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6.2. FINDING GENERATING PAIRS FOR ELLIPTIC CURVES 135

6.2.1 Weil pairing and equivalence classes

The Weil pairing, defined simply as a “correspondence” by Weil [Weid0], takes an
integer m as parameter and is a rational function on pairs of points of order dividing
m in the group E(F,):

em: E(Fy)[m] x E(F;)[m] — . (6.11)
The pairing has several useful properties: |
(i) Identity. For all points P € E(F,)[m), en(P,P) = 1.
(if) Alternation. For all points P, P; € E(F,)[m], en(P:, P;) = em( Py, ).

(iii) Bilinearity. For all points P, P, P, € E(F))m], en(P + P, P)) =
ﬁn{Ph Pﬂ}ﬂm{P!:P!:' and Em{P] P+ 'ﬁi} = E!I'I(Pl.i E}%{Plu Ps).

(iv) ﬁ"andcgenr.my, For all points P, € E(F,)[m], if en(Py, P;) = 1 for all points
P, € E(F,)[m] then P, = O.

Miller recently developed a probahilistic polynomial time algorithm for comput-
ing the Weil pairing [Mil85]. The algorithm is essential to the results which follow
in this section. Indeed most of the results have been suggested in some form by
Miller [Mil87], although the use of partial factorization is new. The definition of the
| Weil pairing and a MACSYMA implementation of Miller's algorithm are included

in Appendix A.

Equivalence classes

The properties of the Weil pairing provide a method of partitioning elements into
equivalence classes. The partitioning can be done for points of order dividing m on
the elliptic curve over the algebraic closure, or for points on the elliptic curve over
the finite field. The following lemma shows how this js done.

Lemma 6.7 Let E(F,) be an elliptic curve with group structure (ny,n;) and let
Gy be an element of maximum order. Let h denote a homomeorphism moduloe the
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MOV Reduction

0 1988: PhD Thesis of B. Kaliski

o 1990: Menezes, O. and Vanstone
read his thesis and learnt the
cryptographic application of the Well
pairing and Miller’'s algorithm. We
then found the reduction of ECDL to

MDL by using the Well pairing.




Reply message from Kaliski

o Victor Miller visited Ron Rivest when | was
a graduate student, and he met with me
about my research. If | recall correctly, |
asked him if he knew a way to determine
whether an elliptic curve group was cyclic,
and he suggested the Weil pairing. He
also gave me a copy of his algorithm for
computing the Weil pairing, and agreed
that | could implement it for my thesis.




A New Approach on Bilinear Pairings
and lts Applications

Joint Work with Katsuyuki Takashima
(Mitsubishi Electric)




Pairing-Based Cryptography




Why Did Pairing-Based Cryptography
So Succeed?

Mathematically Richer Structure

o Traditional Crypto: genus O

*

Fp (e.g., Multiplicative group)

A4
o Pairing-Based Crypto:

genus 1

En]zz, @z, cE(F,)
(e.qg., palrlng frlendly
elliptic curve group)




Additional Math Structure with Pairings

o Traditional Techniques over Cyclic Groups
- /=¢* . One-way (hard to compute =z from (g, 4)).

- (45 =(47)Y: Commutativity
- g«Z’JW =97 4Y: Homomorphism
o Pairing=>» Additional Structure as well as

the Above Properties

h=¢" : One-way (hard to compute z from (g, h).
- (¢%)=(¢Y)*: Commutativity

g* Y =¢%¢Y: Homomorphism:

| e(g®,9Y)=e(g,9)"Y : Bilinearity




New Approach on Pairings:

Constructing a Richer Structure from
Pairing Groups



Pairing Groups

— (G1,G2,Gr), |Gi]| = |G2| = |G| = q (prime)

( G1,Gs: additive form expression)
( Gr: multiplicative form expression)

Gl EGI) G2 EGQ (GlaGZ#O)
— €. Gl X Gg —> GT
e gr :=¢(G1,G2) #1 (nondegenerate)

o ¢c(xz(G1,yG2) = e(G1,G2)®  (bilinear)



The Most Natural Way to Make a Richer
Algebraic Structure from Pairing Groups

mmm) Direct Product of Pairing Groups
N

>N

V:=fG‘:1><---><G;

N
V*i=Gg X -+ X Go

xecV, yeV*

x = (r1G1,...,onG1), Y:= (11Ge,...,ynG2)

(x5, yi €Fyfori=1,...,N).



N-Dimensional Vector Spaces:
V=G, x:---xG, V*=Gx---xG,

o Vector Addition
For  := (21G1,...,zNyG1) €V and y:= (y1Gy,...,ynG1) €Y,

Tty = (£E1G1 -|-y1G1, o ,:ENGl + yNGl)
= ((:Ul T yl)Gla ceey (mN +yN)G1) eV

Similarly defined for V*.

o Scalar multiplication
For ¢ := (1G1,...,2nvG1) €V and ce€F,,

cx := (cx1G1,...,cxyG1) €V

Similarly defined for V*.



N-Dimensional Vector Spaces:
V=G, x:---xG, V*=Gx---xG,

Canonical Bases

A:=(ay,...,ay) for V, A*:=(aj,...,a}) for V¥,
a; :=(G41,0,...,0), as :=(0,G1,0,...,0),...,ay :=(0,...,0,G1)
a’{ = (GQ,O,...,O), a,; = (O,GQ,O,...,O),...,QTV— = (0,...,0,G2)

Element Expression on Canonical Basis

T = (:r:lGl,...,:cNGl)_f ria1 +---+xTNnan
= (z1,..-,ZN)A=(T)a €V

y = (4%1G2,...,ynG2) = y1ai + - +ynay
= (Y1,---,YN)ar = (Y )ax € V*

1,0,...,0)a, @ = (0,1,0,...,0)a,...,an = (0,...,0,1)a,
1,0,...,0)ax, @3 = (0,1,0,...,0)ax,...,a% = (0,...,0,1)



Duality

Inner-Products between V and V*
For £:=(Z)p €V, y:=(¥)a € V¥,
m'y¢=2i1$iyi=?'?€Fq
Dual Spaces
For y € V*,
Linear map vy: V — I,
Yy: T—IT-Y
V* is the dual space of V.
Pairing between V and V*  ¢e:V X V* — Gr
e(x,y) = [Iir, e(xiG1,y:iGs) = e(G1, Gg)Xi=1 %i¥i

=g;'y =g$'y€GT m:=(x1Gel,...,:cNtGel)€V
Y = (11G2,...,ynG2) € V*




Orthonormality

(A, A*): dual orthonormal bases of V and V*,
since

(1ifi=
0ifi#j

5;
e(a;,a;) = gr”

* __ . . 0=
ai'alj—éz,'? .—<



Base Change

B := (by,...,bn) : basis of V A

s.t. X := (xi;) — GL(N,F,), X
b,—=2j.v=1x,,;,jaj fOI"i=1,...,N. B

B* := (b7, ...,b}): basis of V* A*

st (9) = (XT)7, L(XT)-1

(B,B*) : dual orthonormal bases of V and V*,
since b,,, . b;‘ — 5?;,9'

ie., e(b;,b*) = g



Base Change

(A, A*): dual orthonormal bases of (V,V*), i.e., e(a;,a ) QT

@ Base change by X & GL(N,F,),
(B,B*) : dual orthonormal bases of (V,V*), i.e., e(b;,b}) = ggf’j

For ¢ := z1by + -+ anby = (21,...,2n8)8 = (T )B €

and y :=y1b} + - +ynbi = (¥1,---,yN)B = (¥ )p+ € V¥,
N =

e(z,y) = [T, e(xibi, y:b?) = e(g, g)2i=1 #i% = g7



Trapdoor

hard
—><—

easy

T

X

(B, A, A*)




Special Case: Self-Duality

Symmetric pairing group (G = G»):
(G,G,G7r) with e: Gx G — Gr

V=V"=Gx---xGG

A: (self-dual) orthonormal basis of V, i.e., e(a;,a;) = ggj"j

@ Base change by X Y GL(N, IB‘q))
(B, B*) : (self-dual) orthonormal bases of V, i.e., e(b;, b}) = ggf’j

(B, A) 2= B*
X




Abstraction: Dual Pairing Vector Spaces
(DPVS)

(Qa Va V*,GT,A, A*)

q: prime, V and V*: N-dimensional vector spaces over F,, Gr: cyclic group
of order q (gr: generator), A :=(ay,...,ay)and A* :=(aj,...,a}): canonical
bases of V and V*. There are efficient algorithms for e, ¢; ; and ¢; ; such that:

1. [Non-degenerate bilinear pairing] e : V x V* — G7 i.e., e(sz,ty) = e(x, y)*
and if e(x,y) =1 for all y € V, then = 0.

2. [Dual orthonormal bases] e(a;, a}) = ggf’j for all ¢ and ;.

3. [Canonical maps| Endomorphisms ¢; j of Vs.t. ¢; j(a;) = a; and ¢; j(ax) =
0 if k # j. Endomorphisms ¢ ; of V* s.t. ¢} .(a}) = a; and ¢} ;(a;) =0 if
k # j. We call ¢; ; and ¢} j canonical maps”.

(Example of canonical maps on V=G; X --- X Gy )
i—1 N—i

./—"H N
qb@,j(:c) = 0,. .o ,O,SBle,O, coe ,0) for x := ($1G1, coe ,CBle,. . o ,xNGl)



Construction of Dual Pairing Vector Spaces:

o Direct product of pairing groups
V=G X+ XxGand V* =Gy X --- X Gy

(e.g., product of elliptic curves)

o Jocobian of supersingular
hyperelliptic curves
V = V* .= Jacc|q] = (F,)?9:
g-torsion point group of the Jacobian variety

of some specific supersingular
hyperelliptic curves C' of genus g.

[ Takashima, ANTS’08]




Intractable Problems in DPVS
Suitable for Cryptographic Applications

®\Vector Decomposition Problem (VDP)

®Decisional VDP (DVDP)

®Decisional Subspace Problem (DSP)



Vector Decomposition Problem (VDP)

A
V,V*,A,A*,B:: (bl,...,le) ‘X = (X‘i,j)
B

vim bt ot g omabig 4

Nl Nl
(221 ViXi 1G5 D521 VXN G)

hard l span(by,...,bn,).

u:= | v1by+---+vN,bnN,

N. N.
(22521 vX31G1, - -+ 20521 viXs,N G)



Special Case of
Vector Decomposition Problem (VDP)

V,V*, A := (ai,...,an,), A*

(’UlGl, c ey ’UN2G1, ’UN2_|_1G1, c .oy 'UNlGl)

easyl span{ai,...,an,).




History of
Vector Decomposition Problem (VDP)

[Yoshida, Mitsunari and Fujiwara 2003],
[Yoshida 2003]

Introduced VDP on elliptic curves.




History of
Vector Decomposition Problem (VDP)

[Duursma and Kiyavash 2005], [Duursma
and Park 2006],

VDP on hyperelliptic curves, higher
dimensional ElIGamal-type signatures




History of
Vector Decomposition Problem (VDP)

[ Galbraith and Verheul, PKC 2008]

Introduced “distortion eigenvector basis”
for VDP on elliptic curves.




History of
Vector Decomposition Problem (VDP)

O. and Takashima (Pairing 2008):

Introduced more general notion,
“distortion eigenvector spaces”, for higher

dimensional spaces, and showed several

cryptographic a
We also extendec
pairing vector s

oplications.
the concept to “dual

naces” (Aisiacrypt 2009)

for VDP and other problems, and showed
an application to predicate encryption.



Trapdoor of VDP: Algorithm Deco

A
V,V* A A*, B:= (by,...,bn,) Iéx
vim | bt d tbr § s+ by
l (X,span(by,...,bn,),B)
Deco
(ts,5) ==NX _1,N .
ui=) Zj=21 D =1 i,i %,k Pre,i (V)




Decisional VDP (DVDP)

DVDP
Assumption

Y Adv

V=

V,V*, A, A* B:= (by,...,bx.)
v1b1 + - +un,ON, 4 UN, 10N, 41 + - + VN, BN,
v1b1 + -+ + v, b,
u
r1b1 + -+ rn,bn, (r1,.--,TNy) <—IFéV2
- = - , |

(v, u) (v, u)

iy A~ iy

r Adv S Adv

iy iy



Decisional Subspace Problem (DSP)

D

V,V*, A, A*, B := (by,

., b))

v1b1 + -+ +vN,bN,

- 'U_N2_|_]_bN2_|_]_ S VN, le

L] U
ie, v «—V

/

v

i.e., v’ < span(by,

DSP
Assumption

Y Adv

riby + -+ ra, b,

U
(7’1, ce ,TNz) — Fé\fz

U

| v L |

L
r Adv

ugs
1

...,bN2>CV

- v,
N\ Ll
S r Adv
L
1




Relations with DDH and DLIN Problems

Decisional s-linear assumption: Decisional 1-linear assumption

G,Gy,...,G, S G, Z1,...,%s,Tsr1 Y F, (=pDH a,ssurr%pt.ion)f

Given (G, G1,...,G,), it is hard to distinguish It is hard to distinguish

v = (21Gy,...,2:Gs,25+1G) and (g, gl,mgbwzg) and

v = (21G,. .., 2:Gs,(Y i, 2i)G). (G,G1,21G1,21G).
(HIG,...,ESG) = (Gl,...,Gs), A p— (a1, Cee a8+1)

bl = (K’IGJO)'“)OS G) = K101 + Qs41, (K) 1\
by := (0, koG, 0,...,0, G) = K22 + Qs41,, ' O .

Ks

NI

B := (bl, c ey b3+1)
It is hard to distinguish
v=x1b1+...+x:bs + ar:’s_|_1b3+1<E span(by,...,bs,bs11) =V and
vV V=x1b;+...+ cz:,f,bs<H span(by,...,bs)

bs :=(0,...,0,k;G,G) = Ksas + @sy1,
b3_|_1 = (0, co e ,0, G) = Qs+1




Trapdoors for DVDP and DSP

o Algorithm Deco with X

o Pairing with B*
DSP can be efficiently solved by using trapdoor
t* € span(by, 1, --,bN,)

e(v,t*) #1 with high probability

e(v',t*) =1
o Hierarchy of trapdoors

> " ’t* * %
X S¢ S¢ €cS*CV

(Top level trapdoor)




Related Works and Properties

Higher dimensional vector treatment of bilinear pairing groups have been
already employed in literature especially in the areas of IBE, ABE and BE

To the best of our knowledge, however, the base change and dual space
framework have not been presented in an explicit manner.

Our key properties of our appraoch are

the hard decomposability and indistinguishability
on DPVS V with basis B and its trapdoors via X and B*.



Application to Cryptography




Multivariate Homomorphic Encryption

Gen(1%) :
V< G(1%) with canonical basis A := (ay,...,an,)
U
X = (:L',g,r,') «— bi = Zjv__ll i, jQj, B := (bl, NP ,le).

sk := X, | pk:= (V,A,B).

return sk, pk.

Enc(pk, (m1,...,mn,) € {0,...,7 —1}V2):

(TNz-I-la IR TN;[) <£ Fév’l_Nza

c:= (mibi1 +- - +mpn,bn,) + (*Ny+1bNy41 + - + 7N BN,)
return ciphertext c.

Dec(sk, c) :
c; := Deco(c,span(b;), X,B).] m; := Dlogy, (c;) fori=1,...,Ns.
return plaintext (m7,...,my,).

Homomorphic

property Enc(pk, (m1,...,mn,) + Enc(pk, (m1,...,my,)
= Enc(pka (ml + m’1: ceey MN, + mEVg)




Multivariate Homomorphic Encryption

Gen(1%) :
V& G(1%) with canonical basis A := (a1,...,an,)
U N
X = (255) < bi =2 ;2 %ija; B:=(by,...,bn,).

B* := (b}, ...,b%): basis of V* s.t. (9;;) := (XT)™1,
by =37 9;;a5 fori=1,...,N.

sk := B*, | pk:= (V, A, B).

return sk, pk.

Enc(pk, (m1,...,mn,) € {0,...,7 —1}V2) :
U _
(T‘N2_|_1, ce ,’l"Nl) — ]Fé\ﬁ Nz,
c:= (miby + - + mn,bN,) + (TNp41bNa41 + - + TN, BN,)
return ciphertext c.
Dec(sk, c) :
c; == e(c,by) | m; :=Dlog,_(c;) fori=1,...,Na.
return plaintext (m1,...,mYy,).




Predicate Encryption Scheme

» Setup: (param,B,B*) & Gob(1?, 1 + 2)
pk := (param,B), sk := B*
» GenKey(sk, ¥ := (v1,...,v,)):

sk = k* :=o(v1b] + - +v,b}) + b} 4
= (0, 1,0)p~

» Enc(pk, T := (z1,...,%n),m) :
cy :=01(x1by + - + Tpby) + (bpy1 + Ont2bpio

= (51?: C: 6n+2)]B

Co :=g§1-m

B Dec(pk, k*,(c1,c2)) :

m’ := ca/e(ey, k*)




Summary

o A new approach on bilinear pairing:
Dual pairing vector spaces

- enjoy richer algebraic structures
o Cryptographic applications:

- predicate encryption for inner-
products

- maore...




Thank youl!
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