
Recursive Diffusion Layers for
Block Ciphers and Hash Functions

Mahdi Sajadieh1, Mohammad Dakhilalian1, Hamid Mala2, and Pouyan Sepehrdad3

1 Cryptography & System Security Research Laboratory, Department of Electrical and Computer Engineering,
Isfahan University of Technology, Isfahan, Iran

2 Department of Information Technology Engineering, University of Isfahan, Isfahan, Iran
3 EPFL, Lausanne, Switzerland

{sadjadieh@ec, mdalian@cc}.iut.ac.ir,
h.mala@eng.ui.ac.ir,

pouyan.sepehrdad@epfl.ch

Abstract. Many modern block ciphers use maximum distance separable (MDS) matrices as the
main part of their diffusion layer. In this paper, we propose a new class of diffusion layers constructed
from several rounds of Feistel-like structures whose round functions are linear. We investigate the
requirements of the underlying linear functions to achieve the maximal branch number for the
proposed 4 × 4 words diffusion layer. The proposed diffusion layers only require word-level XORs,
rotations, and they have simple inverses. They can be replaced in the diffusion layer of the block
ciphers MMB and Hierocrypt to increase their security and performance, respectively. Finally, we
try to extend our results for up to 8× 8 words diffusion layers.

Keywords: Block ciphers, Diffusion layer, Branch number, Provable security

1 Introduction

Block ciphers are one of the most important building blocks in many security protocols. Modern
block ciphers are cascades of several rounds and each round consists of confusion and diffu-
sion layers. In many block ciphers, non-linear substitution boxes (S-boxes) form the confusion
layer, and a linear transformation provides the required diffusion. The diffusion layer plays an
efficacious role in providing resistance against the most well-known attacks on block ciphers,
such as differential cryptanalysis (DC) [2] and linear cryptanalysis (LC) [10]. The strength of
a diffusion layer is usually quantified by the notion of branch number. Block ciphers exploiting
diffusion layers with small branch number may suffer from critical weaknesses against DC and
LC, even though their substitution layers consist of S-boxes with strong non-linear properties.
Two main strategies for designing block ciphers are Feistel-like and substitution permutation
network (SPN) structures. In the last 2 decades, from these two families several structures have
been proposed with provable security against DC and LC. Three rounds of Feistel structure [11,
8], five rounds of RC6-like structure [6] and SDS (substitution-diffusion-substitution) structure
with a perfect or almost perfect diffusion layer are examples of such structures [9].

1.1 Notations

Let x be an array of s n-bit elements x = [x0(n), x1(n), · · · , xs−1(n)]. The number of non-zero
elements in x is denoted by w(x) and is known as the Hamming weight of x. For a diffusion
layer D applicable on x, we have the following definitions.

Definition 1 ([4]). The differential branch number of a linear diffusion layer D is defined as:

βd(D) = min
x 6=0
{w(x) + w(D(x))}

We know that the linear function D can be shown as a binary matrix B, and Dt is a linear
function obtained from Bt, where Bt is the transposition of B.

Definition 2 ([4]). The linear branch number of a linear diffusion layer D is defined as:

βl(D) = min
x 6=0
{w(x) + w(Dt(x))}

It is well known that for a diffusion layer acting on s-word inputs, the maximal βd and βl are
s+ 1 [4]. A diffusion layer D taking its maximal βd and βl is called a perfect or MDS diffusion
layer. Furthermore, a diffusion layer with βd = βl = s is called an almost perfect diffusion
layer [9].

The following notations are used throughout this paper:

⊕ : The bit-wise XOR operation
& : The bit-wise AND operation
Li : Any linear function
`i : The linear operator corresponding to the linear function Li

(L1 ⊕ L2)(x) : L1(x)⊕ L2(x)
L1L2(x) : L1(L2(x))
L2

1(x) : L1(L1(x))
I(·) function : Identity function, I(x) = x
x� m (x� m) : Shift of a bit string x by m bits to the right (left)
x ≫ m (x ≪ m) : Circular shift of a bit string x by m bits to the right (left)
| · | : Determinant of a matrix in GF(2)
a|b : Concatenation of two bit strings a and b
x(n) : An n-bit value x

1.2 Our contribution

In this paper, we define the notion of a recursive diffusion layer and propose a method to
construct such perfect diffusion layers.

Definition 3. A diffusion layer D with s words xi as the input, and s words yi as the output
is called a recursive diffusion layer if it can be represented in the following form:

D :


y0 = x0 ⊕ F0(x1, x2, . . . , xs−1)
y1 = x1 ⊕ F1(x2, x3, . . . , xs−1, y0)
...
ys−1 = xs−1 ⊕ Fs−1(y0, y1, . . . , ys−2)

(1)

where F0, F1,. . . , Fs−1 are arbitrary functions.

As an example, consider a 2-round Feistel structure with a linear round function L as a
recursive diffusion layer with s = 2. The input-output relation for this diffusion layer is:

D :
{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

The quarter-round function of Salsa20 is also an example of a non-linear recursive diffusion
layer [1]. 

y1 = x1 ⊕ (x0 + x3)
y2 = x2 ⊕ (x0 + y1)
y3 = x3 ⊕ (y1 + y2)
y0 = x0 ⊕ (y2 + y3)

2

Also, the lightweight hash function PHOTON [5] and the block cipher LED [7] use MDS
matrices based on Eq. (1). In these ciphers, an m×m MDS matrix Bm was designed based on
the following matrix B for the performance purposes:

B =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
0 0 0 · · · 1
Z0 Z1 Z2 · · · Zm−1


By matrix B, one elements of m inputs is updated and other elements are shifted. If we use

Bm, all inputs are updated, but we must check if this matrix is MDS. One example for m = 4
is the PHOTON matrix working over GF(28) :

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⇒ B4 =


1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11


In this paper, we propose a new approach to design linear recursive diffusion layers with the

maximal branch number in which Fi’s are composed of one or two linear functions and a number
of XOR operations. The design of the proposed diffusion layer is based on the invertibility of
some simple linear functions in GF(2). Linear functions in this diffusion layer can be designed
to be low-cost for different sizes of the input words, thus the proposed diffusion layer might
be appropriate for resource-constrained devices, such as RFID tags. Although these recursive
diffusion layers are not involutory, they have similar inverses with the same computational
complexity.

This paper proceeds as follows: In Section 2, we introduce the general structure of our
proposed recursive diffusion layer. Then, for one of its instances, we systematically investigate
the required conditions for the underlying linear function to achieve the maximal branch number.
In Section 3, we propose some other recursive diffusion layers with less than 8 input words and
only one linear function. We use two linear functions to have perfect recursive diffusion layer for
s > 4 in Section 4. Finally, we conclude the paper in Section 5.

2 The Proposed Diffusion Layer

In this section, we introduce a new perfect linear diffusion layer with a recursive structure. The
diffusion layer D takes s words xi for i = {0, 1, . . . , s − 1} as input, and returns s words yi for
i = {0, 1, . . . , s− 1} as output. So, we can represent this diffusion layer as:

y0|y1| · · · |ys−1 = D(x0|x1| · · · |xs−1)

The first class of the proposed diffusion layer D is represented in Fig. 1, where L is a linear
function, αk, βk ∈ {0, 1}, α0 = 1, and β0 = 0.

This diffusion layer can be represented in the form of Eq. (1) in which the Fi functions are
all the same and can be represented as

Fi(x1, x2, . . . , xs−1) =
s−1⊕
j=1

αjxj ⊕ L

s−1⊕
j=1

βjxj


3

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi =

s−1⊕
j=0

α[(j−i) mod s]yj ⊕ L

(
s−1⊕
j=0

β[(j−i) mod s]yj

)
8: end for

Fig. 1. The first class of the recursive diffusion layers

To guarantee the maximal branch number for D, the linear function L and the coefficients
αj and βj must satisfy some necessary conditions. Conditions on L are expressed in this section
and those of αj ’s and βj ’s are expressed in Section 3. The diffusion layer described by Eq. (2) is
an instance that satisfies the necessary conditions on αj and βj with s = 4. In the rest of this
section, we concentrate on the diffusion layers of this form and show that we can find invertible
linear functions L such that D becomes a perfect diffusion layer.

D :


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

(2)

As shown in Fig. 2, this diffusion layer has a Feistel-like (GFN) structure, i.e.,

F0(x1, x2, x3) = x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

and for each i > 0, yi is obtained by (xi, xi+1, . . . , xs−1) and (y0, y1, . . . , yi−1).

The inverse transformation, D−1, has a very simple structure and does not require the
inversion of the linear function L. Based on the recursive nature of D, if we start from the
last equation of Eq. (2), x3 is immediately obtained from yi’s. Then knowing x3 and yi’s, we
immediately obtain x2 from the third line of Eq. (2). x1 and x0 can be obtained in the same
way. Thus, the inverse of D is:

D−1 :


x3 = y3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)
x2 = y2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
x1 = y1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
x0 = y0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

D and D−1 are different, but they have the same structure and properties. To show that D
has the maximal branch number, first we introduce some lemmas and theorems.

Theorem 4 ([4]). A Boolean function F has maximal differential branch number if and only
if it has maximal linear branch number.

As a result of Theorem 4, if we prove that the diffusion layer D represented in Eq. (2) has
the maximal differential branch number, its linear branch number will be maximal too. Thus,
in the following, we focus on the differential branch number.

Lemma 5. For m linear functions L1, L2, ..., Lm, the proposition

a 6= 0⇒ L1(a)⊕ L2(a)⊕ ...⊕ Lm(a) 6= 0

implies that the linear function L1 ⊕ L2 ⊕ ...⊕ Lm is invertible.

4

L

L

L

L

x0 x1 x2 x3

y0 y1 y2 y3

Fig. 2. The proposed recursive diffusion layer of Eq. (2)

5

Proof. We know that (L1 ⊕L2 ⊕ ...⊕Lm)(x) is a linear function and it can be represented as a
binary matrix M. So, M is invertible if and only if |M| 6= 0. ut

Lemma 6. Assume the linear operator `i corresponds to the linear function Li(x). If the linear
operator `3 can be represented as the multiplication of two operators `1 and `2, then the corre-
sponding linear function L3(x) = L2(L1(x)) is invertible if and only if the linear functions L1(x)
and L2(x) are invertible.

Proof. If L1(x) and L2(x) are invertible, clearly L3(x) is invertible too. On the other hand, if
L3(x) is invertible then L1(x) must be invertible, otherwise there are distinct x1 and x2 such
that L1(x1) = L1(x2). Thus, L3(x1) = L2(L1(x1)) = L2(L1(x2)) = L3(x2) which contradicts the
invertibility of L3(x). The invertibility of L2(x) is proved in the same way.

ut

Example 1: We can rewrite the linear function L3(x) = L3(x) ⊕ x (`3 = `3 ⊕ I) as L3(x) =
L1(L2(x)), where L1(x) = L(x)⊕ x (`1 = `⊕ I) and L2(x) = L2(x)⊕L(x)⊕ x (`2 = `2⊕ `⊕ I).
Thus, the invertibility of L3(x) is equivalent to the invertibility of the two linear functions L1(x)
and L2(x).

Theorem 7. For the diffusion layer represented in Eq. (2), if the four linear functions L(x),
x⊕ L(x), x⊕ L3(x), and x⊕ L7(x) are invertible, then this diffusion layer is perfect.

Proof. We show that the differential branch number of this diffusion layer is 5. First, the 4 words
of the output are directly represented as functions of the 4 words of the input:

D :


y0 = x0 ⊕ L(x1)⊕ x2 ⊕ x3 ⊕ L(x3)
y1 = x0 ⊕ L(x0)⊕ x1 ⊕ L(x1)⊕ L2(x1)⊕ x2 ⊕ L2(x3)
y2 = L2(x0)⊕ x1 ⊕ L(x1)⊕ L3(x1)⊕ x2 ⊕ L(x2)⊕ x3 ⊕ L2(x3)⊕ L3(x3)
y3 = x0 ⊕ L2(x0)⊕ L3(x0)⊕ L(x1)⊕ L2(x1)⊕ L3(x1)⊕ L4(x1)

⊕L(x2)⊕ L2(x2)⊕ L2(x3)⊕ L4(x3)

(3)

Now, we show that if the number of active (non-zero) words in the input is m, where m =
1, 2, 3, 4, then the number of non-zero words in the output is greater than or equal to 5 −m.
The diffusion layer represented in Eq. (2) is invertible. Consider m = 4, then all of the 4 words
in the input are active, and we are sure at least one of the output words is active too. Thus
the theorem is correct for m = 4. The remainder of the proof is performed for the 3 cases of
w(∆(x)) = m, for m = 1, 2, 3 separately. In each of these cases, some conditions are forced on
the linear function L.

Case 1: w(4x) = 1

To study this case, first the subcase

(4x0 6= 0,4x1 = 4x2 = 4x3 = 0 or 4x = 4x0|0|0|0)

is analyzed. For this subcase, Eq. (3) is simplified to:

D :


4y0 = 4x0

4y1 = (I ⊕ L)(4x0)
4y2 = L2(4x0)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)

6

If D is a perfect diffusion layer then 4y0, 4y1, 4y2 and 4y3 must be non-zero. Clearly,
4y0 is non-zero, and based on Lemma 5, the conditions for 4y1, 4y2 and 4y3 to be non-zero
are that the linear functions I ⊕ L, L2 and I ⊕ L2 ⊕ L3 must be invertible. Note that based
on Lemma 6, the invertibility of L2 yields the invertibility of L. Considering Lemma 6, if the
other three sub-cases are studied, it is induced that the linear functions x ⊕ L(x) ⊕ L2(x) and
x⊕ L(x)⊕ L3(x) must also be invertible.

Case 2: w(4x) = 2

In this case, there exist exactly two active words in the input difference and we obtain some
conditions on the linear function L to guarantee the branch number 5 for D. In the following,
we only analyze the subcase

(4x0,4x1 6= 0 and 4x2 = 4x3 = 0 or 4x = 4x0|4x1|0|0)

With this assumption, Eq. (3) is simplified to:

D :


4y0 = 4x0 ⊕ L(4x1)
4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)
4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)

(4)

To show that w(4y) is greater than or equal to 3, we must find some conditions on L such
that if one of the 4yi’s is zero, then the other three 4yj ’s cannot be zero. Let 4y0 = 0, then:

4x0 ⊕ L(4x1) = 0⇒4x0 = L(4x1)

If 4x0 is replaced in the last three equations of Eq. (4), we obtain 4y1, 4y2 and 4y3 as
follows: 

4y1 = 4x1

4y2 = 4x1 ⊕ L(4x1)
4y3 = L2(4x1)

Obviously, 4y1 is not zero. Furthermore, for 4y2 and 4y3 to be non-zero, considering
Lemma 5, we conclude that the functions x⊕L(x) and L2(x) must be invertible. This condition
was already obtained in the Case 1. We continue this procedure for 4y1 = 0.

4y1 = 4x0 ⊕ L(4x0)⊕ x1 ⊕ L(4x1)⊕ L2(4x1) = 0⇒
4x0 ⊕ L(4x0) = x1 ⊕ L(4x1)⊕ L2(4x1)

From the previous subcase, we know that if 4y0 = 0 then 4y1 6= 0. Thus we conclude that,
4y0 and 4y1 cannot be simultaneously zero. Therefore, by contraposition we obtain that if
4y1 = 0 then 4y0 6= 0. So, we only check 4y2 and 4y3. From the third equation in Eq. (4), we
have:

(I ⊕L)(4y2) = L2(4x1)⊕L3(4x1)⊕L4(4x1)⊕4x1⊕L2(4x1)⊕L3(4x1)⊕L4(4x1) = 4x1

x ⊕ L(x) is invertible, thus we conclude that with the two active words 4x0 and 4x1 in
the input, 4y1 and 4y2 cannot be zero simultaneously. With the same procedure, we can prove
that 4y1 and 4y3 cannot be zero simultaneously.

Here we only gave the proof for the case (4x0,4x1 6= 0, 4x2 = 4x3 = 0). We performed
the proof procedure for the other cases and no new condition was added to the previous set of
conditions in Case 1.

7

Case 3: w(4x) = 3

In this case, assuming three active words in the input, we show that the output has at least
2 non-zero words. Here, only the case

(4x0,4x1,4x2 6= 0 and 4x3 = 0 or 4x = 4x0|4x1|4x2|0)

is analyzed. The result holds for the other three cases with w(4x) = 3. Let rewrite the Eq. (3)
for 4x3 = 0 as follows:

D :


4y0 = 4x0 ⊕ L(4x1)⊕4x2

4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)⊕4x2

4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2)

(5)

When 4y0 = 4y1 = 0, from the first 2 lines of Eq. (5), 4x0 and 4x1 are obtained as the
function of 4x2.

{
4y0 = 4x0 ⊕ L(4x1)⊕4x2 = 0
4y1 = 4x0 ⊕ L(4x0)⊕4x1 ⊕ L(4x1)⊕ L2(4x1)⊕4x2 = 0

⇒
{
4x1 = L(4x2)
4x0 = 4x2 ⊕ L2(4x2)

Now, replacing 4x0 = 4x2 ⊕ L2(4x2) and 4x1 = L(4x2) into 4y2 and 4y3 yields:

{
4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2) = 4x2

4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2) = (I ⊕ L)(4x2)

From Case 1, we know that the functions x ⊕ L(x) and x ⊕ L(x) ⊕ L2(x) are invertible.
Therefore, 4y2 and 4y3 are non-zero. If the other sub-cases with three active words in the
input are investigated, it is easy to see that no new condition is added to the present conditions
on L.

Finally, we conclude that the diffusion layer D presented in Fig. 1 is perfect if the linear
functions 

L1(x) = L(x)
L2(x) = x⊕ L(x)
L3(x) = x⊕ L(x)⊕ L2(x)
L4(x) = x⊕ L(x)⊕ L3(x)
L5(x) = x⊕ L2(x)⊕ L3(x)

are invertible. We know that L3(L2(x)) = x⊕ L3(x) and L5(L4(L2(x))) = x⊕ L7(x). Thus, by
Lemma 6, we can summarize the necessary conditions on the linear function L as the invertibility
of L(x), (I ⊕ L)(x), (I ⊕ L3)(x) and (I ⊕ L7)(x).

ut

Next, we need a simple method to check whether a linear function L satisfies the conditions
of Theorem 7 or not. For this purpose, we use the binary matrix representation of L. Assume
that xi is an n-bit word. Hence, we can represent a linear function L with an n × n matrix
A with elements in GF(2). By using Lemma 5, if L is invertible, A is not singular over GF(2)
(|A| 6= 0). To investigate whether a linear function L satisfies the conditions of Theorem 7, we
construct the corresponding matrix An×n from L and check the non-singularity of the matrices
A, I⊕A, I⊕A3 and I⊕A7 in GF(2). We introduce some lightweight linear functions with n-bit

8

Table 1. Some instances of the linear function L satisfying Theorem 7

Length of the input Some linear functions L

4 L(x) = (x⊕ x� 3) ≪ 1

8 L(x) = (x⊕ (x & 0x2)� 1) ≪ 1

16 L(x) = (x⊕ x� 15) ≪ 1

32 L(x) = (x⊕ x� 31) ≪ 15 or L(x) = (x ≪ 24)⊕ (x & 0xFF)

64 L(x) = (x⊕ x� 63) ≪ 1 or L(x) = (x ≪ 8)⊕ (x & 0xFFFF)

inputs/outputs in Table 1 that satisfy the above conditions. Note that there exist many linear
functions which satisfy the conditions of Theorem 7.

Unlike the shift and XOR operations, rotation cannot be implemented as a single instruction
on many processors. So, to have more efficient diffusion layers, we introduce new L functions for
32-bit and 64-bit inputs in Table 2 that only use shift and XOR operations.

Table 2. Some examples for the linear function L satisfying Theorem 7 without a circular shift

Length of the input Sample linear functions L

32 L(x) = (x� 3)⊕ (x� 1)

64 L(x) = (x� 15)⊕ (x� 1)

We can use this diffusion layer with L(x) = (x� 3)⊕ (x� 1) instead of the diffusion layers
used in the block ciphers MMB [3] or Hierocrypt [12]. In MMB, the diffusion layer is a 4 × 4
binary matrix with branch number 4. If we use the proposed diffusion layer in this cipher, it
becomes stronger against LC and DC attacks. This change also prevents the attacks presented
on this block cipher in [14]. By computer simulations, we observed that this modification reduces
the performance of MMB by about 10%. Also, if we use our proposed diffusion layer with the
same L(x), instead of the binary matrix of the block cipher Hierocrypt (called MDSH [12]), we
can achieve a 2 times faster implementation with the same level of security.

Moreover, in the nested SPN structure of Hierocrypt, we replaced the MDS matrix of AES in
GF(232) (because inputs of MDSH are 4 32-bit words) with irreducible polynomial x32+x7+x5+
x3 +x2 +x+1 [13] instead of the binary matrix MDSH. We observed that the replacement of our
proposed diffusion layer instead of MDSH yields 5% better performance than the replacement
of the AES matrix in GF(232).

In Eq. (1), if Fi(x1, x2, x3) = F0(x1, x2, x3) = L(x1) ⊕ x2 ⊕ L2(x3), where L(x) = 2x and
x ∈ GF(28), PHOTON MDS matrix is obtained [5]. If we change B to Eq. (2) and define
L(x) = 2x, we have:

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 3

⇒ B4 =


1 2 1 3
3 7 1 4
4 11 3 13
13 30 6 20


3 Other Desirable Structures for the Proposed Diffusion Layer

In Section 2, the general form of the proposed diffusion layer was introduced in Fig. 1. Then by
assuming a special case of αi’s and βi’s, an instance of this diffusion layer was given in Eq. (2).

9

In this section, we obtain all sets of αi’s and βi’s such that the diffusion layer of Fig. 1 becomes
perfect. We know some properties of αi’s and βi’s; for instance if all the words of the output are
directly represented as the function of input words, a function of each xi (0 ≤ i ≤ s− 1) must
appear in each equation. Another necessary condition is obtained for two active words of the
input. Assume there exist only two indices i, j such that xi, xj 6= 0. If we write each two output
words yp, yq in a direct form as a function of xi and xj , we obtain:{

yp = Lpi(xi)⊕ Lpj (xj)
yq = Lqi(xi)⊕ Lqj (xj)

If `pi
`qi

=
`pj

`qj
(or
∣∣∣ `pi `pj

`qi `qj

∣∣∣=0), then yp = 0 is equivalent to yq = 0. Thus, the minimum number
of active words in the input and output is less than or equal to s, and the branch number will
not reach the maximal value s+1. This procedure must be repeated for 3 and more active words
in the input. As an extension, we can use Lemma 3 of [13].

Lemma 8. Assume the diffusion layer has m inputs/outputs bits and ` is the linear operator of
L(x) and I is the linear operator of I(x). Moreover, MLD is an m ×m matrix representation
of the operator of the diffusion layer. If D is perfect, then all the sub-matrices of MLD is
non-singular.

If we construct the MLD of Eq. (2), we have:

MLD =


I ` I I ⊕ `

I ⊕ ` I ⊕ `⊕ `2 I `2

`2 I ⊕ `⊕ `3 I ⊕ ` I ⊕ `2 ⊕ `3
I ⊕ `2 ⊕ `3 `⊕ `2 ⊕ `3 ⊕ `4 `⊕ `2 `2 ⊕ `4


If we calculate 69 sub-matrix determinant of MLD, we find the result of Theorem 7. However,

by following this procedure, it is complicated to obtain all sets of αi’s and βi’s analytically. So, by
systematizing the method based on Lemma 8, we performed a computer simulation to obtain all
sets of αi’s and βi’s in the diffusion layer in Fig. 1 that yield a perfect diffusion. We searched for
all αi’s and βi’s that make the diffusion layer of Fig. 1 a perfect diffusion layer. This procedure
was repeated for s = 2, 3, . . . , 8. We found one set of (αi, βi) for s = 2, four sets for s = 3, and
four sets for s = 4. The obtained diffusion layers along with the conditions on the underlying
linear function L are reported in Table 3. We observed that for s = 5, 6, 7 the diffusion layer
introduced in Fig. 1 cannot be perfect.

Note that some linear functions in Table 1 and Table 2 such as L(x) = (x� 15)⊕ (x� 1)
cannot be used in the diffusion layers for which x⊕ L15(x) must be invertible.

As we can see in Fig. 1 and its instances presented in Table 3, there exists some kind of
regularity in the equations defining yi’s, in the sense that the form of yi+1 is determined by
the form of yi and vice versa (Fi’s are the same in Eq. (1)). However, we can present some
non-regular recursive diffusion layers with the following more general form (Fi’s are different):

where Ai,j , Bi,j ∈ {0, 1}. If Ai,j = α(j−i) mod s and Bi,j = β(j−i) mod s, then Fig. 3 is equiva-
lent to Fig. 1. The main property of this new structure is that it still has one linear function L
and a simple structure for the inverse. For example, if s = 4, then:

D :


y0 = x0 ⊕A0,1 · x1 ⊕A0,2 · x2 ⊕A0,3 · x3 ⊕ L(B0,1 · x1 ⊕B0,2 · x2 ⊕B0,3 · x3)
y1 = x1 ⊕A1,0 · y0 ⊕A1,2 · x2 ⊕A1,3 · x3 ⊕ L(B1,0 · y0 ⊕B1,2 · x2 ⊕B1,3 · x3)
y2 = x2 ⊕A2,0 · y0 ⊕A2,1 · y1 ⊕A2,3 · x3 ⊕ L(B2,0 · y0 ⊕B2,1 · y1 ⊕B2,3 · x3)
y3 = x3 ⊕A3,0 · y0 ⊕A3,1 · y1 ⊕A3,2 · y2 ⊕ L(B3,0 · y0 ⊕B3,1 · y1 ⊕B3,2 · y2)

10

Table 3. Perfect regular recursive diffusion layers for s < 8 with only one linear function L

s Diffusion Layer Function that must be invertible

2 D :

{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

L(x) and x⊕ L(x)

3 D :


y0 = x0 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x) and x⊕ L3(x)

3 D :


y0 = x0 ⊕ x1 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3 D :


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3 D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), and x⊕ L3(x)

4 D :


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4 D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ x3 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4 D :


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x) and x⊕ L15(x)

4 D :


y0 = x0 ⊕ x1 ⊕ x3 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ x3 ⊕⊕y1 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y2 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x) and x⊕ L15(x)

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕

 s−1⊕
j=0,j 6=i

Ai,jyj

⊕ L
 s−1⊕

j=0,j 6=i

Bi,jyj


8: end for

Fig. 3. Non-regular recursive diffusion layers

11

We searched the whole space for s = 3 and s = 4 (the order of search spaces are 212 and
224 respectively). For s = 3, we found 196 structures with branch number 4 and for s = 4, 1634
structures with branch number 5. The linear functions that must be invertible for each case
are different. Among the 196 structures for s = 3, the structure with the minimum number of
operations (only 7 XORs and one L evaluation) is the following:

D :


y0 = x0 ⊕ x1 ⊕ x2

y1 = x1 ⊕ x2 ⊕ L(y0 ⊕ x2)
y2 = x2 ⊕ y0 ⊕ y1

where L(x), x⊕ L(x) and x⊕ L3(x) must be invertible.

This relation is useful to enlarge the first linear function of the new hash function JH for 3
inputs [15]. For s = 4, we did not find any D with the number of L evaluations less than four.
However, the one with the minimum number of XORs is given as below:

D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y0)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0)

Searching the whole space for s = 5, 6, ... is too time consuming (note that for s = 5, the
order of search has complexity 240) and we could not search all the space for s ≥ 5.

4 Increasing the Number of Linear Functions

In Section 3, we observed that for s > 4 we cannot design a regular recursive diffusion layer
in the form of Fig. 1 with only one linear function L. In this section, we increase the number
of linear functions to overcome the regular structure of the diffusion layer of Eq. (2). A new
structure is represented in Fig. 4, where αk, βk, γk ∈ {0, 1}, k ∈ {0, 1, ..., s − 1}, α0 = 1, β0 = 0
and γ0 = 0.

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi =

s−1⊕
j=0

α[(j−i) mod s]yj ⊕ L1

(
s−1⊕
j=0

β[(j−i) mod s]yj

)
⊕ L2

(
s−1⊕
j=0

γ[(j−i) mod s]yj

)
8: end for

Fig. 4. Non-regular recursive diffusion layers with two linear functions L

If L1 and L2 are two distinct linear functions, Fig. 4 is too complicated to easily obtain
conditions on L1 and L2 that make it a perfect diffusion layer. To obtain simplified conditions
for a maximal branch number, let L1 and L2 have a simple relation like L2(x) = L2

1(x) or
L2(x) = L−1

1 (x). For the linear functions in Table 2 and Table 3, L2(x) is more complex in
comparison with L(x). However, there exist some linear functions L(x) such that L−1(x) is
simpler than L2(x). As an example, for L(x(n)) = (x(n) ⊕ x(n) � b) ≪ a, where b < n

2 we have:

L−1(x(n)) = ((x(n) ≫ a)⊕ (x(n) ≫ a)� b)

12

In Table 4, we introduce some recursive diffusion layers with (L1 = L and L2 = L−1) or
(L1 = L and L2 = L2) that have maximal branch numbers. These diffusion layers are obtained
similar to that of Table 3. In this table, for each case only y0 is presented. Other yi’s can be
easily obtained from Fig. 4, since Fi’s are all the same.

Table 4. Some perfect regular diffusion layers for s = 5, 6, 7, 8 with two linear functions

s y0 in a perfect diffusion Layer

5 y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x4)⊕ L2(x1)

5 y0 = L−1(x4)⊕ x0 ⊕ x2 ⊕ L(x1 ⊕ x3 ⊕ x4)

6 y0 = x0 ⊕ x5 ⊕ L(x3 ⊕ x5)⊕ L2(x1 ⊕ x2 ⊕ x4)

6 y0 = L−1(x2 ⊕ x5)⊕ x0 ⊕ x3 ⊕ L(x1 ⊕ x3 ⊕ x4 ⊕ x5)

7 y0 = x0 ⊕ x2 ⊕ x4 ⊕ L(x3)⊕ L2(x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6)

7 y0 = L−1(x1 ⊕ x3 ⊕ x6)⊕ x0 ⊕ x6 ⊕ L(x1 ⊕ x2 ⊕ x4 ⊕ x5)

8 y0 = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ L(x2 ⊕ x3 ⊕ x5)⊕ L2(x1 ⊕ x5 ⊕ x6 ⊕ x7)

8 y0 = L−1(x3 ⊕ x4 ⊕ x7)⊕ x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ L(x1 ⊕ x5 ⊕ x6 ⊕ x7)

If the 12 linear functions:

L(x) I ⊕ L(x) I ⊕ L3(x)
I ⊕ L7(x) I ⊕ L15(x) I ⊕ L31(x)
I ⊕ L63(x) I ⊕ L127(x) I ⊕ L255(x)
I ⊕ L511(x) I ⊕ L1023(x) I ⊕ L2047

are invertible (all irreducible polynomials up to degree 11), then all the diffusion layers introduced
in Table 4 are perfect. One example for a 32-bit linear function satisfying these conditions is:

L(x(32)) = (x(32) ⊕ (x(32) � 27)) ≪ 15

5 Conclusion

In this paper, we proposed a family of diffusion layers which are constructed using some rounds
of Feistel-like structures whose round functions are linear. These diffusion layers are called
recursive diffusion layers. First, for a fixed structure, we determined the required conditions for
its underlying linear function to make it a perfect diffusion layer. Then, for the number of words
in input (output) less than 8, we extended our approach and found all the instances of the perfect
recursive diffusion layers with the general form of Fig. 1. Also, we proposed some other diffusion
layers with non-regular forms which can be used for the design of lightweight block ciphers.
Finally, diffusion layers with 2 linear functions were proposed. By using two linear functions, we
designed perfect recursive diffusion layers for s = 5, 6, 7, 8 which cannot be designed based on
Fig. 1, i.e, using only one linear function.

The proposed diffusion layers have simple inverses, thus they can be deployed in SPN struc-
tures. These proposed diffusion layers can be used to improve the security or performance of
some of the current block ciphers and hash functions or in the design of the future block ciphers
and hash functions (especially the block ciphers with provable security against DC and LC).

References

1. D.J. Bernstein. The Salsa20 Stream Cipher, 2005. http://www.ecrypt.eu.org/stream/salsa20p2.html.
2. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In CRYPTO’90, volume

537, pages 2–21. Springer-Verlag, 1990.

13

3. J. Daemen. Cipher and Hash Function Design Strategies Based on Linear and Differential Cryptanalysis.
PhD thesis, Elektrotechniek Katholieke Universiteit Leuven, Belgium, 1995.

4. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer-
Verlag, 2002.

5. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash Functions. In CRYPTO’11,
volume 6841, pages 222–239. Springer-Verlag, 2011.

6. J. Guo, T. Peyrin, and M. Robshaw. Provable Security for an RC6-like Structure and a MISTY-FO-like
Structure Against Differential Cryptanalysis. In ICCSA’06, volume 3982, pages 446–455. Springer-Verlag,
2006.

7. J. Guo, T. Peyrin, and M. Robshaw. The LED Block Cipher. In CHES’11, volume 6917, pages 326–341.
Springer-Verlag, 2011.

8. Nyberg K. and L. Knudsen. Provable Security Against a Differential Attack. Journal of Cryptology, 8(1):27–
37, 1995.

9. J. Kang, S. Hong, S. Lee, O. Yi, C. Park, and J. Lim. Practical and Provable Security Against Differential
and Linear Cryptanalysis for Substitution-Permutation Networks. ETRI Journal, 23(4):158–167, 2001.

10. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In EUROCRYPT’93, volume 765, pages 386–397.
Springer-Verlag, 1993.

11. M. Matsui. New Structure of Block Ciphers with Provable Security Against Differential and Linear Crypt-
analysis. In FSE’96, volume 1039, pages 205–218. Springer-Verlag, 1996.

12. K. Ohkuma, H. Muratani, F. Sano, and S. Kawamura. The Block Cipher Hierocrypt. In SAC’01, volume
2012, pages 72–88. Springer-Verlag, 2001.

13. M. Sajadieh, M. Dakhilalian, and H. Mala. Perfect Involutory Diffusion Layers Based on Invertibility of Some
Linear Functions. IET Information Security Journal, 5(1):228–236, 2011.

14. M. Wang, J. Nakahara, and Y. Sun. Cryptanalysis of the Full MMB Block Cipher. In SAC’09, volume 5867,
pages 231–248. Springer-Verlag, 2009.

15. H. Wu. The Hash Function JH, 2008. http://icsd.i2r.astar.edu.sg/staff/hongjun/jh/jh.pdf.

14

