
Differential propagation analysis of Keccak

Joan Daemen and Gilles Van Assche

STMicroelectronics

Abstract. In this paper we introduce new concepts that help read and understand low-weight
differential trails in Keccak. We then propose efficient techniques to exhaustively generate all 3-
round trails in its largest permutation below a given weight. This allows us to prove that any 6-round
differential trail in Keccak-f [1600] has weight at least 74. In the worst-case diffusion scenario where
the mixing layer acts as the identity, we refine the lower bound to 82 by systematically constructing
trails using a specific representation of states.

Keywords: cryptographic hash function, Keccak, differential cryptanalysis, computer-aided
proof

1 Introduction

The goal of cryptanalysis is to assess the security of cryptographic primitives. Finding attacks
or properties not present in ideal instances typically contributes to the cryptanalysis of a given
primitive. Building upon previous results, attacks can be improved over time, possibly up to a
point where the security of the primitive is severely questioned.

In contrast, cryptanalysis can also benefit from positive results that exclude classes of attacks,
thereby allowing research to focus on potentially weaker aspects of the primitive. Interestingly,
weaknesses are sometimes revealed by challenging the assumptions underlying positive results.
Nevertheless, both attacks and positive results can be improved over time and together con-
tribute to the understanding and estimation of the security of a primitive by narrowing the gap
between what is possible to attack and what is not.

Differential cryptanalysis (DC) is a discipline that attempts to find and exploit predictable
difference propagation patterns to break iterative cryptographic primitives [6]. For ciphers, this
typically means key retrieval, while for hash functions, this is the generation of collisions or of
second preimages. The basic version makes use of differential trails (also called characteristics or
differential paths) that consist of a sequence of differences through the rounds of the primitive.
Given such a trail, one can estimate its differential probability (DP), namely, the fraction of all
possible input pairs with the initial trail difference that also exhibit all intermediate and final
difference when going through the rounds.

A more natural way to characterize the power of trails in unkeyed primitives is by their
weight w. In general the weight of a trail is is the sum of the weight of its round differentials,
where the latter is the negative of its binary logarithm. For many round functions, including that
of Keccak-f and Rijndael, the weight equals the number of binary equations that a pair must
satisfy to follow the specified differences. Assuming that these conditions are independent, the
weight of the trail relates to its DP as DP = 2−w and exploiting such a trail becomes harder as
the weight increases. For a primitive with, say, b input and output bits, the number of pairs that
satisfy these conditions is then 2b−w. The assumption of independence does not always apply.
For instance, a trail with w > b implies redundant or contradictory conditions on pairs, for which
satisfying pairs may or may not exist. Another example where this independence assumption
breaks down are the plateau trails that occur in Rijndael [9]. These trails, with weight starting
from w = 30 for 2 rounds, have a DP equal to 2z−w with z > 0 for a fraction 2−z of the keys

and zero for the remaining part. In general, they occur in primitives with strong alignment [4]
and a mixing layer based on maximum-distance separable (MDS) codes.

In the scope of DC, positive results can be established by finding a lower bound on the weight
of any trail over a specified number of rounds. For instance, the structure of Rijndael and the
properties of its diffusion operations allow to analytically derive such lower bounds [8]. Such
results can be transposed to the permutations underlying the hash function Grøstl [12]. Other
examples include a lower bound on the number of active S-boxes in JH [17] or computer-aided
proofs on the weight of trails in Noekeon [7] and on the minimum number of active AND gates
in MD6 [16,13].

Keccak is a sponge function submitted to the SHA-3 contest [15,5,2]. Recently, new results
were published on the differential resistance of this function and among those heuristic techniques
were proposed to build low-weight differential trails [11,14]. These gave the currently best trails
for 3, 4 and 5 rounds of the underlying permutation Keccak-f [1600]. In particular, Duc et
al. found a trail of weight 32 for 3 rounds, and this motivated us to systematically investigate
whether trails of lower weight exist. Also, there are some similarities between Keccak and
MD6, but unlike MD6, the permutation used in the proposed SHA-3 candidate Keccak has no
significant lower bounds on the weight of trails. So the philosophy behind [16,13] was another
source of inspiration and motivation for our research.

Lower bounds on symmetric trails were already proven in [5]. They provide lower bounds
with weight above the permutation width on Keccak-f [25] to Keccak-f [200] but only partial
bounds in the case of Keccak-f [1600]. Thanks to the Matryoshka structure [5], a lower bound
W on trails in Keccak-f [25w] implies a lower bound W ′ = W w′

w on w-symmetric trail in
Keccak-f [25w′] for w′ > w. These are summarized in Table 1.

w Lower bound for Keccak-f [25w] Lower bound for Keccak-f [1600]
1 30 per 5 rounds 1920 per 5 rounds tight
2 54 per 6 rounds 1728 per 6 rounds tight
4 146 per 16 rounds 2336 per 16 rounds non-tight
8 206 per 18 rounds 1648 per 18 rounds non-tight

Table 1. Lower bounds above the permutation width on 1- to 8-symmetric trails [5].

In this paper, we report on techniques to efficiently generate all the trails in Keccak-f [1600]
up to a given weight. We implemented these techniques in a computer program, which allowed
us at this point to completely scan the space of 3-round differential trails up to weight 36. This
confirmed that the trail found by Duc et al. has minimum weight and allowed us to demon-
strate that there are no 6-round trails with weight below 74. These results are summarized in
Table 2. The source code of the program will be made available in an updated version of the
KeccakTools package [3].

As a by-product of this trail search, this paper proposes new techniques to relate the proper-
ties of the θ mapping in Keccak to the weight of differential trails. In the worst-case diffusion
scenario where θ acts as the identity, we build upon the results of [5] and [14] to systematically
construct so-called in-kernel trails using an efficient representation of states.

Further discussions on how to exploit differential trails in Keccak can be found in [4]. Also,
the attacks in [10] combine algebraic techniques with a differential trail.

The paper is organized as follows. In Section 2, we recall the structure of Keccak and map-
pings inside its round function. Section 3 focuses on how to represent and extend the differential
trails of Keccak. Section 4 sets up the overall strategy and Section 5 introduces a basic trail

2

Rounds Lower bound Best known
3 32 (this work) 32 [11]
4 - 134 (Appendix B)
5 - 510 [14]
6 74 (this work) 1360 [5]

24 296 (this work) -

Table 2. Weight of differential trails in Keccak-f [1600].

generation technique. The advanced techniques are covered in Sections 6 and 7, which address
two complementary cases. Finally, Section 8 extends the results from 3 to 6 rounds.

2 Keccak

Keccak combines the sponge construction with a set of seven permutations denoted Keccak-f [b],
with b ranging from 25 to 1600 bits [1,5]. In this paper, we concentrate on the permutation used
in the SHA-3 submission, namely, Keccak-f [1600].

The state of Keccak-f [1600] is organized as a set of 5×5×64 bits with (x, y, z) coordinates.
The coordinates are always considered modulo 5 for x and y and modulo 64 for z. A row is a set
of 5 bits with given (y, z) coordinates, a column is a set of 5 bits with given (x, z) coordinates
and a slice is a set of 25 bits with given z coordinate.

The round function of Keccak-f [1600] consists of the following steps, which are only briefly
summarized here. For more details, we refer to the specifications [5].
– θ is a linear mixing layer, which adds a pattern that depends solely on the parity of the

columns of the state. Its properties with respect to differential propagation will be detailed
and exploited in Section 6.

– ρ and π displace bits without altering their value. Jointly, their effect is denoted by (x, y, z)
π◦ρ−→

(x′, y′, z′), with (x, y, z) a bit position before ρ and π and (x′, y′, z′) its coordinates afterward.
– χ is a degree-2 non-linear mapping that processes each row independently. It can be seen as

the application of a translation-invariant 5-bit S-box. The differential propagation properties
will be detailed below.

– ι adds a round constant. As it has no effect on difference propagation, we will ignore it in
the sequel.

3 Representing and extending trails

In general, for a function f with domain Zb
2, we define the weight of a differential (u′, v′) as

w(u′
f→ v′) = b− log2

∣∣{u : f(u)⊕ f(u⊕ u′) = v′
}∣∣ .

If the argument of the logarithm is non-zero (i.e., the DP is non-zero), we say that u′ and v′ are
compatible. Otherwise, the weight is undefined.

The weight of a trail is the sum of the weight of the differentials that compose this trail.
In Keccak-f , we specify differential trails with the differences before each round function. For
clarity, we adopt a redundant description by also specifying the differences before and after the
linear steps λ = π ◦ ρ ◦ θ. An n-round trail is of the following form, where each bi must be equal
to λ(ai),

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ . . .

χ→ an, (1)

and has weight w(Q) =
∑

i w(ai
χ◦π◦ρ◦θ−→ ai+1). Since bi = λ(ai), this expression simplifies to

w(Q) =
∑

i w(bi
χ→ ai+1).

3

3.1 Extending forward and trail prefixes

Given a trail as in (1), it is possible to characterize all states that are compatible with bn = λ(an)
through χ and thus to find all n+1-round trails Q′ that have Q as its leading part. This process
is called forward extension.

The χ mapping has algebraic degree 2 and, for a given input difference bn, the space of
compatible output differences forms a linear affine variety A(bn) with |A(bn)| elements [5]. For
a compatible an+1, the weight w(bn

χ→ an+1) depends only on bn and is equal to w(bn) ≜
log2 |A(bn)|, with the symbol ≜ denoting a definition. As χ operates on each row independently,
the weight w(b) can also be computed on each row independently and summed. To construct
A(b), the bases resulting from each active row are gathered. Table 3 displays offsets and bases
for the affine spaces of all single-row differences.

forward propagation
Difference offset base elements w(·) wrev(·) || · ||
00000 00000 0 0 0
00001 00001 00010 00100 2 2 1
00011 00001 00010 00100 01000 3 2 2
00101 00001 00010 01100 10000 3 2 2
10101 00001 00010 01100 10001 3 3 3
00111 00001 00010 00100 01000 10000 4 2 3
01111 00001 00011 00100 01000 10000 4 3 4
11111 00001 00011 00110 01100 11000 4 3 5

Table 3. Space of possible output differences, weight, minimum reverse weight and Hamming
weight of all row differences, up to cyclic shifts.

As a consequence, the weight of a n-round trail Q is w(Q) =
∑n−1

i=0 w(bi) and depends only
on the n-tuple (b0, . . . , bn−1). We call the latter a trail prefix. All n-round trails sharing this trail
prefix and with an compatible with bn−1 through χ have the same weight.

3.2 Extending backward and trail cores

Similarly, given a trail as in (1), it is possible to construct all states that are compatible with
a0 through χ−1 and thus to find all n+ 1-round trails Q′ that have Q as its trailing part. This
process is called backward extension. In contrast to χ, its inverse has algebraic degree 3 and the
space of compatible differences is not an affine variety in general. Yet, compatible values can be
identified per active row and combined.

For a difference a after χ, we define the minimum reverse weight wrev(a) as the minimum
weight over all compatible b before χ. Namely,

wrev(a) ≜ min
b : a∈A(b)

w(b).

Like for the restriction weight, the minimum reverse weight wrev(a) can be computed on each
row independently and summed. Values are also shown in Table 3.

Given a n − 1-round trail prefix Q = (b1, . . . , bn−1), it is easy to construct a difference b0
such that the trail prefix Q′ = b0||Q has weight given by w(Q′) = w(Q) +wrev(λ−1(b1)). This is
the smallest possible weight a n-round trail can have with Q as its trailing part. It follows that
a sequence of n− 1 state values Q̃ = (b1, . . . , bn−1) defines a set of n-round trails with a weight

4

at least

w̃(Q̃) ≜ wrev(λ−1(b1)) +

n−1∑
i=1

w(bi).

We denote the former by the term trail core and the latter by its weight. Note that a n-round
trail core is determined by only n− 1 states, although its weight takes n individual weights into
account.

4 Towards a bound for trails in Keccak-f [1600]

To find a lower bound on differential trail weights in Keccak-f [1600], our strategy is the
following.
– First, we exhaustively generate all 3-round trails up to a given weight T3. There exists a

trail of weight 32 as found by Duc et al. [11]. So by scanning the space of trails up to weight
T3 ≥ 32, we are sure to hit at least one trail and the trail with minimum weight yields a
tight lower bound on 3-round trails.

– Second, we derive a lower bound, not necessarily tight, on the weight of 6-round trails by
using the 3-round trails found. Any 6-round trail of weight 2T3 + 1 or less satisfies either
w(b0)+w(b1)+w(b2) ≤ T3 or w(b3)+w(b4)+w(b5) ≤ T3. We thus use forward and backward
extension from 3-round trails up to weight 2T3+1. If such trails are found, the one with the
smallest weight defines the lower bound, which is naturally tight. Otherwise, this establishes
a lower bound for the weight of 6-round trails to 2T3 + 2. In the latter case no trail with
weight 2T3 + 2 is known so the bound is not necessarily tight.

The reason for targeting 3-round trails in the first phase is the following. The minimum weight
of a 1-round trail is 2, with a single active bit in b0. For the 24 rounds of Keccak-f [1600], this
amounts to a lower bound of 24 × 2 = 48. Constructing a state a with only two active bits in
the same column leads to 2-round trail core with weight 8. Hence, if we base ourselves only on
2-round trail, we reach a lower bound of 12× 8 = 96. If the 3-round trail of weight 32 found by
Duc et al. [11] has minimum weight, this would mean that a 24-round trail has weight at least
8 × 32 = 256. Also, 3-round trail cores can be constructed by taking into account conditions
across one layer of χ. Generating exhaustively trails of 4 rounds or more up to some weight
would probably yield better bounds, but at the same time it is more difficult as several layers of
χ must be dealt with. Instead, the two-step approach described above can take advantage of the
exhaustive set of trails covered (i.e., all up to weight T3) to derive a bound based on T3 instead
of on the minimum weight over 3 rounds.

4.1 Generating all 3-round trails up to a given weight

In our approach we generate all 3-round differential trails of the form

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ b2

χ→ a3, (2)

up to some weight limit w(Q) ≤ T3. We call this the target space. We do this by searching for
all trail cores (b1, b2) with weight below T3. Each such trail core (b1, b2) thus represents a set
3-round trails of the form of Eq. (2) with weight not below that of its core. In the scope of this
paper, we limited ourselves to T3 = 36.

We covered the set of all 3-round trails up to weight T3 in three sub-phases:
1. In Section 5, we start with all cores such that wrev(λ−1(b1)) ≤ 7, w(b1) ≤ 7 or w(b2) ≤ 7.
2. In Section 6, we generate all remaining cores, except where both a1 and a2 are in the kernel.
3. In Section 7, we finish by generating all cores where both a1 and a2 are in the kernel.

5

4.2 Too many states to generate and extend, even when exploiting symmetry

A way to generate all trails in the target space is to first generate all states up to a given weight
and then do backward and forward extensions to obtain trail cores. If we define T1 ≜

⌊
T3
3

⌋
, then

for w̃(b1, b2) ≤ T3 either wrev(λ−1(b1)) ≤ T1, w(b1) ≤ T1 or w(b2) ≤ T1. To cover the target
space, we need to consider these cases:

– wrev(λ−1(b1)) ≤ T1, so we have to generate all states a1 with wrev(a1) ≤ T1, compute
b1 = λ(a1) and extend forward the 2-round trail cores (b1) to get 3-round trail cores.

– w(b1) ≤ T1, so we have to generate all states b1 with w(b1) ≤ T1 and extend forward the
2-round trail cores (b1).

– w(b2) ≤ T1, so we have generate all states b2 with w(b2) ≤ T1 and extend backward the
2-round trail cores (b2).

Unfortunately, this brute-force strategy requires a high number of states to cover the whole
space for an interesting target weight. E.g., if T3 = 36, then T1 = 12 and there are about
1.42× 1015 ≈ 250 states with weight up to 12 in Keccak-f [1600].

We can reduce this number by taking the z symmetry into account. Except for ι, which
does not influence difference propagation, all the step mappings of Keccak-f are invariant
when translated along z. Hence, for each trail Q = (b0, b1, . . . , bn) there exists a trail Q′ =
(z(b0), z(b1), . . . , z(bn)) of same weight, with z the translation operator along the z axis. In the
sequel, we will always consider trails up to translations in z. This reduces the search space by
approximately a factor w = 64—not exactly a factor w because of states that are periodic in z.
Yet, the number of states to extend forward and backward is still about 244.

5 Generating trails with a low number of active rows

In this section, we generate and extend states with weight up to T ′
1 = 7. This does not cover

the whole target space with T3 = 36 but the remaining portion of the target space is limited to
trails with a more flat weight profile, i.e., they satisfy w(bi) ≥ T ′

1 +1 = 8 for all i ∈ {0, 1, 2} and
w(bi) + w(bi+1) ≤ T ′

2 = T3 − (T ′
1 + 1) = 28 for all i ∈ {0, 1}.

More specifically, in this phase we look at the number of active rows in order to generate all
trail cores such that wrev(λ−1(b1)) ≤ T ′

1, w(b1) ≤ T ′
1 or w(b2) ≤ T ′

1, for T ′
1 = 7. According to

Table 3, each active row contributes for at least 2 to the weight. Hence,

w(b) ≥ 2∥b∥row and wrev(b) ≥ 2∥b∥row,

and we can cover all the states up to weight 7 by generating all states with up to ⌊T
′
1
2 ⌋ = 3 active

rows.
This approach can be refined by looking at the number of active rows not only for one state

but for two consecutive states. With χ, the minimum weight a round differential can have is 2.
So, wrev(λ−1(b1)) ≥ 2 implies that wrev(λ−1(b2)) + w(b2) ≤ w(b1) + w(b2) ≤ T3 − 2 = 34 and
similarly w(b2) ≥ 2 implies that wrev(λ−1(b1)) + w(b1) ≤ T3 − 2 = 34. Hence,

wrev(λ−1(bi)) + w(bi) ≤ T3 − 2 = 34 ⇒ ∥λ−1(bi)∥row + ∥bi∥row ≤
⌊
T3 − 2

2

⌋
= 17.

In practice, what we did was the following.

– Generate B = {b : (∥b∥row ≤ 3 or ∥λ−1(b)∥row ≤ 3) and ∥λ−1(b)∥row + ∥b∥row ≤ 17}. This is
done by first generating all states b with up to 3 active rows and filter on ∥λ−1(b)∥row, and
then generate all states a with up to 3 active rows, compute b = λ(a) and filter on ∥b∥row.

6

– Do forward extension of all b1 ∈ B and keep the cores Q̃ = (b1, b2) with w̃(Q̃) ≤ T3.
– Do backward extension of all b2 ∈ B and keep the cores Q̃ = (b1, b2) with w̃(Q̃) ≤ T3.

We found a trail core (b1, b2) with wrev(λ−1(b1)) + w(b1) + w(b2) = 4 + 4 + 24 = 32 (see
also Table 4). It contains the 3-round trail found by Duc et al. [11], of which a trail prefix is
displayed in Figure 2 in Appendix A.

There are
(
320
n

)
(31)n states with n active rows. As this function grows very quickly, it was

not reasonable to extend this search beyond 3 active rows.

6 Generating trails using the properties of θ

To investigate the remaining part of the target space, we look at the properties of states a with
respect to θ, and specifically the parity of its columns, to limit the weight of two-round trails. An
important parameter to classify the states a is their column parity, so as to study states in sets
of parities. From the column parity, we derive the θ-gap, defined below. With θ-gap g, the effect
of θ is to flip 10g bits. There are thus at least 10g active bits, each either in a or in θ(a). So, the
higher the θ-gap the higher wrev(a)+w(λ(a)) is likely to be. We can efficiently compute a lower
bound for wrev(a) + w(λ(a)) over all a with a given parity. For the target weights considered in
this paper, this allows us to limit the states to consider to those with a parity belonging to a
mere handful of values.

We then use the generated states a are to build trail cores by forward and backward extension.
As the θ-gap increases, the number of states a to consider decreases since more states a can
immediately be excluded. An important case is when all the columns of a have even parity, i.e.,
a is in the kernel. In this case, the θ-gap is zero and a high number of states must be generated
and extended. For this reason, this section focuses only the case where either a1 or a2 is not in
the kernel. The complementary case is covered in Section 7.

6.1 Properties of θ

As θ is a linear function, its properties are the same whether applied on a state absolute value
or on a difference, so we just write “value”. The following definitions are from [5].

The column parity (or parity for short) P (a) of a value a is defined as the parity of the
columns of a, namely P (a)[x][z] =

∑
y a[x][y][z]. A column is even (resp. odd) if its parity is

0 (resp. 1). The parity can also be defined on a slice, namely P (az)[x] =
∑

y a[x][y][z]. When
the parity of a state or of a slice is zero (i.e., all its columns are even), we say it is in the
column-parity kernel (or kernel for short).

The mapping θ consists in adding a pattern to the state, which we call the θ-effect. The
θ-effect of a value a is E(a)[x][z] = P (a)[x− 1][z]+P (a)[x+1][z− 1]. For a fixed θ-effect e[x][z],
θ comes down to adding the y-symmetric pattern e[x][y][z] ≜ e[x][z](∀y). So θ depends only on
column parities and always affects columns symmetrically in y.

A column of coordinates (x, z) is affected iff E(a)[x][z] = 1; otherwise, it is unaffected. Note
that the θ-effect always has an even Hamming weight so the number of affected columns is even.

The θ-gap is defined as the Hamming weight of the θ-effect divided by two. Hence, if the
θ-gap of a value at the input of θ is g, the number of affected columns is 2g and applying θ to
it results in 10g bits being flipped.

We have introduced the θ-gap via the θ-effect, but it can be defined directly using the parity
itself. For this we introduce an alternative, single-dimensional, representation of a parity p[x][z].
We map the (x, z) coordinates to a single coordinate t as t → (x, z) = (−2t, t) and denote
the result by p[t]. In this representation a run is a sequence of ones delimited by zeroes. As
illustrated on Figure 1, each run induces two affected columns. First, if it starts in coordinates

7

z

x

Fig. 1. Example of parity pattern. Each square represents a column. An odd column contains
a circle, while an affected column is denoted by a dot. A column can be both odd and affected.
The odd columns of a run are connected with a line. The affected columns due to a run are
located at the right (resp. top left) of the start (resp. end) column of the run.

(x, z), it implies an affected column in its right neighbor (x + 1, z). And if it ends in (x′, z′) it
implies an affected column in its top-left neighbor (x′−1, z′+1). Another example can be found
in Figure 2. The following lemma links the number of runs to the θ-gap.

Lemma 1. The parity p has θ-gap g iff p[t] has g runs.

6.2 The propagation branch number

The propagation branch number of a parity p is the minimum weight of the 2-round trail core
(b) among states with this parity. More formally,

B(p) ≜ min{w̃(b) : P (λ−1(b)) = p}.

Owing to the portion of the target space already covered in Section 5, we can limit the propa-
gation branch number to T ′

2 = 28. The strategy is as follows:

– First, we identify and exclude parity patterns p such that the propagation branch number
can be proven to exceed T ′

2 = 28.
– Then, for the remaining parity patterns p we look for all states b = λ(a) with P (a) = p and

w̃(b) ≤ T ′
2 = 28.

– Finally, we forward and backward extend the states seen as 2-round trail cores up to weight
T3 = 36.

Clearly, the kernel states, i.e., states such that P (a) = 0 must be considered. For instance,
a state a with just two active bits in the same column will have wrev(a) = 4. Then, b = λ(a) =
π(ρ(a)) since θ has no effect in this case, and b also has two active bits. For Keccak-f [1600], all
the rotation constants in ρ are different and these two bits will not be in the same slice, so not
in the same row and wrev(a) + w(b) = 8. Hence, the propagation branch number of the all-zero
parity is at least 8 and thus the all-zero parity pattern must be included.

8

States that are out of the kernel are likely to have a higher propagation branch number. We
now concentrate on how to find a lower bound on the propagation branch number of a given
parity pattern.

6.3 Bounding the row branch number

The row branch number of a parity p is the minimum number of active rows before and after λ
among states with this parity. More formally,

Brows(p) ≜ min{∥λ−1(b)∥row + ∥b∥row : P (λ−1(b)) = p}.

Since an active row has at least propagation weight 2, this means that B(p) ≥ 2Brows(p). We
can thus use the row branch number as a way to limit the search to parity patterns for which
w̃(b) ≤ T ′

2.
For a given parity pattern, we classify the columns as either affected, unaffected odd or

unaffected even. We make use of the following properties to find a lower bound on the row
branch number.
Lemma 2. In terms of active rows, θ satisfies the following properties:

– An active bit in an affected column before θ will be passive after θ, and vice-versa. So, for
each bit (x, y, z) π◦ρ−→ (x′, y′, z′) of an affected column, at least one of row (y, z) in λ−1(b) and
row (y′, z′) in b will be active.

– An odd unaffected column always contains at least one active bit and this bit stays active
after θ. So, for at least one bit (x, y, z) π◦ρ−→ (x′, y′, z′) of an odd unaffected column, both rows
(y, z) in λ−1(b) and (y′, z′) in b will be active.

These properties are translated into Algorithm 1, which returns a lower bound of Brows(p).
The algorithm avoids counting twice an active row by marking (in the sets a and b) the row
positions already encountered.

6.4 Looking for candidate parity patterns

To find trails such that any two consecutive rounds have weight up to T ′
2 = 28, we have to

consider the parity patterns listed in Lemma 3.

Lemma 3. A 2-round differential trail Q = (b0, b1, b2) in Keccak-f [1600] with w(Q) ≤ 28
necessarily satisfies one of the following properties on the parity of a1 = λ−1(b1):

– a1 is in the kernel, i.e., P (a1) = 0;
– the θ-gap of a1 is 1 with a single run of length 1 or 2; or
– the θ-gap of a1 is 2 or 3 with runs of length 1 each, all starting in the same slice.

If parities are considered up to translation along z, we can restrict ourselves to parity patterns
with runs starting in slice z = 0.

To prove this result, we conducted a recursive search as follows. Each parity is represented
as a set of runs. First, all parity patterns p with a single run (so θ-gap 1) are investigated.
All p with Brows(p) ≤ T ′

2
2 = 14 are stored into a set S. Then, we recursively add runs not

overlapping the already added ones (so as to cover θ-gaps higher than 1), and all found p with
Brows(p) ≤

T ′
2
2 = 14 are stored into a set S.

To limit the search, we use the following monotonicity property on the number of active
rows. Using Lemma 2, changing an unaffected even column into either an unaffected odd or an
affected column cannot decrease the number of active rows.

9

Algorithm 1 Computing a lower bound of Brows(p)
Let a and b be sets of row positions, which are initially empty
B ← 0
for each affected column (x, z) do

for y ∈ Z5 do
Let (x, y, z)

π◦ρ−→ (x′, y′, z′)
if (y, z) /∈ a and (y′, z′) /∈ b then

B ← B + 1
a← a ∪ {(y, z)} and b← b ∪ {(y′, z′)}

end if
end for

end for
for each unaffected odd column (x, z) do

Let (x, i, z)
π◦ρ−→ (x′

i, y
′
i, z

′
i) for i ∈ Z5

if {(i, z), i ∈ Z5} ∩ a = ∅ then
B ← B + 1
a← a ∪ {(i, z), i ∈ Z5}

end if
if {(y′

i, z
′
i), i ∈ Z5} ∩ b = ∅ then

B ← B + 1
b← b ∪ {(y′

i, z
′
i), i ∈ Z5}

end if
end for
return B

In the recursive search described above, adding a run to a parity pattern p can turn an un-
affected odd column into an affected column. Hence, we cannot use the monotonicity property
directly on the runs. However, adding a run never turns an affected column back into an unaf-
fected one. So, before recursively adding a run to p, we apply a modified version of Algorithm 1
that does not take unaffected odd columns into account; this modified algorithm is monotonic
in the runs. If the value returned by this modified algorithm is already above T ′

2
2 = 14, then

there is no need to further add runs. This efficiently cuts the search.
Before being added to the candidate set S, the parity pattern p is tested with the unmodified

Algorithm 1. For the remaining parity patterns, we explicitly generated all states a with these
parities up to w̃(λ(a)) ≤ T ′

2 = 28. This allowed us to prove Lemma 3.

6.5 Starting from out-of-kernel states

For a given parity pattern p, we can construct all states b = λ(a) with P (a) = p and w̃(b) ≤
T ′
2 = 28. We proceed in two phases.

– In a first phase, we generate all states a such that P (a) = p by assigning all possible 16 values
to affected (odd or even) columns and by assigning a single active bit in each unaffected odd
column. These states are such that ||a|| + ||λ(a)|| is exactly 10g + 2c, with g the θ-gap and
c the number of unaffected odd columns.

– In a second phase, we take the states generated in the first phase and add pairs of bits to all
unaffected columns. By adding a pair of bits, we do not alter P (a).

In both phases, we keep only the states b = λ(a) for which w̃(b) ≤ T ′
2 = 28. As can be seen in

Table 3, both the weight and the reverse minimum weight are monotonic, i.e., adding an active
bit to the state cannot decrease them. We can therefore limit the search by stopping adding
pairs of bits when w̃(b) is above T ′

2 = 28.
In practice, what we did was the following.

– Let P be the set of parity patterns satisfying one of the conditions of Lemma 3 except p = 0.

10

– By the method described above, we construct all states in the set B = {b : P (λ−1(b)) ∈
P and w̃(b) ≤ T ′

2 = 28}.
– Finally, we forward and backward extend the states in B to 3-round trail cores up to weight

T3 = 36.

We again found the same trail core as in Section 5. The trail prefix of weight 32 has P (a1) = 0
(so a1 is in the kernel) and P (a2) has one run of length 2 (so a2 has θ-gap 1). No other trail
cores were found.

When extending the states in B, we exhaustively scan all compatible states, thereby including
cases where P (a1) = 0 or P (a2) = 0. Hence, we covered the whole target space, except for trails
such that both P (a1) = 0 and P (a2) = 0.

7 Generating in-kernel trails

To close the target space, we must look at in-kernel trails of the form in Eq. (2) with both
P (a1) = 0 and P (a2) = 0. In the case of in-kernel trails, we were able to be completely cover
the space up to weight T3 = 40, and we expect the techniques presented here can cover trails of
higher weight. As P (a1) = P (a2) = 0, the θ operation has no effect and therefore bi = π(ρ(ai)).
So this comes down to looking for states a = a1, b = b1, c = a2 and d = b2 connected as:

a
π◦ρ−→ b

χ→ c
π◦ρ−→ d, with P (a) = P (c) = 0. (3)

We now summarize how we can efficiently generate all in-kernel three-round trail cores up to
some weight and provide more details in following subsections. The key element in our method
is the observation that any state b with P (a) = 0 and for which there exists a state c with
P (c) = 0 can be represented in a specific way. The states a and b are iteratively constructed by
adding active bits in the form of bit sequences called chains and vortices, defined in Section 7.2
below. Chains and vortices have an even number of active bits per column in a by construction
and hence ensure P (a) = 0.

In b, there can be zero, one or more slices called knots, which contain three or more active
bits. Each of these active bits is the end point of a chain that leads to another knot or that
connects back to the same knot. The intermediate active bits of a chain appear pairwise in slices
holding exactly two active bits in one column (called orbital slices, see Section 7.1). On top of
chains connecting knots, a state b can exhibit a vortex, i.e., a cyclic sequence of active bits that
appear pairwise both in the columns of a and in the columns of b.

By starting with an empty state and progressively adding chains, knots and vortices, one
can quickly build states a and b that satisfy P (a) = 0 and for which there exist c with P (c) = 0,
leading to 3-round in-kernel trail cores. Any state leading to a in-kernel trail can be represented
in this way, and care is taken so that all possible states are generated, up to a given target
weight. At each step, a lower bound on the weight of 3-round trail cores containing a and b is
computed so as to efficiently limit the search.

As a final step, the generated states a and b are forward-extended to states c and d, limiting
to c values in the kernel. Thanks to the properties of χ (see Section 3.1), the compatible states c
can be expressed as a linear affine space. It is thereby easy to take the intersection of this affine
space with the set of states such that P (c) = 0.

7.1 Characterizing the slices in b

Definition 1. A state b is tame if P (λ−1(b)) = 0 and such that there exists at least one state
c compatible with b through χ such that P (c) = 0.

11

To characterize states b such that P (c) = 0, we can reason on the slices bz of b since χ and
P can be jointly described in terms of slices. In particular, each slice cz of c must be in the
kernel, namely, P (cz) = 0, and we have to characterize the slices bz under that constraint. First,
if bz = 0 then cz = 0 and P (cz) = 0. Then, a slice bz with a single active bit cannot be in the
kernel after χ, as at least one column of cz will have a single active bit. Finally, a slice bz with
two active bits must have its two active bits in the same column for cz to be in the kernel. By
inspection of Table 3, a row with a single active bit at coordinate x, e.g., 00100 transforms into
an active row of the form uv100 with u, v ∈ {0, 1}, so the active bit stays active at x and zero,
one or two active bits can appear at x− 2 and x− 1 of the same row. So, if the two bits are not
in the same column, one of the active bits that stays after χ will not find another active bit in
the same column. We summarize this in the next lemma.

Lemma 4. If b is tame, then each of its slices has either
– no active bit,
– two active bits in the same column, or
– three or more active bits.

We call an empty slice a slice with no active bit, and an orbital slice is a slice with two active
bits in the same column. A slice that is neither empty not an orbital slice is called a knot. We say
that a knot is tame if it can transform after χ into a slice in the kernel. According to Lemma 4,
a tame knot has at least three active bits.

7.2 Characterizing the set of active bits
Since in the kernel θ acts as the identity, the active bits of a are just moved to other positions in
b and their number remains the same, i.e., ||a|| = ||b||. We can therefore represent a and b by a
list of active bit positions (pi)i=1...||a|| in either the coordinates (xi, yi, zi) in a or the coordinates
(x′i, y

′
i, z

′
i) in b, with (xi, yi, zi)

π◦ρ−→ (x′i, y
′
i, z

′
i).

First, we start with the active bits in a. We say that active bits pi and pj are peer if they
are in the same column in a, i.e., xi = xj and zi = zj . Since each column has an even number
of active bits when P (a) = 0, an active bit thus always has a peer.1

Then, we move to the active bits in b. We say that the two active bits pi and pj are chained
if they both lie in the same orbital slice in b. So x′i = x′j and z′i = z′j and no other active bit is
in slice z′i.

A chain is a sequence of bit positions of even length (p0, p1, p2, . . . , p2n−1) such that p2k and
p2k+1 are peer (∀k ∈ {0, . . . , n− 1}) and that p2k+1 and p2k+2 are chained (∀k ∈ {0, . . . , n− 2}).
In addition, the first and last active bits p0 and p2n−1 must be in knots (either the same one
or different ones). The simplest possible chain has length 2 and consists only in two peer active
bits.

The definition of a vortex is the same as that of a chain (p0, p1, p2, . . . , p2n−1), except that
the first and last active bits p0 and p2n−1 must be chained. In other words, a vortex forms a
cycle of bit positions linked alternatively by peer and chained relationships, all in orbital slices.

In a tame state, each active bit position has exactly one peer position. The active bit positions
in knots are the end points of chains, while the active bits in orbital slices are chained and belong
to chains or vortices. Therefore, any tame state can be represented as a set of vortices and chains
connecting knots.

1 While for columns with two active bits, the peer relationship is unambiguous, in the case of columns with four
active bits, we choose which pairs of active bits are peer. Thus we can see the representation of the states as
being augmented with additional attributes specifying the peer relationship and there may be several ways to
represent the same state. By generating states via this representation, the only risk is to generate more states
than necessary.

12

7.3 Generating all tame states

To generate all tame states up to a target weight T3, we generate states a and b by representing
them using the concepts of Sections 7.1 and 7.2. The generation builds (initially empty) states
a and b by iterating the following nested loops:

– In the outer loop, we add chains to the existing state. When adding a chain (p0, p1, p2, . . . , p2n−1),
the slices that receive the end points p0 and p2n−1 must become knots if they are not already.
If n > 1, the pairs of (chained) active bits (i2k+1, i2k+2) are added to empty slices, which
become orbital slices. Active bits cannot be added to already constructed orbital slices, as it
would contradict the definition of an orbital slice. Enough chains must be added such that
each knot contains at least 3 active bits (see Lemma 4).

– For a fixed set of chains produced in the previous step, the inner loop iterates on the number
and position of vortices. In a vortex, all active bits are chained, so they must be added to
empty slices, which become orbital slices.

With the monotonic lower bound function defined in the next section, we add chains and vortices
until this lower bound exceeds T3.

7.4 Lower-bounding the weight of in-kernel trails

We wish to determine a lower bound on the weight of 3-round in-kernel trail cores (b, d), namely,
on wrev(a) + w(b) + w(d) with a = λ−1(b), from a and b only, for use in our trail generation.
Since only d is unknown, this implies finding a lower bound on w(d). This can be done by first
determining a lower bound on the Hamming weight ||d|| and then bounding the weight of any
state with given Hamming weight.

To determine a lower-bound on ||d||, we work on each slice of b. If slice bz has u = ∥bz∥row
active rows, then the slice cz has at least u active bits. In addition, P (cz) = 0 implies that the
number of active bits must be even, so ||cz|| ≥ 2⌈u2 ⌉. Finally, we have ||d|| = ||c|| so

||d|| ≥ 2
∑
z

⌈
∥bz∥row

2

⌉
.

From Table 3, it is easy to verify the following lower bound:

w(d) ≥ ŵ(||d||) ≜
⌈
4||d||
5

⌉
+ [1 if ||d|| = 1 or 2 (mod 5)].

Hence, we define the lower weight of b as

L(b) ≜ wrev(λ−1(b)) + w(b) + ŵ
(
2
∑
z

⌈
∥bz∥row

2

⌉)
.

The lower weight yields a lower bound on the weight of 3-round in-kernel trail cores (b, d)
regardless of d.

7.5 Limiting the search by lower-bounding the weight

At each level of the loop described in Section 7.3, the corresponding iteration is aborted, and
elements are not further added, if we can be sure that the lower weight L(b) will become larger
than the target weight T3. Adding a chain to the state can potentially bring new knots and/or
new orbital slices. Adding a vortex necessarily brings new orbital slices. Therefore, there is a

13

Number w̃(·) wrev(b1) w(b1) w(b2) P (a1) P (a2) Structure of a1, b1

1 32 4 4 24 kernel θ-gap 1

1 35 12 12 11 kernel kernel vortex of length 6

7 36 12 12 12 kernel kernel vortex of length 6

7 39 12 12 15 kernel kernel vortex of length 6
2 39 12 11 16 kernel kernel 2 knots connected by 3 chains

41 40 12 12 16 kernel kernel vortex of length 6
4 40 12 12 16 kernel kernel 2 knots connected by 3 chains

Table 4. Summary of all 3-round differential trail cores found in Keccak-f [1600] up to weight
36, and up to weight 40 for in-kernel trails. The number indicates the number of cores with the
same properties indicated in the other columns.

limit in the number of knots and orbital slices that must be considered for the generation to be
complete up to the target weight.

As a preliminary step, the minimum reverse weight satisfies the following inequality (see
Table 3):

wrev(a) ≥ ŵrev(||a||) ≜
⌈
3||a||
5

⌉
.

We see from Lemma 4 that each tame knot contributes to at least 3 active bits in a and in b.
Furthermore, the number of bits in each slice of a must be even (P (a) = 0), so ||a|| ≥ 2

⌈
3k
2

⌉
and

wrev(a) ≥ ŵrev(||a||), with k the number of knots. In b, each tame knot has at least 3 active bits
on at least 2 different active rows, hence contributing at least 5 to the weight, and so w(b) ≥ 5k.
Each active row in b contributes to at least one active bit in d so ||d|| ≥ 2k and w(d) ≥ ŵ(||d||).

For instance, k = 5 knots implies that ||a|| ≥ 16 and wrev(a) ≥ ŵrev(16) = 10, that w(b) ≥ 25
and that ||d|| ≥ 10 and w(d) ≥ ŵ(10) = 8, so a lower weight of at least 43. If T3 ≤ 42, looking
for configurations with from 0 to 4 knots is therefore sufficient, not even counting the orbital
slices that also compose chains.

We found cores of weight 35, 36, 39 and 40, as detailed in Table 4. For illustration purposes,
examples of trail prefixes are shown in Figures 3, 4 and 5 in Appendix A.

8 Extension to six-round trails

Table 4 summarizes all the 3-round cores found. These trail cores completely represent all the
3-round trails up to weight 36 (or 40 for in-kernel trails).

The second phase introduced in Section 4 consists in exhaustively extending forward and
backward all the 3-round trail cores into 6-round trails cores. As no 6-round trail of weight up
to 73 were found, we conclude that a 6-round differential trail in Keccak-f [1600] has at least
weight 74. In the specific case of in-kernel trails, no 6-round trail of weight up to 81 were found
and we conclude that a 6-round in-kernel differential trail in Keccak-f [1600] has at least weight
82.

For the 24 rounds of Keccak-f [1600], a differential trail has at least weight 296, and an
in-kernel trail has at least weight 328.

9 Conclusions

We studied and implemented the exhaustive generation of 3-round differential trails in the
Keccak-f [1600] permutation, which allowed us to prove a lower bound on the weight of differ-
ential trails. The techniques developed in this paper exploit the properties of the mixing layer

14

in its round function to provide better bounds than what a brute-force method could provide.
Table 2 shows that there remains a gap between the best known trails and the lower bound
beyond three rounds that calls for future work. Finally, the concepts introduced in this paper,
such as chains, vortices, knots and parity runs, help read trails and understand them.

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability of the sponge construction,
Advances in Cryptology – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol. 4965,
Springer, 2008, http://sponge.noekeon.org/, pp. 181–197.

2. , Cryptographic sponge functions, January 2011, http://sponge.noekeon.org/.
3. , KeccakTools software, September 2011, http://keccak.noekeon.org/.
4. , On alignment in keccak, ECRYPT II Hash Workshop 2011, 2011.
5. , The Keccak reference, January 2011, http://keccak.noekeon.org/.
6. E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, CRYPTO (A. Menezes and

S. Vanstone, eds.), Lecture Notes in Computer Science, vol. 537, Springer, 1990, pp. 2–21.
7. J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen, Nessie proposal: the block cipher Noekeon, Nessie

submission, 2000, http://gro.noekeon.org/.
8. J. Daemen and V. Rijmen, The design of Rijndael — AES, the advanced encryption standard, Springer-Verlag,

2002.
9. , Plateau characteristics and AES, IET Information Security 1 (2007), no. 1, 11–17.

10. I. Dinur, O. Dunkelman, and A. Shamir, New attacks on Keccak-224 and Keccak-256, Fast Software Encryption
2012, 2012, to appear, draft available from Cryptology ePrint Archive, Report 2011/624.

11. A. Duc, J. Guo, T. Peyrin, and L. Wei, Unaligned rebound attack: Application to Keccak, Fast Software
Encryption 2012, 2012, to appear, draft available from Cryptology ePrint Archive, Report 2011/420.

12. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen,
Grøstl – a SHA-3 candidate, Submission to NIST (round 3), 2011.

13. E. Heilman, Restoring the differential security of MD6, ECRYPT II Hash Workshop 2011, 2011.
14. M. Naya-Plasencia, A. Röck, and W. Meier, Practical analysis of reduced-round Keccak, Indocrypt 2011, 2011.
15. NIST, Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm

(SHA-3) family, Federal Register Notices 72 (2007), no. 212, 62212–62220, http://csrc.nist.gov/groups/
ST/hash/index.html.

16. R. Rivest, B. Agre, D. V. Bailey, S. Cheng, C. Crutchfield, Y. Dodis, K. E. Fleming, A. Khan, J. Krishna-
murthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer, and Y. L. Yin, The MD6 hash function
– a proposal to NIST for SHA-3, Submission to NIST, 2008, http://groups.csail.mit.edu/cis/md6/.

17. H. Wu, The hash function JH, Submission to NIST (round 3), 2011.

A Some three-round differential trails

In this section, we give some examples of trails for illustration purposes. In the figures, trail
prefixes are depicted with b0, a1, b1, a2, b2 from top to bottom as in Eq. (2) and the weight of
each round is given before χ. The difference b0 was taken such that w(b0) = wrev(a1). At each
step, only the slices with non-zero difference are shown with their z coordinate. The x coordinate
goes from left to right with x = 0 at the center, while the y coordinate goes from bottom to top
with y = 0 at the center. Active bits are depicted in black.

When P (a1) = 0, the peer and chained relationships are shown with straight and dashed
lines, respectively. Examples of structures include a vortex of length 6, two knots connected by
three chains, and one knot connected to itself by two chains. In Figure 2, P (a2) ̸= 0 and the
effect of θ is illustrated in details.

B A four-round differential trail

Figure 6 shows a 4-round differential trail of weight 134. This is the differential 4-round trail
on Keccak-f [1600] with the lowest known weight at this time of writing. The uneven weight
profile (16, 13, 12, 93) suggests that trails with lower weight exist.

15

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://gro.noekeon.org/
http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/groups/ST/hash/index.html
http://groups.csail.mit.edu/cis/md6/

z = 0

weight: 4

χ

z = 0

θ, ρ, π

z = 55 z = 56

weight: 4

χ

z = 55 z = 56 z = 57

θ

z = 55 z = 56 z = 57

ρ, π

z = 0 z = 6 z = 14 z = 18 z = 21 z = 34

z = 48 z = 49 z = 52 z = 53 z = 57 z = 61

weight: 24

parity and θ-effect:
z

x

odd column
affected column

Fig. 2. Trail prefix of weight 32. It contains the 3-round trail core with smallest weight. The state
a1 is in the kernel. A chain of length 2 connects the knots in z′ = 55 and z′ = 56. However, these
knots are not tame and a2 cannot be in the kernel. Instead, a2 has θ-gap 1 and contains a run
of length 2 with odd columns in (x, z) ∈ {(1, 55), (4, 56)}. The columns (x, z) ∈ {(2, 55), (3, 57)}
are affected and hence are flipped by θ.

16

z = 9 z = 43 z = 56

weight: 12

χ

z = 9 z = 43 z = 56

θ, ρ, π

z = 0 z = 6 z = 7

weight: 12

χ

z = 0 z = 6 z = 7

θ, ρ, π

z = 25 z = 26 z = 28 z = 33 z = 43

weight: 11

Fig. 3. Trail prefix of weight 35. It contains a vortex of length 6 in orbital slices z′ ∈ {0, 6, 7}.

17

z = 3 z = 21 z = 46

weight: 12

χ

z = 3 z = 21 z = 46

θ, ρ, π

z = 0 z = 18

weight: 11

χ

z = 0 z = 18

θ, ρ, π

z = 9 z = 20 z = 26 z = 38

z = 39 z = 43 z = 62

weight: 16

Fig. 4. Trail prefix of weight 39. It contains two knots, one in z′ = 0 and the other in z′ = 18.
The knots are connected with three chains of length 2, ensuring that each knot has three active
bits. There are no orbital slices.

18

z = 0 z = 21 z = 43 z = 54

weight: 16

χ

z = 0 z = 21 z = 43 z = 54

θ, ρ, π

z = 0 z = 18 z = 34

weight: 13

χ

z = 0 z = 18 z = 34

θ, ρ, π

z = 15 z = 35 z = 36 z = 38 z = 57 z = 62

weight: 12

Fig. 5. Trail prefix of weight 41. It contains a single knot in z′ = 0. Two chains of length 4 connect
this knot to itself, which has four active bits. The chains go through orbital slices z′ = 18 and
z′ = 34.

19

z = 8 z = 19 z = 28 z = 49

weight: 16

χ

z = 8 z = 19 z = 28 z = 49

θ, ρ, π

z = 0 z = 46 z = 63

weight: 13

χ

z = 0 z = 46 z = 63

θ, ρ, π

z = 0 z = 1 z = 2 z = 21 z = 55

weight: 12

χ

z = 0 z = 1 z = 2 z = 21 z = 55

θ, ρ, π

z = 1 z = 2 z = 3 z = 4 z = 6 z = 10 z = 15 z = 18 z = 19

z = 20 z = 21 z = 23 z = 27 z = 28 z = 29 z = 30 z = 33 z = 34

z = 35 z = 37 z = 39 z = 41 z = 42 z = 44 z = 45 z = 46 z = 48

z = 49 z = 52 z = 53 z = 56 z = 57 z = 58 z = 59 z = 60 z = 61

weight: 93

Fig. 6. A 4-round trail prefix of weight 134.

20

	Differential propagation analysis of Keccak

