
Solving low degree polynomials

Asiacrypt 2003, Taipei, December 1, 2003

Don Coppersmith

IBM T.J. Watson Research Center

Yorktown Heights, New York, USA
www.research.ibm.com/people/c/copper



Outline

• History

• Motivation

• Results

• Potential improvements

• Applications



Results (preview)

Given an integer N , and a polynomial p(x) in one variable, defined modN ,
of degree d, and the bound B = N 1/d, we can efficiently find all solutions
x0 satisfying

|x0| < B
p(x0) = 0 mod N



References

• Eurocrypt 1996 (LNCS 1070)

– DC, Matthew Franklin, Jacques Patarin, Michael Reiter, “Low-
exponent RSA with related messages”

– DC, “Finding a small root of a univariate modular equation”
– DC, “Finding a small root of a bivariate integer equation; factoring

with high bits known,”

• J. Cryptology Vol 10, No. 4, Autumn 1997

– DC, “Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities”



• CaLC 2001 (Cryptography and Lattices Conference, LNCS 2146)

– DC, “Finding Small Solutions to Small Degree Polynomials”



Two related messages (Matt Franklin, Michael Reiter)

RSA encryption: e = 3

N = pq
c = m3 (mod N)

b = (m + 1)3 (mod N)

(b+2c−1)/(b−c+2) = [(m3+3m2+3m+1)+2m3−1]/[(m3+3m2+3m+1)−m3+2]

= [3m3 + 3m2 + 3m]/[3m2 + 3m + 3]

= m (mod N)



Generalize?

e = 5
c = m5 (mod N)
b = (m + 1)5 (mod N)

m =
2b3 − b2c − 4bc2 + 3c3 + 14b2 − 88bc − 51c2 − 9b + 64c − 7

b3 − 3b2c + 3bc2 − c3 + 37b2 + 176bc + 37c2 + 73b − 73c + 14

• You can continue for other values of e.

• It gets harder.



Polynomials in m, treating b, c as given constants, evaluating to 0 (mod N)
at m0:

m5 − c = 0 mod N
(m + 1)5 − c = 0 mod N

gcd(m5 − c, (m + 1)5 − b) = m − m0 ∈ Z/N [m] usually

E.g. gcd(m5 − 43, (m + 1)5 − 4) = m − 5 ∈ Z/67[m]

But not always:

gcd(m31 − 29, (m + 1)31 − 30) = m4 + 36m3 + 53m2 + 10m + 29
= (m − 29)(m3 − 2m2 − 5m − 1)
∈ Z/67[m]



Known difference

Just as easy if known difference between messages:

c = m3 mod N
b = (m + y)3 mod N

Known: c, b, y, N
Unknown: m

gcd(m3 − c, (m + y)3 − b) = m − m0 ∈ Z/N [m]



Small unknown difference

What if the difference is small but unknown?

c = m3 mod N
b = (m + y)3 mod N

Known: c, b, N
Unknown: m, y, with y small

Example:

m = “0.14 micron technology to be announced 2 December 2003.
$4.85 IBM stock jump anticipated. gr3172680994”

m + y = “0.14 micron technology to be announced 2 December 2003.
$4.85 IBM stock jump anticipated. jb5637124412”



“gr3172680994”, “jb5637124412” random padding for security.

y=“jb5637124412”-“gr3172680994” is small.

Resultant:

Resm(m3 − c, (m + y)3 − b) ∈ Z/N [y]

The resultant is a polynomial in y which results from eliminating m from the
first two equations; if (m, y) simultaneously satisfies the first two equations,
then y satisfies the resultant.



Resultant example

N = 67
e = 2
c = m2 = 39 mod N
b = (m + y)2 = −7 mod N

R(y) = Resm(m2 − 39, (m + y)2 + 7) ∈ Z/67[y]

P (m, y) × (m2 − 39) + Q(m, y) × ((m + y)2 + 7) = R(y)

(2my+3y2+21)×(m2−39)+(−2my+y2−21)((m+y)2+7) = y4+3y2−28



Resm(m2 − 39, (m + y)2 + 7) = det









1 0 −39 0
0 1 0 −39
1 2y y2 + 7 0
0 1 2y y2 + 7









Two (=deg((m + y)2 + 7)) rows of coefficients of m2 − 39 (as polynomial
in m), staggered:

[1, 0,−39] ⇔ 1m2 + 0m1 + (−39)m0;

then two rows of coefficients of (m + y)2 + 7, staggered:

[1, 2y, y2 + 7] ⇔ 1m2 + (2y)m1 + (y2 + 7)m0.



Resm(m2 − 39, (m + y)2 + 7) = y4 + 3y2 − 28 (over Z/67)
is a polynomial of degree 4 in y (4 = 2 × 2).

Resm(m3 − 16, (m + y)3 − 43) (over Z/67) is a polynomial of degree
9 in y (9 = 3 × 3):

Resm(m3 − 16, (m + y)3 − 43) = y9 + 50y6 + 2y3 + 24 ∈ Z/67[y]

with some small solution y.

Could we solve such an equation?



Second example (more natural)

Message = “The password for today is Sashimi”

m0=“The password for today is — —” (known)
y=“Sashimi” (unknown)
c = (m0 + y)3 mod N
Known: c,m0, N . Unknown but small: y.

p(y) = (m0 + y)3 − c = 0 mod N

“Small” unknown y; polynomial P has “low” degree 3.



Unifying theme

• Polynomial p(x) = xd + pd−1x
d−1 + · · · + p1x + p0

• Modulus N (large integer, unknown factorization)

• “Low” degree d

• “Small” solution x0:

• Bound B, existence of x0 ∈ Z with |x0| < B and p(x0) = 0 mod N .



Goal:

• Tolerate B as large as possible, as a function of N and d.

• Find all x0 satisfying bound and polynomial.



First try — Johan Håstad

Collection C1 of d + 1 polynomials:

C1 = {xi, 0 6 i < d} ∪ {p(x)/N}

For each polynomial q ∈ C1, each small root x0: q(x0) is an integer.
Same is true of any integer combination of polynomials in C1.



Lattice generated by d + 1 columns of real matrix:

L1 =





















1 0 0 · · · 0 0 p0/N
0 B 0 · · · 0 0 p1B/N
0 0 B2 · · · 0 0 p2B

2/N
...

0 0 0 · · · Bd−2 0 pd−2B
d−2/N

0 0 0 · · · 0 Bd−1 pd−1B
d−1/N

0 0 0 · · · 0 0 1Bd/N























[

1,
x

B
,
x2

B2
, . . . ,

xd

Bd

]

×





















0 p0/N
0 p1B/N

B2 p2B
2/N

0 p3B
3/N

... ...
0 pd−1B

d−1/N
0 pdB

d/N





















= [x2, p(x)/N ]



Each column v is a polynomial q(x) ∈ C1, expressed in basis xi/Bi.
The ith element is coefficient of xi in q(x), times scaling factor Bi.

Lattice basis reduction (LLL).

det(L1) = 1 × B × B2 × · · · × Bd−1 × (Bd/N)
= Bd(d+1)/2/N ≈ 1

(up to a constant depending on dimension d but not on N, B).
Lattice basis reduction gives a column v with bounded norm:

√

∑

v2
i 6 γd × (det(L1))

1/(d+1) ≈ 1



(Again γd depends only on d, not N or B).
q(x0) is an integer, but

|q(x0)| 6
∑ |qix

i
0|

=
∑ |vi(x0/B)i|

6
∑

|vi1
i|

6 (
√

d + 1 × γd)B
d/2/N1/(d+1)

< 1



We arrange that
det(L1) ≈ 1

B ≈ N2/(d2+d)

Then q(x0) ∈ Z and |q(x0)| < 1 implies q(x0) = 0 ∈ R. (Not just Z/N .)

Can solve q(x0) = 0 ∈ R by ordinary methods.

Note: this gives all small solutions x0.

.

Problem: B = γ′N2/(d2+d) is small. Let’s try to increase it.



Second try, improved B

Larger collection of 2d polynomials:

C2 = {xi, 0 6 i < d} ∪ {(p(x)/N)xi, 0 6 i < d}

L2 =

































1 0 · · · 0 p0/N 0 · · · 0
0 B · · · 0 p1B/N p0B/N · · · 0
0 0 · · · 0 p2B

2/N p1B
2/N · · · 0

... ...
0 0 · · · 0 pd−2B

d−2/N pd−3B
d−2/N · · · 0

0 0 · · · Bd−1 pd−1B
d−1/N pd−2B

d−1/N · · · p0B
d−1/N

0 0 · · · 0 1Bd/N pd−1B
d/N · · · p1B

d/N
0 0 · · · 0 0 1Bd+1/N · · · p2B

d+1/N
... ...

0 0 · · · 0 0 0 · · · 1B2d−1/N



































Dimension=2d.
Determinant=B0+1+···+(2d−1)/Nd = Bd(2d−1)/Nd

As before, if we set det ≈ 1

(B ≈ N1/(2d−1))

then we get column vector norm < 1.

Improved bound from B ≈ N 2/(d2+d) to B ≈ N1/(2d−1).



Calculating the bounds

Need detL ≈ 1.
L is a triangular matrix; determinant is product of diagonal entries.



Calculating the bounds ...

First case, diagonal is

1, B,B2, . . . , Bd−1, Bd/N

detL1 = B0+1+2+···+(d−1)+d/N = B(d2+d)/2/N ≈ 1

B ≈ N2/(d2+d)

Second case, diagonal is

1, B,B2, . . . , Bd−1, Bd/N, Bd+1/N, . . . , B2d−1/N

detL2 = B0+1+2+···+(2d−1)/Nd = B2d2
−d/Nd ≈ 1

B ≈ N1/(2d−1)



Tightening the bounds

If N |p(x0), then Nk|p(x0)
k.

Pick a parameter h: larger h gives larger matrix, more work, and better
bounds B.

Larger collection of d × h polynomials:

C3 = {(p(x)/N)kxi, 0 6 i < d, 0 6 k < h}

dim(L3) = dh

Diagonal entries of L3 are

{Bi+dk/Nk|0 6 i < d, 0 6 k < h}



det(L3) =
∏

i,k

(Bi+dk/Nk) = Bdh(dh−1)/2N−dh(h−1)/2

For det(L3) ≈ 1 we need

B ≈ N (h−1)/(dh−1)

Fixing ε and picking h large (h ≈ 1/(dε)), this becomes

B < Od,ε(N
1/d−ε)

So the natural bound appears to be

B ≈ N1/d



Results

Given an integer N , and a polynomial p(x) in one variable, defined modN ,
of degree d, and the bound B = N 1/d, we can efficiently find all solutions
x0 satisfying

|x0| < B
p(x0) = 0 mod N

“Efficient”: time polynomial in (d, log N).



Summary of technique (one variable mod N)

Given p(x) (degree d), N , B ≈ N 1/d,

To find: x0 such that p(x0) = 0 mod N and |x0| < B

• Find real polynomials qi(x) with qi(x0) ∈ Z (at any root x0)

• Lattice basis reduction: find q(x), an integer combination of qi(x) with
small coefficients

• q(x0) ∈ Z

• |q(x0)| < 1 (when |x0| < B)



• Therefore q(x0) = 0 ∈ R (for all small roots)

• Solve q(x0) = 0 ∈ R — easy

• This gives all valid x0



Related — two variables

Given a polynomial p(x) in two variables, defined over Z (not modN any
more), we can define bound Bx, By in terms of the degree and coefficients
of p. We can efficiently find all integer solutions (x0, y0) satisfying

|x0| < Bx

|y0| < By

p(x0, y0) = 0( in Z)

Example:
p(x, y) = (P0 + x) ∗ (Q0 + y) − N

where P,Q ≈
√

N .
Then Bx = By = N1/4.
Factor N if we know half the bits of P = P0 + x.



Two variables in Z

p(x, y) = 1xy + Ax + By + C





























C . . .
A C . .
. A . .
B . C .
1 B A C
. 1 . A
. . B .
. . 1 B
. . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ∗ ∗ ∗ ∗
x ∗ ∗ ∗ ∗
x2 ∗ ∗ ∗ ∗
y ∗ ∗ ∗ ∗
xy ∗ ∗ ∗ ∗
x2y ∗ ∗ ∗ ∗
y2 ∗ ∗ ∗ ∗
xy2 ∗ ∗ ∗ ∗
x2y2 ∗ ∗ ∗ ∗































• Solution (x, y) → vector [1, x, x2, y, xy, x2y, y2, xy2, x2y2]T

• Orthogonal to vectors [C,A, ., B, 1, ., ., ., .]T ≈ p(x, y)

• L = lattice of vectors ≈ xiyjp(x, y)

• Build lattice M orthogonal to L

• Typical element [m∗, mx,mx2, my, mxy,mx2y, my2, mxy2,mx2y2]T not
necessarily = [1, x, x2, y, xy, x2y, y2, xy2, x2y2] for some (x, y)

• Lattice basis reduction on M , find (dim(M)−1) smallest basis elements



• Hyperplane equation defining the sublattice M ′ ⊂ M spanned by them

• Small solution (x0, y0) (smaller than “determinant bound”) will give an
element of M ′ — can’t involve largest basis element

• Equation of M ′ translates to polynomial equation q(x0, y0) = 0 not a
multiple of p(x, y)

• Simultaneously solve p(x, y) = q(x, y) = 0 in R

• Finds all small solutions (x0, y0).



Summary and extensions

Solve p(x) = 0 mod N (univariate modular)

Solve p(x, y) = 0 ∈ Z (bivariate in Z)

Can try same techniques for p(x, y) = 0 mod N (bivariate modular) or
p(x, y, z) = 0 ∈ Z (trivariate in Z); not guaranteed to work but can
sometimes.

(Boneh has done some applications on these lines.)



Return to One Variable mod N

Side effect of lattice proof: upper bound on number of small roots.

No more than dh roots x0 with

|x0| < B ≈ N (h−1)/(dh−1) ≈ N (1/d)−(1/dh)



Existential proof

An existential proof of this bound is due to
Konyagin & Steger, “On polynomial congruences” (1994).

p(x) mod N has hd small roots xa with |xa| < B/2

Vandermonde matrix M1 = [xj
a], 0 6 a, j < hd

0 6= |det(M1)| =
∏

a<b |xa − xb| < B(hd)(hd−1)/2

Row operations give matrix M2 with entries M2 = [xi
ap(xa)

j], 0 6 i <
d, 0 6 j < h

Row of M2 are divisible by N j, so det(M2) is divisible by Ndh(h−1)/2



Determinants are equal, so Ndh(h−1)/2 6 B(hd)(hd−1)/2 and B >

N (h−1)/(hd−1).

M2 closely related to our matrix.



M1 and M2

M1 =





















1 1 1 1 · · · 1
x1 x2 x3 x4 · · · xhd

x2
1 x2

2 x2
3 x2

4 · · · x2
hd

x3
1 x3

2 x3
3 x3

4 · · · x3
hd

... ...

xj
1 xj

2 xj
3 xj

4 · · · xj
hd

... ...























M2 =

























1 1 1 1 · · · 1
x1 x2 x3 x4 · · · xhd

x2
1 x2

2 x2
3 x2

4 · · · x2
hd

p(x1) p(x2) p(x3) p(x4) · · · p(xhd)
x1p(x1) x2p(x2) x3p(x3) x4p(x4) · · · xhdp(xhd)

... ...
xi

1p(x1)
j xi

2p(x2)
j xi

3p(x3)
j xi

4p(x4)
j · · · xi

hdp(xhd)
j

... ...



























Rows of M2 are divisible by (1, 1, 1, N, N, N, N 2, N2, N2, . . . , Nh−1, Nh−1)

Relation of existential and constructive proofs:

Up to scaling of rows, our matrix L3 and Konyagin and Steger’s matrices
M1 and M2 are related by

L3 × M1 = M2.



A second existential proof

Following H.W. Lenstra, “Divisors in residue classes”:
N squarefree, N =

∏

qi

k small roots p(xi) = 0 mod N

−B

2
< x1 < x2 < · · · < xk < +

B

2

Define Y =
∏

16i<j6k(xj − xi)

0 < Y 6 Bk(k−1)/2

For each q|N , p(x) has at most d different roots mod q.

Number of pairs (i < j, xi = xj mod q) is at least d×(k
d)(k

d − 1)/2 = k(k−d)
2d



(Worst case: k/d instances in each residue class):

qk(k−d)/2d|Y

True for each q|N , and N is squarefree, so

Nk(k−d)/2d|Y

Nk(k−d)/2d
6 Y 6 Bk(k−1)/2

B > N (k−d)/(kd−d)

Or, if B < N (k−d)/(kd−d) then number of roots is less than k.
Same bound as lattice construction.



Existential proof ...

Relaxing conditions:
“N squarefree”: If q`|N, ` > 1, it suffices that p(x) has d distinct roots
mod q. Hensel lifting gives q|xi − xj ⇒ q`|xi − xj.



Example showing tightness

N = q3

p(x) = x3 + aqx2 + bq2x

Any x with q|x is a root: p(x) = 0 mod N .
If B = N1/3+ε then there are N ε roots with |x| < B — exponentially many.

We do not know of other examples giving exponentially many roots.

Conjecture: If there are exponentially many roots xi of p(x) = 0 mod N
with |xi| < B = N1/d+ε, then N has a repeated prime factor q`|N , and
p(x) has a repeated root mod q.



If so, then the discriminant of p is divisible by q, and we have:

gcd{N, Resx[p(x), p′(x)]} > 1

Also: If q|N , can’t have more than deg(f) roots of f(x) = 0 mod N
smaller than q, since f has at most that many roots modq.

In RSA case, the polynomial has only one root modN , because of unique
decryption.



Break up the hard case (B = N 1/3+ε) into two hard problems:

(1) Show that the only bad examples are of this form
(so that gcd{N, Resx[p(x), p′(x)]} > 1)

(2) If not this bad case, use that (gcd=1) in the lattice solution:

∃q(x), r(x) ∈ Z[x]; c ∈ Z :
q(x)p(x) + r(x)p′(x) + cN = 1

And then what?



Applications

• RSA, e=3, two related messages, difference N 1/9

• RSA, e=3, partially known message, unknown N 1/3

• Factor integers with partial information:
If N = pq, p = Nα, know N and (approximately) α, with p = p0 + x,

known p0, unknown x < Nα2
, then can compute x.

• [Boneh] RSA with small decryption exponent
Known N = pq and e. Unknown p, q, φ(N) = (p − 1)(q − 1) = N − s, d

de = 1 + zφ(N)

−1 + z(N − s) = 0 mod e

Unknown small z, s



• Divisors in residue classes (DC, Nick Howgrave-Graham):
H W Lenstra: Given r, s,N ∈ Z with gcd(r, s) = 1 and s > Nα, α > 1/4,

#{d|N, d = r mod s} < (α − 1/4)−2 independent of N

He showed this existentially for α > 1/4 and constructively for α > 1/3.
The present methods give constructively for α > 1/4.

N − (xs + r)(ys + r′) = 0, x, y small

• Primality testing: uses Lenstra’s “divisors in residue classes” as subroutine

• Find worst cases for floating-point rounding of mathematical functions.
(Zimmerman, Stehle, Lefevre, 2003)



• “Some RSA-based Encryption Schemes with Tight Security Reduction”
(Kaoru Kurosawa and Tsuyoshi Takagi, IACR ePrint 2003-157)
Secret: p, q; Public: n, α, e; Secret nonce: r < n
Encryption: message m < n → ciphertext c = (r + α

r )e + mn) mod n2

Security reduction. Suppose we knew how to extract m from c.
— Choose random r̄ < n
— Compute x = r̄ + α/r̄ mod n2

— From fake random plaintext m̄, compute ciphertext c = xe+m̄n mod n2

— Obtain valid plaintext m from oracle
— Compute w = c − mn = (r + α/r)e mod n2

— Compute u = (w − xe)/n
— Compute y = u/(exe−1) mod n
— Compute v = (r̄ + α/r̄) + ny mod n2

— Solve r2 − vr + α = 0 mod n2 using present work



NP-hard variants

(Manders and Adleman) Given α, β, γ ∈ Z, it is NP-hard to decide whether
there exist positive integers x̄, ȳ satisfying αx̄2 + βȳ − γ = 0. Remains
NP-hard if factorization of β is known.

Easy to convert to NP-hard problem in our context:

Pick N sufficiently large, bounds Bx =
√

γ/α and By = γ/2β. Then it is
NP-hard to decide whether there are solutions to

αx2 + βy − τ = 0 mod N
|x| < Bx, |y| < By

Bounds Bx, By do not grow with N .
Note: this is two variables mod N ; we solve in one variable mod N .



Similarly
αx2 + βy − τ − zN = 0

|x| < Bx, |y| < By, |z| < Bz = 2

This is in three variables over Z; we solve in two variables over Z.



Extensions

Divided difference for two different small roots

Univariate modular polynomial p(x) = 0 mod N , deg(P ) = d.

Want two different small roots: p(x) = p(y) = 0 mod N ,
gcd(x − y, N) = 1

Cast as bivariate problem:

p(x) = 0, p(y) = 0, q(x, y) ≡ p(x) − p(y)

x − y
= 0 mod N



The standard method can find x if |x| < Bx = N1/d or y if |y| < By =
N1/d. With the extra information (two different small roots), can find if

Bd
xBd−1

y < N2,

a slight improvement.



Conclusions

Find “small” solutions to “low” degree polynomials:

• In one variable mod N;

• In two variables over Z.

Plenty of applications, mostly cryptographic.


