e:
$$G \times G \longrightarrow G_2$$

Pairings and Beyond

Dan Boneh
Stanford University

But first:

Rubber hose resistant cryptography

Source: XKCD

Psychology Northwestern

Hristo Bojinov, Daniel Sanchez,

Paul Reber, Dan Boneh, Pat Lincoln

Rubber hose attacks

Problem:

authenticating users at the entrance to a secure facility

Current solutions:

Smartcards: can be stolen

• Biometrics: can be copied or spoofed

Passwords: can be extracted with a rubber hoze

Is there a non-extractable credential?

The human memory system

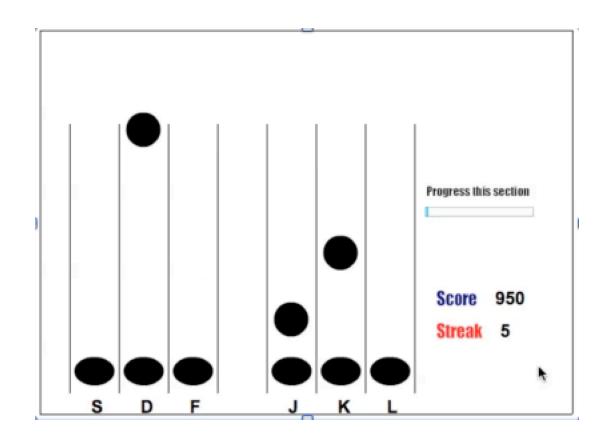
- **Hippocampus**: conscious learning
 - Learns from single examples
- Basal ganglia: "implicit learning"
 - Learns from many repeated samples

Our work: use implicit learning to teach a credential

- Credential can be tested at authentication time

... but credential is not consciously accessible!!

Implicitly learning a credential



Participants exhibit essentially no recognition after training

Challenge-Response

Challenge-response authentication?

- Credential is an algorithm
- Given challenge, user computes response

What algorithms can we teach the Basal Ganglia?

- How does it represent knowledge?
- Is it complex enough for one-way functions?

... now back to bilinear maps

G, G₂: finite cyclic groups of prime order q

An admissible bilinear map $e: G \times G \rightarrow G_2$ is:

- Bilinear: $e(g^a, g^b) = e(g,g)^{ab}$ $\forall a,b \in \mathbb{Z}$, $g \in \mathbb{G}$
- Non-degenerate: g generates $G_1 \Rightarrow e(g,g)$ generates G_2
- Efficiently computable

Several examples where Dlog in G believed to be hard

Many Applications: enc., sigs., NIZK, ...

Simplest example: BLS signatures [B-Lynn-Shacham'01]

```
KeyGen: sk = rand. x \text{ in } Z_q, pk = g^x \in G

Sign(sk, m) \rightarrow H(m)^x \in G e(g, H(m)^x) = e(g^x, H(m))

verify(pk, m, sig) \rightarrow accept iff e(g, sig) \stackrel{?}{=} e(pk, H(m))
```

Thm: Existentially unforgeable under CDH in the RO model

Beyond bilinear maps: k-linear maps [BS'03]

k-linear map
$$e: G \times G \times \cdots \times G \longrightarrow G_k$$
 non-degen. & efficient hard Dlog in G

Even more applications.

Can they be constructed?

k-linear maps: a recent breakthrough S. Garg, C. Gentry, S. Halevi

Properties: (informal)

• The map $x \longrightarrow g^x$ is randomized

- Representation of $g \in G$ is O(k) bits
- Better than k-linear map: gradation

$$e_1: G \times G \longrightarrow G_2$$
 $e_2: G \times G_2 \longrightarrow G_3$
 \vdots
 $e_k: G \times G_k \longrightarrow G_{k+1}$

For our purposes:

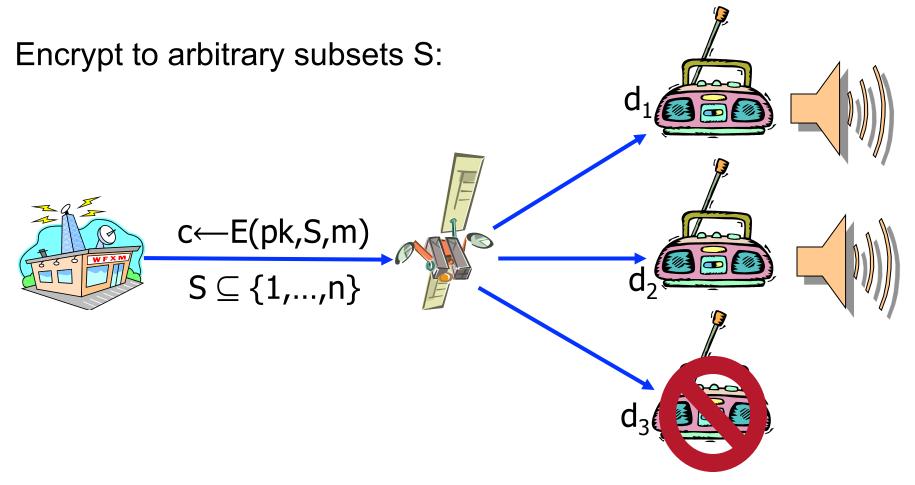
$$e_k: G \times \cdots \times G \longrightarrow G_k$$

e:
$$G_k \times G_k \longrightarrow G_{2k}$$

Open Problems in Broadcast Encryption

(Public-key + Stateless receivers)

Broadcast Encryption [Fiat-Naor 1993]



Security goal (informal):

Full collusion resistance: secure even if all users in Sc collude

Broadcast Encryption

Public-key BE system:

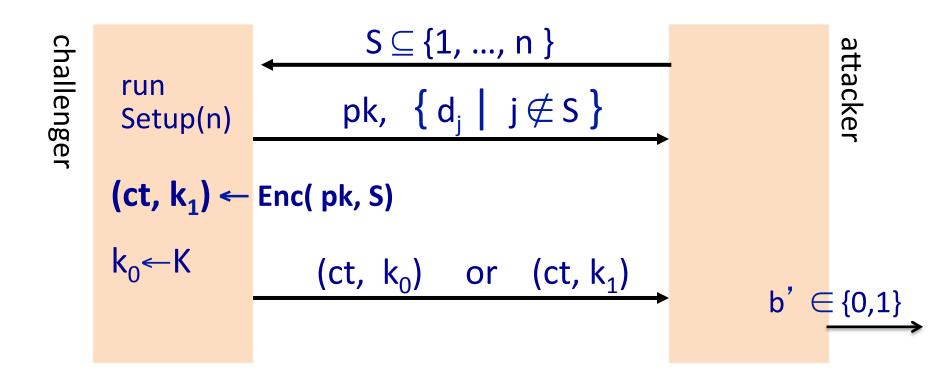
```
    Setup(n) → pub. key pk, master sec. key msk
```

- <u>KeyGen</u>(msk, j) \rightarrow d_i (private key for user j)
- $\underline{Enc}(\ pk, \ S\) \longrightarrow \ ct \ , \ k$ $k \ used \ to \ encrypt \ msg \ for \ users \ S \subseteq \{1, ..., n\}$
- $-\underline{\text{Dec}}(pk, d_i, S, ct)$: If $j \in S$, output k

Broadcast contains ([S],
$$ct$$
, $E_{SYM}(k, msg)$)

Broadcast Encryption: Static Security

Semantic security when <u>users collude</u> (static adversary)

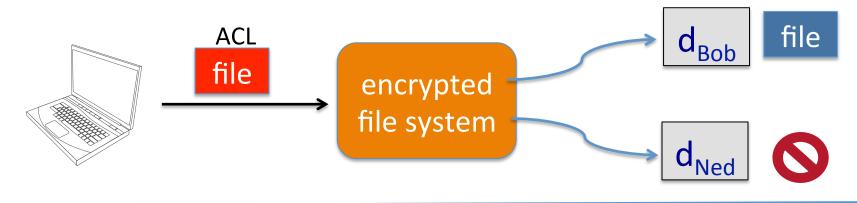


<u>Def</u>: Adv[A] = $|Pr[b' \text{ is correct }] - \frac{1}{2}$

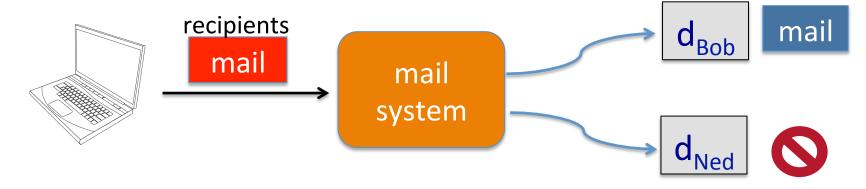
Security: \forall poly-time A: Adv[A] is negligible

Broadcast systems are everywhere

File sharing in **encrypted file systems** (e.g. EFS):



Encrypted mail system:



Social networks: privately send message to a group

Constructions

|ct| |sk| |pk|

The trivial system: O(|S|) O(1) O(n)

Revocation schemes: O(n-|S|) O(log n) O(1) [NNL,HS,GST, LSW,DPP,...]

Can we have O(1) size ciphertext for all sets S??

The BGW system: O(1) O(1) O(n)

[B-Gentry-Waters'05]

The BGW system

Setup(n):
$$g \leftarrow G$$
, α , $msk \leftarrow Z_q$, $def: g_k = g^{(\alpha^k)}$

$$pk = (g, g_1, g_2, ..., g_n, g_{n+2}, ..., g_{2n}, v = g^{msk}) \in G^{2n+1}$$

$$hole$$

KeyGen(msk, j)
$$\longrightarrow$$
 $d_j = (g_j)^{msk} \in G$

$$\underline{\operatorname{Enc}}(\operatorname{pk}, \operatorname{S}): \quad \mathsf{t} \leftarrow Z_{\mathsf{q}}$$

ct =
$$(g^t, (v \cdot \prod_{i \in S} g_{n+1-i})^t)$$
, key = $e(g_n, g_1)^t$

Security

Thm: BGW is statically secure for n users in a

bilinear group where n-DDHE assumption holds

```
n-DDHE: for rand. g,h \leftarrow G, \alpha \leftarrow Z_q, R \leftarrow G_2:
```

[h, g,
$$g^{\alpha}, g^{(\alpha^{2})},...,g^{(\alpha^{n})}, g^{(\alpha^{n+2})},...,g^{(\alpha^{2n})}, e(g,h)^{(\alpha^{n+1})}$$
]

 \approx_{p}
[h, g, $g^{\alpha}, g^{(\alpha^{2})},...,g^{(\alpha^{n})}, g^{(\alpha^{n+2})},...,g^{(\alpha^{2n})}, R$]

Extensions, Variations, Improvements

Adaptive security: [GW'10, PPSS'12, ...]

Adversary can adaptively select what keys to request

```
Identity-based: [SF'07, D'07, GW'10, ... ]
```

- Smaller pubic key size: |pk| = O(maximal |S|)
 - \Rightarrow Set of all users can be {0, 1, 2, 3, ..., 2^{256} }

Chosen ciphertext secure: [BGW'05, PPSS'12, ...]

Trace & revoke: [BW'06]

BGW using (log n)-linear map

Recall: BGW Setup(n):
$$g \leftarrow G$$
, α , $msk \leftarrow Z_q$. pk: g^{α} , $g^{(\alpha^2)}$,..., $g^{(\alpha^n)}$, $g^{(\alpha^{n+2})}$,..., $g^{(\alpha^{2n})}$, $v=g^{msk}$

Suppose:
$$e_k: G \times \cdots \times G \longrightarrow G_k$$
; $e: G_k \times G_k \longrightarrow G_{2k}$

Set pk as:
$$(\#users \approx 2^{k-1})$$

g,
$$g^{\alpha}$$
, $g^{(\alpha^2)}$, $g^{(\alpha^4)}$..., $g^{(\alpha^{(2^{2k})})}$, $g^{(\alpha^{(2^{2k+1})})}$, $v=g_k^{msk}$

Using 2k-linear map: can build all needed elements in pk

but for rand.
$$h \in G$$
 cannot build $e(g,...,g,h)^{(\alpha^{(2^{2k}-1)})} \in G_{2k}$

BGW using (log n)-linear map

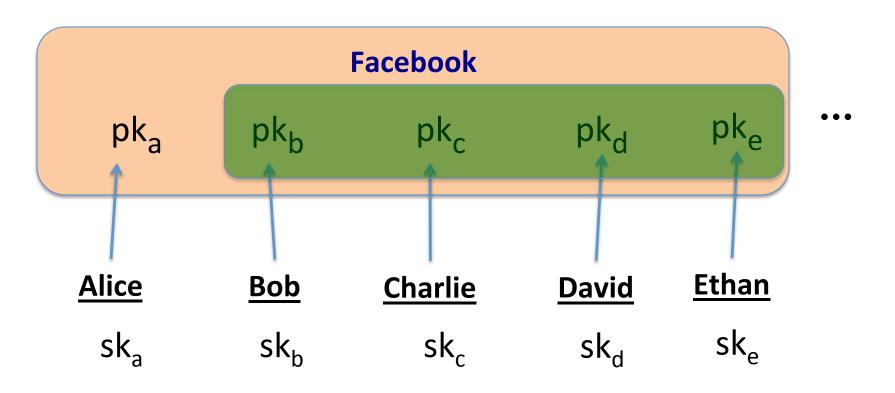
	ct	sk	pk
Bilinear BGW: [B-Gentry-Waters'05]	O(1)	O(1)	O(n)
(log n)-linear BGW:	O(log n)	O(log n)	O(log ² n)

Open questions:

- Same parameters without k-linear maps ??
- O(1) size ct from standard lattice assumptions (LWE) ??

Distributed Broadcast Encryption?

(users generate keys for themselves)



 $\frac{\text{post}}{\text{Sender}} \longrightarrow [[S], \text{ ct, AES(k,msg)}]$

Distributed Broadcast Encryption?

The trivial system is distributed, but |ct| = O(|S|)

Goal: |ct| = sub-linear(|S|)

```
pk_b 	 pk_c 	 pk_d 	 pk_e

Sender

Sender

Sender

Sender

Sender
```

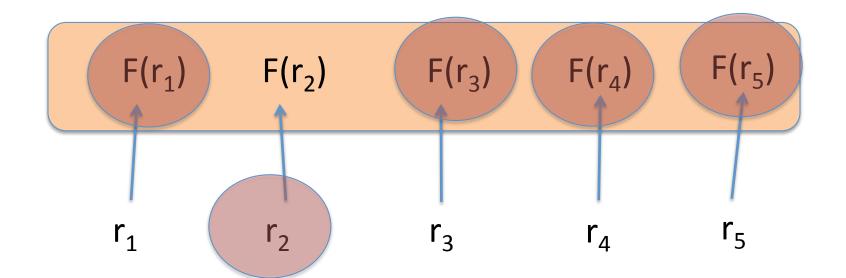
An approach: n-way DH [J'00, BS'03, GGH'12]

an **n-way DH scheme** is a pair of det. algorithms (F, G)

$$F: R \longrightarrow Y$$
 , $G: R \times Y^{n-1} \longrightarrow K$

Correctness:
$$\forall r_1,...,r_n$$
: $G(r_i, F(r_1), ..., F(r_i), ..., F(r_n)) = K(r_1, ..., r_n)$

Security: given $F(r_1), ..., F(r_n)$: $K(r_1, ..., r_n) \approx_p \text{ uniform}(K)$

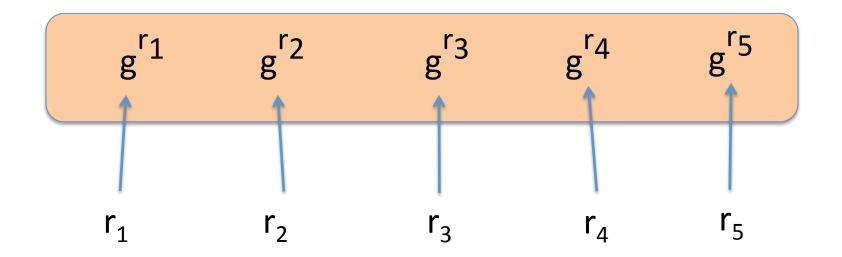


n-way DH: example [J'00, BS'03, GGH'12]

Example (Joux'00): $e_{n-1}: G \times \cdots \times G \longrightarrow G_{n-1}$

$$F(r) := g^r$$
; shared key = $e_{n-1}(g, ..., g)^{r_1 r_2 ... r_n}$

$$G(r_1, g^{r_2}, ..., g^{r_n}) := e(g^{r_2}, ..., g^{r_n})^{r_1}$$

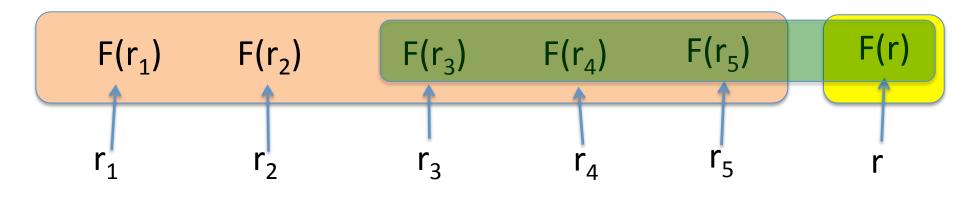


n-way DH ⇒ distrib. BE

KeyGen(i):
$$sk_i \leftarrow R$$
, $pk_i = F(sk_i) = g^{sk_i}$

Enc(S,
$$\{pk_i\}_{i \in S}$$
): choose $r \leftarrow R$

output
$$ct = F(r) = g^r$$
, $key = G_{|S|+1}(r, {pk_i}_{i \in S})$



Problem: bit-size of g^r is O(n)

Is there a distributed BE where |ct| is sub-linear(|S|) ??

Private Broadcast Encryption [BBW'04, LPQ'12]

So far: broadcast ciphertext reveals recipient set S

Problem: encrypted mail systems

⇒ BCC recipients should not be revealed

Is there a BE system that hides the recipient set? (but not its size)

Example: the trivial system (with anon. pub-key enc.)

Best known constructions: ciphertext size $|S| \times (sec. param.)$ (and sub-linear decryption time)

Open: private BE of ct. size sub-linear(|S|) × (sec. param.) + |S|

Fazio-Perera'12: NNL-like system, but only outsider privacy

Summary

Many open problems in broadcast encryption:

- O(log n) size ciphertext & secret keys from LWE?
- O(log n) size ct, sk, and pub-key w/o k-linear maps?
- Sub-linear (fully) private broadcast encryption?
 note: (linear) private BE ⇒ traitor tracing [BSW'05]
- Distributed BE with sub-linear ciphertext?