Solving low degree polynomials Asiacrypt 2003, Taipei, December 1, 2003

Don Coppersmith IBM T.J. Watson Research Center Yorktown Heights, New York, USA www.research.ibm.com/people/c/copper

Outline

- History
- Motivation
- Results
- Potential improvements
- Applications

Results (preview)

Given an integer N, and a polynomial p(x) in one variable, defined $\mod N$, of degree d, and the bound $B = N^{1/d}$, we can efficiently find all solutions x_0 satisfying

$$|x_0| < B$$
$$p(x_0) = 0 \mod N$$

References

• Eurocrypt 1996 (LNCS 1070)

- DC, Matthew Franklin, Jacques Patarin, Michael Reiter, "Lowexponent RSA with related messages"
- DC, "Finding a small root of a univariate modular equation"
- DC, "Finding a small root of a bivariate integer equation; factoring with high bits known,"
- J. Cryptology Vol 10, No. 4, Autumn 1997
 - DC, "Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities"

- CaLC 2001 (Cryptography and Lattices Conference, LNCS 2146)
 - DC, "Finding Small Solutions to Small Degree Polynomials"

Two related messages (Matt Franklin, Michael Reiter)

RSA encryption: e = 3

$$N = pq$$

$$c = m^3 \pmod{N}$$

$$b = (m+1)^3 \pmod{N}$$

 $(b+2c-1)/(b-c+2) = [(m^3+3m^2+3m+1)+2m^3-1]/[(m^3+3m^2+3m+1)-m^3+2]$

$$= [3m^3 + 3m^2 + 3m] / [3m^2 + 3m + 3]$$

= *m* (mod *N*)

Generalize?

$$e = 5$$

$$c = m^5 \pmod{N}$$

$$b = (m+1)^5 \pmod{N}$$

$$m = \frac{2b^3 - b^2c - 4bc^2 + 3c^3 + 14b^2 - 88bc - 51c^2 - 9b + 64c - 7}{b^3 - 3b^2c + 3bc^2 - c^3 + 37b^2 + 176bc + 37c^2 + 73b - 73c + 14}$$

- You can continue for other values of e.
- It gets harder.

Polynomials in m, treating b, c as given constants, evaluating to $0 \pmod{N}$ at m_0 :

$$\begin{array}{rcl} m^5 - c &=& 0 \bmod N \\ (m+1)^5 - c &=& 0 \bmod N \\ \gcd(m^5 - c, (m+1)^5 - b) &=& m - m_0 \in \mathbb{Z}/N[m] \text{ usually} \end{array}$$

E.g.
$$gcd(m^5 - 43, (m + 1)^5 - 4) = m - 5 \in \mathbb{Z}/67[m]$$

But not always:

$$gcd(m^{31} - 29, (m + 1)^{31} - 30) = m^4 + 36m^3 + 53m^2 + 10m + 29$$

= $(m - 29)(m^3 - 2m^2 - 5m - 1)$
 $\in \mathbb{Z}/67[m]$

Known difference

Just as easy if known difference between messages:

$$c = m^3 \mod N$$

 $b = (m+y)^3 \mod N$
Known: c, b, y, N
Unknown: m

$$gcd(m^3 - c, (m + y)^3 - b) = m - m_0 \in \mathbb{Z}/N[m]$$

Small unknown difference

What if the difference is small but unknown?

$$c = m^3 \mod N$$

 $b = (m+y)^3 \mod N$
Known: c, b, N
Unknown: m, y , with y small

Example:

- m = "0.14 micron technology to be announced 2 December 2003. \$4.85 IBM stock jump anticipated. gr3172680994"
- m + y = "0.14 micron technology to be announced 2 December 2003. \$4.85 IBM stock jump anticipated. jb5637124412"

"gr3172680994", "jb5637124412" random padding for security. y="jb5637124412"-"gr3172680994" is small.

Resultant:

 $Res_{\mathbf{m}}(\mathbf{m}^3 - c, (\mathbf{m} + y)^3 - b) \in \mathbb{Z}/N[y]$

The resultant is a polynomial in y which results from eliminating m from the first two equations; if (m, y) simultaneously satisfies the first two equations, then y satisfies the resultant.

Resultant example

$$N = 67$$

 $e = 2$
 $c = m^2 = 39 \mod N$
 $b = (m + y)^2 = -7 \mod N$

$$R(y) = Res_m(m^2 - 39, (m + y)^2 + 7) \in \mathbb{Z}/67[y]$$

$$P(m, y) \times (m^2 - 39) + Q(m, y) \times ((m + y)^2 + 7) = R(y)$$

 $(2my+3y^2+21) \times (m^2-39) + (-2my+y^2-21)((m+y)^2+7) = y^4+3y^2-28$

$$Res_m(m^2 - 39, (m+y)^2 + 7) = \det \begin{bmatrix} 1 & 0 & -39 & 0\\ 0 & 1 & 0 & -39\\ 1 & 2y & y^2 + 7 & 0\\ 0 & 1 & 2y & y^2 + 7 \end{bmatrix}$$

Two $(=deg((m + y)^2 + 7))$ rows of coefficients of $m^2 - 39$ (as polynomial in m), staggered:

 $[1, 0, -39] \Leftrightarrow 1m^2 + 0m^1 + (-39)m^0;$ then two rows of coefficients of $(m + y)^2 + 7$, staggered:

 $[1, 2y, y^2 + 7] \Leftrightarrow 1m^2 + (2y)m^1 + (y^2 + 7)m^0.$

 $Res_m(m^2 - 39, (m + y)^2 + 7) = y^4 + 3y^2 - 28$ (over $\mathbb{Z}/67$) is a polynomial of degree 4 in y (4 = 2 × 2).

 $Res_m(m^3 - 16, (m + y)^3 - 43)$ (over $\mathbb{Z}/67$) is a polynomial of degree 9 in y (9 = 3 × 3):

$$Res_m(m^3 - 16, (m+y)^3 - 43) = y^9 + 50y^6 + 2y^3 + 24 \in \mathbb{Z}/67[y]$$

with some small solution y.

Could we solve such an equation?

Second example (more natural)

Message = "The password for today is Sashimi"

 m_0 ="The password for today is — —" (known) y="Sashimi" (unknown) $c = (m_0 + y)^3 \mod N$ Known: c, m_0, N . Unknown but small: y.

$$p(y) = (m_0 + y)^3 - c = 0 \mod N$$

"Small" unknown y; polynomial P has "low" degree 3.

Unifying theme

- Polynomial $p(x) = x^d + p_{d-1}x^{d-1} + \dots + p_1x + p_0$
- Modulus N (large integer, unknown factorization)
- "Low" degree d
- "Small" solution x_0 :
- Bound B, existence of $x_0 \in \mathbb{Z}$ with $|x_0| < B$ and $p(x_0) = 0 \mod N$.

Goal:

- Tolerate B as large as possible, as a function of N and d.
- Find all x_0 satisfying bound and polynomial.

First try — Johan Håstad

Collection C_1 of d+1 polynomials:

$$C_1 = \{x^i, 0 \le i < d\} \cup \{p(x)/N\}$$

For each polynomial $q \in C_1$, each small root x_0 : $q(x_0)$ is an integer. Same is true of any integer combination of polynomials in C_1 . Lattice generated by d + 1 columns of real matrix:

$$L_{1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & p_{0}/N \\ 0 & B & 0 & \cdots & 0 & 0 & p_{1}B/N \\ 0 & 0 & B^{2} & \cdots & 0 & 0 & p_{2}B^{2}/N \\ & & \vdots & & \\ 0 & 0 & 0 & \cdots & B^{d-2} & 0 & p_{d-2}B^{d-2}/N \\ 0 & 0 & 0 & \cdots & 0 & B^{d-1} & p_{d-1}B^{d-1}/N \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1B^{d}/N \end{bmatrix}$$

$$\begin{bmatrix} 1, \frac{x}{B}, \frac{x^2}{B^2}, \dots, \frac{x^d}{B^d} \end{bmatrix} \times \begin{bmatrix} 0 & p_0/N \\ 0 & p_1B/N \\ B^2 & p_2B^2/N \\ 0 & p_3B^3/N \\ \vdots & \vdots \\ 0 & p_{d-1}B^{d-1}/N \\ 0 & p_dB^d/N \end{bmatrix} = \begin{bmatrix} x^2, p(x)/N \end{bmatrix}$$

Each column v is a polynomial $q(x) \in C_1$, expressed in basis x^i/B^i . The *i*th element is coefficient of x^i in q(x), times scaling factor B^i .

Lattice basis reduction (LLL).

$$det(L_1) = 1 \times B \times B^2 \times \dots \times B^{d-1} \times (B^d/N)$$

= $B^{d(d+1)/2}/N \approx 1$

(up to a constant depending on dimension d but not on N, B). Lattice basis reduction gives a column v with bounded norm:

$$\sqrt{\sum v_i^2} \leqslant \gamma_d \times (\det(L_1))^{1/(d+1)} \approx 1$$

(Again γ_d depends only on d, not N or B). $q(x_0)$ is an integer, but

$$\begin{aligned} |q(x_0)| &\leq \sum_{i=1}^{n} |q_i x_0^i| \\ &= \sum_{i=1}^{n} |v_i (x_0/B)^i| \\ &\leq \sum_{i=1}^{n} |v_i 1^i| \\ &\leq (\sqrt{d+1} \times \gamma_d) B^{d/2} / N^{1/(d+1)} \\ &< 1 \end{aligned}$$

We arrange that

٠

$$det(L_1) \approx 1$$
$$B \approx N^{2/(d^2+d)}$$

Then $q(x_0) \in \mathbb{Z}$ and $|q(x_0)| < 1$ implies $q(x_0) = 0 \in \mathbb{R}$. (Not just \mathbb{Z}/N .)

Can solve $q(x_0) = 0 \in \mathbb{R}$ by ordinary methods.

Note: this gives all small solutions x_0 .

Problem: $B = \gamma' N^{2/(d^2+d)}$ is small. Let's try to increase it.

Second try, improved B

Larger collection of 2d polynomials:

$$C_{2} = \{x^{i}, 0 \leq i < d\} \cup \{(p(x)/N)x^{i}, 0 \leq i < d\}$$

$$L_{2} = \begin{bmatrix} 1 & 0 & \cdots & 0 & p_{0}/N & 0 & \cdots & 0 \\ 0 & B & \cdots & 0 & p_{1}B/N & p_{0}B/N & \cdots & 0 \\ 0 & 0 & \cdots & 0 & p_{2}B^{2}/N & p_{1}B^{2}/N & \cdots & 0 \\ \vdots & & & \vdots & & \\ 0 & 0 & \cdots & 0 & p_{d-2}B^{d-2}/N & p_{d-3}B^{d-2}/N & \cdots & 0 \\ 0 & 0 & \cdots & B^{d-1} & p_{d-1}B^{d-1}/N & p_{d-2}B^{d-1}/N & \cdots & p_{0}B^{d-1}/N \\ 0 & 0 & \cdots & 0 & 1B^{d}/N & p_{d-1}B^{d}/N & \cdots & p_{1}B^{d}/N \\ 0 & 0 & \cdots & 0 & 0 & 1B^{d+1}/N & \cdots & p_{2}B^{d+1}/N \\ \vdots & & & \vdots & & & \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1B^{2d-1}/N \end{bmatrix}$$

Dimension=2d. Determinant= $B^{0+1+\dots+(2d-1)}/N^d=B^{d(2d-1)}/N^d$ As before, if we set $\det\approx 1$

$$(B \approx N^{1/(2d-1)})$$

then we get column vector norm < 1. Improved bound from $B \approx N^{2/(d^2+d)}$ to $B \approx N^{1/(2d-1)}$.

Calculating the bounds

Need det $L \approx 1$. L is a triangular matrix; determinant is product of diagonal entries.

Calculating the bounds ...

First case, diagonal is

$$1, B, B^2, \dots, B^{d-1}, B^d/N$$
$$\det L_1 = B^{0+1+2+\dots+(d-1)+d}/N = B^{(d^2+d)/2}/N \approx 1$$
$$B \approx N^{2/(d^2+d)}$$

Second case, diagonal is

$$1, B, B^{2}, \dots, B^{d-1}, B^{d}/N, B^{d+1}/N, \dots, B^{2d-1}/N$$
$$\det L_{2} = B^{0+1+2+\dots+(2d-1)}/N^{d} = B^{2d^{2}-d}/N^{d} \approx 1$$
$$B \approx N^{1/(2d-1)}$$

Tightening the bounds

If $N|p(x_0)$, then $N^k|p(x_0)^k$. Pick a parameter h: larger h gives larger matrix, more work, and better bounds B.

Larger collection of $d \times h$ polynomials:

$$C_3 = \{ (p(x)/N)^k x^i, 0 \le i < d, 0 \le k < h \}$$

$$\dim(L_3) = dh$$

Diagonal entries of L_3 are

$$\{B^{i+dk}/N^k | 0 \leqslant i < d, 0 \leqslant k < h\}$$

$$\det(L_3) = \prod_{i,k} (B^{i+dk}/N^k) = B^{dh(dh-1)/2} N^{-dh(h-1)/2}$$
 For $\det(L_3) \approx 1$ we need

$$B \approx N^{(h-1)/(dh-1)}$$

Fixing ϵ and picking h large ($h \approx 1/(d\epsilon)$), this becomes

 $B < O_{d,\epsilon}(N^{1/d-\epsilon})$

So the natural bound appears to be

 $B \approx N^{1/d}$

Results

Given an integer N, and a polynomial p(x) in one variable, defined $\mod N$, of degree d, and the bound $B = N^{1/d}$, we can efficiently find all solutions x_0 satisfying

$$|x_0| < B$$
$$p(x_0) = 0 \mod N$$

"Efficient": time polynomial in $(d, \log N)$.

Summary of technique (one variable mod N)

Given p(x) (degree d), N, $B \approx N^{1/d}$,

To find: x_0 such that $p(x_0) = 0 \mod N$ and $|x_0| < B$

- Find real polynomials $q_i(x)$ with $q_i(x_0) \in \mathbb{Z}$ (at any root x_0)
- Lattice basis reduction: find q(x), an integer combination of $q_i(x)$ with small coefficients
- $q(x_0) \in \mathbb{Z}$
- $|q(x_0)| < 1$ (when $|x_0| < B$)

- Therefore $q(x_0) = 0 \in \mathbb{R}$ (for all small roots)
- Solve $q(x_0) = 0 \in \mathbb{R}$ easy
- This gives all valid x_0

Related — two variables

Given a polynomial p(x) in two variables, defined over \mathbb{Z} (not mod N any more), we can define bound B_x, B_y in terms of the degree and coefficients of p. We can efficiently find all integer solutions (x_0, y_0) satisfying

$$\begin{aligned} |x_0| &< B_x \\ |y_0| &< B_y \\ p(x_0, y_0) &= 0 (\text{ in } \mathbb{Z}) \end{aligned}$$

Example:

$$p(x, y) = (P_0 + x) * (Q_0 + y) - N$$

where $P, Q \approx \sqrt{N}$. Then $B_x = B_y = N^{1/4}$. Factor N if we know half the bits of $P = P_0 + x$.

Two variables in \mathbb{Z}

$$p(x,y) = 1xy + Ax + By + C$$

$$\begin{bmatrix} C & . & . & . & 1 & * & * & * & * \\ A & C & . & . & x & * & * & * & * \\ . & A & . & . & x^2 & * & * & * & * \\ B & . & C & . & y & * & * & * & * \\ 1 & B & A & C & y & * & * & * & * \\ . & 1 & . & A & x^2y & * & * & * & * \\ . & . & B & . & y^2 & * & * & * & * \\ . & . & 1 & B & xy^2 & * & * & * & * \\ . & . & 1 & B & xy^2 & * & * & * & * \\ . & . & . & 1 & x^2y^2 & * & * & * & * \end{bmatrix}$$

- Solution $(x, y) \rightarrow \text{vector } [1, x, x^2, y, xy, x^2y, y^2, xy^2, x^2y^2]^T$
- Orthogonal to vectors $[C, A, .., B, 1, .., .., .]^T \approx p(x, y)$
- L =lattice of vectors $\approx x^i y^j p(x, y)$
- Build lattice M orthogonal to L
- Typical element $[m_*, m_x, m_{x^2}, m_y, mxy, m_{x^2y}, m_{y^2}, m_{xy^2}, m_{x^2y^2}]^T$ not necessarily = $[1, x, x^2, y, xy, x^2y, y^2, xy^2, x^2y^2]$ for some (x, y)
- Lattice basis reduction on M, find $(\dim(M) 1)$ smallest basis elements

- Hyperplane equation defining the sublattice $M' \subset M$ spanned by them
- Small solution (x_0, y_0) (smaller than "determinant bound") will give an element of M' can't involve largest basis element
- Equation of M' translates to polynomial equation $q(x_0,y_0)=0 \mbox{ not a multiple of } p(x,y)$
- Simultaneously solve p(x,y) = q(x,y) = 0 in $\mathbb R$
- Finds all small solutions (x_0, y_0) .

Summary and extensions

Solve $p(x) = 0 \mod N$ (univariate modular)

Solve $p(x, y) = 0 \in \mathbb{Z}$ (bivariate in \mathbb{Z})

Can try same techniques for $p(x,y) = 0 \mod N$ (bivariate modular) or $p(x,y,z) = 0 \in \mathbb{Z}$ (trivariate in \mathbb{Z}); not guaranteed to work but can sometimes.

(Boneh has done some applications on these lines.)

Return to One Variable mod N

Side effect of lattice proof: upper bound on number of small roots. No more than dh roots x_0 with

$$|x_0| < B \approx N^{(h-1)/(dh-1)} \approx N^{(1/d) - (1/dh)}$$

Existential proof

An existential proof of this bound is due to Konyagin & Steger, "On polynomial congruences" (1994).

 $p(x) \mod N$ has hd small roots x_a with $|x_a| < B/2$

Vandermonde matrix $M_1 = [x_a^j], 0 \leq a, j < hd$

$$0 \neq |\det(M_1)| = \prod_{a < b} |x_a - x_b| < B^{(hd)(hd - 1)/2}$$

Row operations give matrix M_2 with entries $M_2 = [x_a^i p(x_a)^j], 0 \leq i < d, 0 \leq j < h$

Row of M_2 are divisible by N^j , so $det(M_2)$ is divisible by $N^{dh(h-1)/2}$

Determinants are equal, so $N^{dh(h-1)/2}\leqslant B^{(hd)(hd-1)/2}$ and $B\geqslant N^{(h-1)/(hd-1)}$

 M_2 closely related to our matrix.

M_1 and M_2

$$M_{1} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & x_{3} & x_{4} & \cdots & x_{hd} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} & \cdots & x_{hd}^{2} \\ x_{1}^{3} & x_{2}^{3} & x_{3}^{3} & x_{4}^{3} & \cdots & x_{hd}^{3} \\ \vdots & & \vdots & & \vdots \\ x_{1}^{j} & x_{2}^{j} & x_{3}^{j} & x_{4}^{j} & \cdots & x_{hd}^{j} \\ \vdots & & & \vdots & & \vdots \end{bmatrix}$$

$$M_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & x_{3} & x_{4} & \cdots & x_{hd} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} & \cdots & x_{hd}^{2} \\ p(x_{1}) & p(x_{2}) & p(x_{3}) & p(x_{4}) & \cdots & p(x_{hd}) \\ x_{1}p(x_{1}) & x_{2}p(x_{2}) & x_{3}p(x_{3}) & x_{4}p(x_{4}) & \cdots & x_{hd}p(x_{hd}) \\ \vdots & \vdots & \vdots & \vdots \\ x_{1}^{i}p(x_{1})^{j} & x_{2}^{i}p(x_{2})^{j} & x_{3}^{i}p(x_{3})^{j} & x_{4}^{i}p(x_{4})^{j} & \cdots & x_{hd}^{i}p(x_{hd})^{j} \\ \vdots & \vdots & \vdots & \vdots \\ \end{bmatrix}$$

Rows of M_2 are divisible by $(1, 1, 1, N, N, N, N^2, N^2, N^2, \dots, N^{h-1}, N^{h-1})$ Relation of existential and constructive proofs:

Up to scaling of rows, our matrix L_3 and Konyagin and Steger's matrices M_1 and M_2 are related by

$$L_3 \times M_1 = M_2.$$

A second existential proof

Following H.W. Lenstra, "Divisors in residue classes": N squarefree, $N = \prod q_i$ k small roots $p(x_i) = 0 \mod N$

$$-\frac{B}{2} < x_1 < x_2 < \cdots < x_k < +\frac{B}{2}$$
 Define $Y = \prod_{1 \leq i < j \leq k} (x_j - x_i)$

$$0 < Y \leqslant B^{k(k-1)/2}$$

For each q|N, p(x) has at most d different roots $\mod q$. Number of pairs $(i < j, x_i = x_j \mod q)$ is at least $d \times (\frac{k}{d})(\frac{k}{d} - 1)/2 = \frac{k(k-d)}{2d}$ (Worst case: k/d instances in each residue class):

$$q^{k(k-d)/2d}|Y$$

True for each q|N, and N is squarefree, so

 $N^{k(k-d)/2d}|Y$

$$N^{k(k-d)/2d} \leqslant Y \leqslant B^{k(k-1)/2}$$
$$B \geqslant N^{(k-d)/(kd-d)}$$

Or, if $B < N^{(k-d)/(kd-d)}$ then number of roots is less than k. Same bound as lattice construction.

Existential proof ...

Relaxing conditions:

"N squarefree": If $q^{\ell}|N, \ell > 1$, it suffices that p(x) has d distinct roots mod q. Hensel lifting gives $q|x_i - x_j \Rightarrow q^{\ell}|x_i - x_j$.

Example showing tightness

$$N = q^3$$

$$p(x) = x^3 + aqx^2 + bq^2x$$

Any x with q|x is a root: $p(x) = 0 \mod N$. If $B = N^{1/3+\epsilon}$ then there are N^{ϵ} roots with |x| < B — exponentially many.

We do not know of other examples giving exponentially many roots.

Conjecture: If there are exponentially many roots x_i of $p(x) = 0 \mod N$ with $|x_i| < B = N^{1/d+\epsilon}$, then N has a repeated prime factor $q^{\ell}|N$, and p(x) has a repeated root mod q.

If so, then the discriminant of p is divisible by q, and we have:

```
gcd\{N, Res_x[p(x), p'(x)]\} > 1
```

Also: If q|N, can't have more than $\deg(f)$ roots of $f(x) = 0 \mod N$ smaller than q, since f has at most that many roots $\mod q$.

In RSA case, the polynomial has only one root $\mod N$, because of unique decryption.

Break up the hard case $(B = N^{1/3+\epsilon})$ into two hard problems:

(1) Show that the only bad examples are of this form (so that $gcd\{N, Res_x[p(x), p'(x)]\} > 1$)

(2) If not this bad case, use that (gcd=1) in the lattice solution:

$$\exists q(x), r(x) \in \mathbb{Z}[x]; c \in \mathbb{Z}:$$
$$q(x)p(x) + r(x)p'(x) + cN = 1$$

And then what?

Applications

- RSA, e=3, two related messages, difference $N^{1/9}$
- RSA, e=3, partially known message, unknown $N^{1/3}$
- Factor integers with partial information: If N = pq, $p = N^{\alpha}$, know N and (approximately) α , with $p = p_0 + x$, known p_0 , unknown $x < N^{\alpha^2}$, then can compute x.
- [Boneh] RSA with small decryption exponent Known N=pq and e. Unknown $p,q,\phi(N)=(p-1)(q-1)=N-s,d$

$$de = 1 + z\phi(N)$$
$$-1 + z(N - s) = 0 \mod e$$

Unknown small z, s

• Divisors in residue classes (DC, Nick Howgrave-Graham): H W Lenstra: Given $r, s, N \in \mathbb{Z}$ with gcd(r, s) = 1 and $s > N^{\alpha}, \alpha > 1/4$,

$$#\{d|N, d = r \mod s\} < (\alpha - 1/4)^{-2}$$
 independent of N

He showed this existentially for $\alpha > 1/4$ and constructively for $\alpha > 1/3$. The present methods give constructively for $\alpha > 1/4$.

$$N - (xs + r)(ys + r') = 0, \quad x, y \text{ small}$$

- Primality testing: uses Lenstra's "divisors in residue classes" as subroutine
- Find worst cases for floating-point rounding of mathematical functions. (Zimmerman, Stehle, Lefevre, 2003)

• "Some RSA-based Encryption Schemes with Tight Security Reduction" (Kaoru Kurosawa and Tsuyoshi Takagi, IACR ePrint 2003-157) Secret: p, q; Public: n, α, e ; Secret nonce: r < n

Encryption: message $m < n \rightarrow \text{ciphertext } c = (r + \frac{\alpha}{r})^e + mn) \mod n^2$ Security reduction. Suppose we knew how to extract m from c.

- Choose random $\bar{r} < n$
- Compute $x = \bar{r} + \alpha/\bar{r} \mod n^2$
- From fake random plaintext \bar{m} , compute ciphertext $c = x^e + \bar{m}n \mod n^2$
- Obtain valid plaintext \boldsymbol{m} from oracle

- Compute
$$w = c - mn = (r + \alpha/r)^e \mod n^2$$

— Compute
$$u = (w - x^e)/n$$

— Compute
$$y = u/(ex^{e-1}) \mod n$$

— Compute
$$v = (\bar{r} + \alpha/\bar{r}) + ny \mod n^2$$

— Solve $r^2 - vr + \alpha = 0 \mod n^2$ using present work

NP-hard variants

(Manders and Adleman) Given $\alpha, \beta, \gamma \in \mathbb{Z}$, it is NP-hard to decide whether there exist positive integers \bar{x}, \bar{y} satisfying $\alpha \bar{x}^2 + \beta \bar{y} - \gamma = 0$. Remains NP-hard if factorization of β is known.

Easy to convert to NP-hard problem in our context:

Pick N sufficiently large, bounds $B_x = \sqrt{\gamma/\alpha}$ and $B_y = \gamma/2\beta$. Then it is NP-hard to decide whether there are solutions to

$$\alpha x^2 + \beta y - \tau = 0 \mod N$$
$$|x| < B_x, \quad |y| < B_y$$

Bounds B_x, B_y do not grow with N.

Note: this is two variables mod N; we solve in one variable mod N.

Similarly

$$\alpha x^2 + \beta y - \tau - zN = 0$$

|x| < B_x, |y| < B_y, |z| < B_z = 2

This is in three variables over \mathbb{Z} ; we solve in two variables over \mathbb{Z} .

Extensions

Divided difference for two different small roots

Univariate modular polynomial $p(x) = 0 \mod N$, $\deg(P) = d$.

Want two different small roots: $p(x) = p(y) = 0 \mod N$, gcd(x - y, N) = 1

Cast as bivariate problem:

$$p(x) = 0, \quad p(y) = 0, \quad q(x, y) \equiv \frac{p(x) - p(y)}{x - y} = 0 \mod N$$

The standard method can find x if $|x| < B_x = N^{1/d}$ or y if $|y| < B_y = N^{1/d}$. With the extra information (two different small roots), can find if

$$B_x^d B_y^{d-1} < N^2,$$

a slight improvement.

Conclusions

Find "small" solutions to "low" degree polynomials:

- In one variable mod N;
- In two variables over \mathbb{Z} .

Plenty of applications, mostly cryptographic.