecting appropriate security levels. To overcome this limitation, we propose a revised version of $\mathsf{NTRU}$+$\mathsf{Sign}$ by adopting a ring $\mathbb{Z}_q[x]/\langle x^n-x^{n/2}+1\rangle$ from cyclotomic trinomials, where $n=2^{i}3^{j}$ for some positive integers $i$ and $j$. Our parameterization offers three distinct security levels: approximately $120$, $190$, and $260$ bits, while preserving the compactness in $\mathbb{Z}_q[x]/\langle x^n+1 \rangle$. We implement these re-parameterized $\mathsf{NTRU}$+$\mathsf{Sign}$ schemes, showing that the performance of $\mathsf{NTRU}$+$\mathsf{Sign}$ from cyclotomic trinomials is still comparable to previous lattice-based signature schemes such as $\mathsf{Dilithium}$ and $\mathsf{HAETAE}$.
Expand
Vineet Nair, Justin Thaler, Michael Zhu
ePrint Report ePrint Report
zkVMs are SNARKs for verifying CPU execution. They allow an untrusted prover to show that it correctly ran a specified program on a witness, where the program is given as bytecode conforming to an instruction set architecture like RISC-V. Existing zkVMs still struggle with high prover resource costs, notably large runtime and memory usage. We show how to implement Jolt—an advanced, sum-check- based zkVM—with a significantly reduced memory footprint, without relying on SNARK recursion, and with only modest runtime overhead (potentially well below a factor of two). We discuss benefits of this approach compared to prevailing recursive techniques.
Expand
John M. Schanck
ePrint Report ePrint Report
CRLite is a low-bandwidth, low-latency, privacy-preserving mechanism for distributing certificate revocation data. A CRLite aggregator periodically encodes revocation data into a compact static hash set, or membership test, which can can be downloaded by clients and queried privately. We present a novel data-structure for membership tests, which we call a clubcard, and we evaluate the encoding efficiency of clubcards using data from Mozilla's CRLite infrastructure.

As of November 2024, the WebPKI contains over 900 million valid certificates and over 8 million revoked certificates. We describe an instantiation of CRLite that encodes the revocation status of these certificates in a 6.7 MB package. This is $54\%$ smaller than the original instantiation of CRLite presented at the 2017 IEEE Symposium on Security and Privacy, and it is $21\%$ smaller than the lower bound claimed in that work.

A sequence of clubcards can encode a dynamic dataset like the WebPKI revocation set. Using data from late 2024 again, we find that clubcards encoding 6 hour delta updates to the WebPKI can be compressed to 26.8 kB on average---a size that makes CRLite truly practical.

We have extended Mozilla's CRLite infrastructure so that it can generate clubcards, and we have added client-side support for this system to Firefox. We report on some performance aspects of our implementation, which is currently the default revocation checking mechanism in Firefox Nightly, and we propose strategies for further reducing the bandwidth requirements of CRLite.
Expand
Yevgeniy Dodis, Eli Goldin, Peter Hall
ePrint Report ePrint Report
A Random Oracle Combiner (ROC), introduced by Dodis et al. (CRYPTO ’22), takes two hash functions $h_1, h_2$ from m bits to n bits and outputs a new hash function $C$ from $m$' to $n$' bits. This function C is guaranteed to be indifferentiable from a fresh random oracle as long as one of $h_1$ and $h_2$ (say, $h_1$) is a random oracle, while the other h2 can “arbitrarily depend” on $h_1$.

The work of Dodis et al. also built the first length-preserving ROC, where $n$′ = $n$. Unfortunately, despite this feasibility result, this construction has several deficiencies. From the practical perspective, it could not be directly applied to existing Merkle-Damgård-based hash functions, such as SHA2 or SHA3. From the theoretical perspective, it required $h_1$ and $h_2$ to have input length $m$ > 3λ, where λ is the security parameter.

To overcome these limitations, Dodis et al. conjectured — and left as the main open question — that the following (salted) construction is a length-preserving ROC:

$C^{h1,h2}_{\mathcal{Z}_1,\mathcal{Z}_2} (M ) = h_1^*(M, \mathcal{Z}_1) \oplus h^*_2(M,\mathcal{Z}_2),$

where $\mathcal{Z}_1, \mathcal{Z}_2$ are random salts of appropriate length, and $f^*$ denotes the Merkle-Damgård-extension of a given compression function $f$. As our main result, we resolve this conjecture in the affirmative. For practical use, this makes the resulting combiner applicable to existing, Merkle-Damgård-based hash functions. On the theory side, it shows the existence of ROCs only requiring optimal input length $m$ = λ+O(1).
Expand
Juan Jesús León, Vicente Muñoz
ePrint Report ePrint Report
This paper presents new results that establish connections between isogeny graphs and nonlinear recurrences over finite fields. Specifically, we prove several theorems that link these two areas, offering deeper insights into the structure of isogeny graphs and their relationship with nonlinear recurrence sequences. We further provide two related conjectures which may be worth of further research. These findings contribute to a better understanding of the endomorphism ring of a curve, advancing progress toward the resolution of the Endomorphism Ring Problem, which aims to provide a computational characterization of the endomorphism ring of a supersingular elliptic curve.
Expand
Riccardo Bernardini
ePrint Report ePrint Report
Physically Unclonable Constants (PUCs) are a special type of Physically Unclonable Constants and they can be used to embed secret bit-strings in chips. Most PUCs are an array of cells where each cell is a digital circuit that evolve spontaneously toward one of two states, the chosen state being function of random manufacturing process variations. In this paper we propose an Analog Physically Unclonable Constant (APUC) whose output is an analog value to be transformed in digital by a digitizer circuit. The ratio behind this proposal is that an APUC cell has the potential of providing more than one bit, reducing the required footprint. Preliminary theoretical analysis and simulation results are presented. The proposed APUC has interesting performances (e.g., it can provide up to 5 bits per cell) that grant for further investigation.
Expand
Paco Azevedo-Oliveira, Jordan Beraud, Louis Goubin
ePrint Report ePrint Report
The security of ML-DSA, like most signature schemes, is partially based on the fact that the nonce used to generate the signature is unknown to any attacker. In this work, we exhibit a lattice-based attack that is possible if the nonces share implicit or explicit information. From a collection of signatures whose nonces share certain coefficients, it is indeed possible to build a collection of non full-rank lattices. Intersecting them, we show how to create a low-rank lattice that contains one of the polynomials of the secret key, which in turn can be recovered using lattice reduction techniques.

There are several interpretations of this result: firstly, it can be seen as a generalization of a fault-based attack on BLISS presented at SAC'16 by Thomas Espitau et al. Alternatively, it can be understood as a side-channel attack on ML-DSA, in the case where an attacker is able to recover only one of the coefficients of the nonce used during the generation of the signature. For ML-DSA-II, we show that $4 \times 160$ signatures and few hours of computation are sufficient to recover the secret key on a desktop computer. Lastly, our result shows that simple countermeasures, such as permuting the generation of the nonce coefficients, are not sufficient.
Expand
Rishabh Bhadauria, Nico Döttling, Carmit Hazay, Chuanwei Lin
ePrint Report ePrint Report
Laconic cryptography focuses on designing two-message protocols that allow secure computation on large datasets while minimizing communication costs. While laconic cryptography protocols achieve asymptotically optimal communication complexity for many tasks, their concrete efficiency is prohibitively expensive due to the heavy use of public-key techniques or the non-black-box of cryptographic primitives.

In this work, we initiate the study of "laconic cryptography with preprocessing", introducing a model that includes an offline phase to generate database-dependent correlations, which are then used in a lightweight online phase. These correlations are conceptually simple, relying on linear-algebraic techniques. This enables us to develop a protocol for private laconic vector oblivious linear evaluation (plvOLE). In such a protocol, the receiver holds a large database $\mathsf{DB}$, and the sender has two messages $v$ and $w$, along with an index $i$. The receiver learns the value $v \cdot \mathsf{DB}_i + w$ without revealing other information.

Our protocol, which draws from ideas developed in the context of private information retrieval with preprocessing, serves as the backbone for two applications of interest: laconic private set intersection (lPSI) for large universes and laconic function evaluation for RAM-programs (RAM-LFE). Based our plvOLE protocol, we provide efficient instantiations of these two primitives in the preprocessing model.
Expand
◄ Previous Next ►