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Abstract. Due to their fast performance in software, an increasing number of cryptographic primi-
tives are constructed using the operations addition modulo 2n, bit rotation and XOR (ARX). However,
the resistance of ARX-based ciphers against differential cryptanalysis is not well understood. In this
paper, we propose a new tool for evaluating more accurately the probabilities of additive differen-
tials over multiple rounds of a cryptographic primitive. First, we introduce a special set of additive
differences, called UNAF (unsigned non-adjacent form) differences. Then, we show how to apply
them to find good differential trails using an algorithm for the automatic search for differentials.
Finally, we describe a key-recovery attack on stream cipher Salsa20 reduced to five rounds, based
on UNAF differences.
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1 Introduction

Differential cryptanalysis [4] and linear cryptanalysis [14] have shown to be two of the most
powerful techniques in the cryptanalysis of symmetric-key cryptographic primitives. Security
against linear and differential cryptanalysis is therefore typically a major design criterion for
modern ciphers. An example of this is the wide-trail design strategy, used to provide provable
resistance against linear and differential cryptanalysis for the AES block cipher [6].

In order to achieve a fast performance in software, an increasing number of cryptographic
primitives are built using the operations addition modulo 2n, rotation and XOR (ARX). Examples
include the block cipher FEAL [17], the Salsa20 stream cipher family [3], as well as the SHA-3
finalists BLAKE [2] and Skein [9]. Although ARX-based algorithms are very popular, their
resistance to differential cryptanalysis [4] is not well understood.

The probability with which differences propagate through a sequence of operations must
be calculated efficiently and accurately, in order to correctly assess the security of a cipher
against differential cryptanalysis. Lipmaa et al. studied the xor-differential probability of addi-
tion (xdp+) in [12], and the additive differential probability of XOR (adp⊕) in [13]. These results
were generalized using the S-functions framework, introduced by Mouha et al. [15].

As shown by Velichkov et al. [18], the additive differential probability of ARX (adpARX) can
differ significantly from the multiplication of the differential probability of the separate compo-
nents – addition, rotation and XOR. Although an algorithm was proposed in [18] for the exact
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Table 1. Notation.

Symbol Meaning

n Number of bits in a word
x n-bit word

x[i] Select the (i mod n)-th bit (or element) of the n-bit word x,
x[0] is the least-significant bit (or element)

|x| The absolute value of x
x The negation of x i.e. x = −x (e.g. 1 = −1)

#A Number of elements in the set A
+, - Addition modulo 2n, subtraction modulo 2n

⊕ Exclusive-OR (XOR)
≪ t Left bit rotation by t positions

α→ β Input difference α propagates to output difference β
wr

i 32-bit word i from the input state to round r + 1 of Salsa20
∆r

i Additive difference in word i of the input to round r + 1 of Salsa20
0r

i Zero difference in word i of the input to round r + 1 of Salsa20
{∆U}ri UNAF difference in word i of the input to round r + 1 of Salsa20
ARX The sequence of the operations: +, ≪,⊕ as a single operation

HW(x) Hamming weight of x (number of non-zero bits in x)

calculation of adpARX, unfortunately their method does not scale to analyze larger components.
The accurate calculation of the probability of a differential characteristic therefore still remains
an open problem for ARX constructions.

In this paper we take a different approach. Namely, we do not calculate the exact differential
probability of a component consisting of more than one ARX operations. Instead, we multiply the
differential probabilities of several ARX operations in order to estimate the total probability. As
we want to avoid that this calculation differs significantly from the actual probability (e.g. due
to dependencies between the inputs as noted in [18]), we propose to use a new type of difference:
the UNAF difference, which represents a set of specially chosen additive differences.

We apply UNAF differences to the cryptanalysis of the ARX-based stream cipher Salsa20.
A general algorithm for automatic search of differentials is briefly discussed. We apply it to
find several differentials for three rounds of Salsa20. By multiplying the probabilities adpARX

of separate ARX components, we estimate that the best differential has a probability of 2−10.
Using UNAF differences, the same probability is evaluated as 2−4. Experimentally, we estimate
the probability of this differential to be 2−3.39. We observe that the probability obtained using
UNAF differences is much closer to the experimental value.

Finally, we apply UNAF differences to mount key-recovery attack on a version of Salsa20
reduced to 5 rounds. Note that this is not the best known attack on Salsa20. It is therefore
provided only as a demonstration of a practical application of UNAF differences. Furthermore,
we expect that our attack can be extended to more rounds.

The outline of the paper is as follows. In Sect. 2, we describe the UNAF framework. It is
applied to the differential analysis of stream cipher Salsa20 in Sect. 3. Sect. 4 concludes the
paper. Notation is defined in Table 1.

2 The UNAF Framework

In this section, we describe the UNAF framework. We define UNAF differences and state the
main UNAF theorem. The UNAF differential probability of ARX (udpARX) is defined and a general
algorithm for the automatic search for high-probability differentials is briefly discussed.
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2.1 Preliminaries

Before we give the formal definition of UNAF differences, we first recall a few related concepts:
the binary-signed digit (BSD) difference and the non-adjacent form (NAF) difference.

Definition 1. (BSD difference) A BSD difference is a difference whose bits are signed and take
values in the set {1, 0, 1}:

∆±a : ∆±a[i] = (a2[i]− a1[i]) ∈ {1, 0, 1}, 0 ≤ i < n . (1)

An additive difference ∆+a can be composed of more than one BSD difference ∆±a. From any
BSD difference, the corresponding additive difference can be computed as: ∆+a =

∑n−1
i=0 ∆±a[i] ·

2i.

All BSD differences corresponding to ∆+a can be obtained by replacing 01 with 11̄ and vice
versa and by replacing 01̄ with 1̄1 and vice versa [7, 16]. Note also that the number of pairs
(a1, a2) that satisfy the n-bit difference ∆+a is 2n, while the number of pairs that satisfy any of
its BSD differences ∆±a is 2k, where k is the number of zeros in the word ∆±a. Therefore, the
following inequality holds: 2k ≤ 2n, k = n−HW(∆±a).

The non-adjacent form (NAF) difference is a special BSD difference and is defined as follows:

Definition 2. (NAF) A NAF (non-adjacent form) difference is a BSD difference in which no
two adjacent bits are non-zero:

∆Na : ∄i : (∆Na[i] 6= 0) ∧ (∆Na[i + 1] 6= 0), 0 ≤ i < n− 1 . (2)

For every additive difference ∆+a, there is exactly one NAF difference ∆Na (ignoring the sign of
the MSB). No other BSD difference has a lower Hamming weight than ∆Na [16]. We illustrate
this with the following example:

Example 1. Let n = 4 and ∆+a = 3. Then all possible BSD differences corresponding to ∆+a
are 0011, 0101̄, 011̄1, 11̄1̄1, 1̄1̄1̄1, 11̄01̄ and 1̄1̄01̄. Of them, only 0101̄ is in non-adjacent form
(NAF). It also has the lowest Hamming weight among all BSD differences, namely 2.

By enumerating all possible combinations of signs of the non-zero bits of ∆Na, we can construct
a special set of additive differences. What is special about this set, is that all of its elements
correspond to the same unsigned NAF difference. This set is a UNAF difference and is denoted
by ∆Ua. More formally:

Definition 3. (UNAF) A UNAF difference is a set of additive differences that correspond to
the same unsigned NAF difference (i.e. a NAF difference with the signs ignored):

∆Ua = {∆+x : |∆Nx| = |∆Na|} . (3)

It is easy to see that the size of the UNAF set ∆Ua is 2k, where k is the Hamming weight of the
n-bit word ∆Na, excluding the MSB. We further clarify the concept of a UNAF difference with
the following example:

Example 2. Consider again an example where n = 4. Let ∆+a = 3, thus ∆Na = 0101̄. Then,
∆Ua = {∆+x1 = 3, ∆+x2 = −3, ∆+x3 = 5, ∆+x4 = −5}. This follows from |∆Nx1| = |∆

Nx2| =
|∆Nx3| = |∆

Nx4| = |∆
Na|, because |0101̄| = |01̄01| = |0101| = |01̄01̄| = 0101.
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2.2 Main UNAF Theorem

The main UNAF theorem provides the motivation for applying UNAF differences to the differ-
ential analysis of ARX. Before we state it, we define the additive differential probability of XOR
(adp⊕).

The differential probability of the operation XOR, when differences are expressed using addi-
tion modulo 2n, is denoted by adp⊕. For fixed additive differences α, β and γ, adp⊕ is equal to
the number of pairs (a1, b1) for which the equality ((a1 + α) ⊕ (b1 + β)) − (a1 ⊕ b1) = γ holds,
divided by the total number of such pairs. More formally, adp⊕(α, β → γ) is defined as:

Definition 4. (adp⊕)

adp⊕(α, β → γ) =
#{(a1, b1) : c2 − c1 = γ}

#{(a1, b1)}

= 2−2n ·#{(a1, b1) : c2 − c1 = γ} , (4)

where c1 = a1 ⊕ b1, c2 = (a1 + α)⊕ (b1 + β) and 22n is the total number of pairs (a1, b1).

Efficient algorithms for the computation of adp⊕ were studied in [13, 15]. Next we state the
main UNAF theorem. Its proof is given in Appendix A.

Theorem 1. (Main UNAF theorem) If the probability with which input additive differences
∆+a and ∆+b propagate to output difference ∆+c through XOR is non-zero, then the probability
with which any of the input additive differences belonging to the corresponding UNAF sets resp.
∆Ua and ∆Ub propagate to any of the output additive differences belonging to the UNAF set
∆Uc is also non-zero:

adp⊕(∆+a,∆+b→ ∆+c) > 0 =⇒ adp⊕(∆+ai, ∆
+bj → ∆+ck) > 0 ,

∀i, j, k : ∆+ai ∈ ∆Ua, ∆+bj ∈ ∆Ub, ∆+ck ∈ ∆Uc . (5)

Theorem 1 states that if a given additive differential is possible w.r.t. the XOR operation,
then all additive differentials whose inputs and outputs belong to the same UNAF sets, are also
possible. This is illustrated with the following example.

Example 3. Let n = 4 and ∆+a = 5, ∆+b = 1, ∆+c = 6. Because adp⊕(5, 1→ 6) = 0.15625 > 0,
we can use Theorem 1 to show that adp⊕(∆+ai, ∆

+bj → ∆+ck) > 0 for any ∆+ai ∈ ∆Ua =
{3,−3, 5,−5}, ∆+bj ∈ ∆Ub = {1,−1} and ∆+ck ∈ ∆Uc = {6,−6}.

In the next section we investigate the probability with which UNAF differences propagate
through the ARX operation.

2.3 The UNAF Differential Probability of ARX

The UNAF differential probability of ARX represents the probability with which the sets of input
additive differences ∆Ua, ∆Ub and ∆Ud propagate to the set of output additive differences ∆Ue.
It is defined as:

Definition 5. (udpARX)

udpARX(∆Ua, ∆Ub, ∆Ud
t
−→ ∆Ue) =

#{(a1, b1, d1) : ∆+a ∈ ∆Ua, ∆+b ∈ ∆Ub, ∆+d ∈ ∆Ud, ∆+e ∈ ∆Ue}

#{(a1, b1, d1) : ∆+a ∈ ∆Ua, ∆+b ∈ ∆Ub, ∆+d ∈ ∆Ud}
, (6)

where
∆+e = e2 − e1 = ARX(a1 + ∆+a, b1 + ∆+b, d1 + ∆+d, t)− ARX(a1, b1, d1, t),

and ARX(x, y, z, t) = ((x + y) ≪ t)⊕ z.
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The probability udpARX is computed using a method conceptually similar to the one proposed
for the computation of adpARX in [18]. The main difference is that in this case we are dealing
with sets of input and output additive differences. Details on this computation are provided in
Appendix B.

2.4 An Algorithm for Finding the Best Output Difference

To demonstrate how the UNAF framework can be used to construct high-probability differential
characteristics, we have developed a general algorithm for the automatic search of differentials.
It is capable of computing the highest probability output difference from a given operation.
The proposed algorithm is applicable to any type of difference and any operation. The only
condition is that the propagation of the difference through the operation can be represented
as an S-function. The method to find the best output difference is based on the A* search
algorithm [11].

Space constraints do not allow us to present the algorithm here in detail. However, a full
description of the algorithm accompanied by pseudo-code can be found in Appendix C. Further-
more, a software toolkit that implements this algorithm is available.4

In the following sections we describe an application of the algorithm and of UNAF differences
to the differential analysis of stream cipher Salsa20.

3 Applications

We describe several applications of the UNAF framework to the differential analysis of stream
cipher Salsa20. UNAF differences can be used to obtain more accurate estimations of the prob-
abilities of differentials through multiple rounds of ARX operations. We describe a key-recovery
attack using UNAF differentials on a version of Salsa20, reduced to 5 rounds.

3.1 Description of Salsa20

Salsa20 is a stream cipher proposed by Bernstein in [3]. It is one of the finalists of the eSTREAM
competition [8]. Salsa20 operates on 32-bit words. The inputs are a 256-bit key (k0, k1, . . . , k7),
a 64-bit nonce (v0, v1), a 64-bit counter (t0, t1) and four predefined 32-bit constants c0, c1, c2, c3.
These inputs are mapped to a two-dimensional square matrix as follows:









c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3









→









w0
0 w0

1 w0
2 w0

3

w0
4 w0

5 w0
6 w0

7

w0
8 w0

9 w0
10 w0

11

w0
12 w0

13 w0
14 w0

15









. (7)

The basic operation of Salsa20 is the quarterround. One quarterround transforms four of the
input words to round r+1: wr

0, w
r
1, w

r
2, w

r
3 into four output words: wr+1

0 , wr+1
1 , wr+1

2 , wr+1
3 by the

means of four consecutive ARX operations:

wr+1
1 = wr

1 ⊕ ((wr
0 + wr

3) ≪ 7) = ARX(wr
0, w

r
3, w

r
1, 7) , (8)

wr+1
2 = wr

2 ⊕ ((wr+1
1 + wr

0) ≪ 9) = ARX(wr+1
1 , wr

0, w
r
2, 9) , (9)

wr+1
3 = wr

3 ⊕ ((wr+1
2 + wr+1

1 ) ≪ 13) = ARX(wr+1
2 , wr+1

1 , wr
3, 13) , (10)

wr+1
0 = wr

0 ⊕ ((wr+1
3 + wr+1

2 ) ≪ 18) = ARX(wr+1
3 , wr+1

2 , wr
0, 18) . (11)
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wr
0 wr

4 wr
8 wr

12 wr
5 wr

9 wr
13 wr

1 wr
10 wr

14 wr
2 wr

6 wr
15 wr

3 wr
7 wr

11

quarterround quarterround quarterround quarterround

ws
0 ws

4 ws
8 ws

12 ws
5 ws

9 ws
13 ws

1 ws
10 ws

14 ws
2 ws

6 ws
15 ws

3 ws
7 ws

11

Fig. 1. Round s = r + 1 of Salsa20.

One round of Salsa20 consists of four parallel applications of the quarterround transformation.
Each transformation is applied to the elements (in permuted order) of one of the four columns
of the input state matrix, followed by a permutation of the words, as shown on Fig. 1.

Salsa20 has a total of 20 rounds, although versions with eight and twelve rounds have been
proposed, resp. Salsa20/8 and Salsa20/12. The output state after the last round is added to
the initial input state by means of a feed-forward operation. This produces sixteen 32-bit words
(512 bits) of key stream.

3.2 Estimating the Probability of Differentials Using UNAF Differences

We apply the algorithm of Sect. 2.4 to search for high probability differential characteristics in
Salsa20. We use a greedy strategy in which at every ARX operation we select the output UNAF
difference with the highest probability, before proceeding with the next ARX operation. In this
way we find the following truncated differential for three rounds:

∆0
8 = 0x80000000→ ∆3

9 = 0x80000000 . (12)

The expression (12) implies that all words of the input state have zero difference, except for the
word at position 8, which has difference 0x80000000. A three round differential characteristic
that satisfies (12) is shown on Fig. 2. The probability with which the differential (12) holds,
obtained experimentally over 220 chosen plaintexts, is pexper = 2−3.39.

We compute two theoretical estimations of pexper. The first estimation is based on single
additive differences and is denoted p̂add. It is computed as a multiplication of adpARX probabilities:

p̂add =
∏

adpARX = 2−10 . (13)

The second estimation of pexper is based on UNAF differences and is denoted p̂unaf . It is computed
as a multiplication of udpARX probabilities:

p̂unaf =
∏

udpARX = 2−4 . (14)

The computations (13) and (14) are shown in Table 2 and Table 3 respectively.
Clearly p̂unaf is a better estimation of pexper than p̂add. The reason is that multiple differential

characteristics connect the input and output differences of the differential (12). The estimation
p̂add is based upon a single one among all possible characteristics, while the estimation p̂unaf

takes into account several characteristics at once. This effect is illustrated in Fig. 3. Note that

4 http://www.ecrypt.eu.org/tools/s-function-toolkit
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00
0 ∆0

8 00
12

quarterround quarterround quarterround quarterround

01
1

∆1
3

∆1
0 01

4 01
12 01

10 ∆1
2 01

6

quarterround quarterround quarterround quarterround

02
11

∆2
8

02
5 ∆2

9 ∆2
1

quarterround quarterround quarterround quarterround

∆3
9

Fig. 2. Three round differential characteristic satisfying the differential ∆0
8 → ∆3

9.

the input {∆U}08 and output {∆U}39 UNAF sets contain a single element – the additive difference
80000000. Because of that {∆U}08 = ∆0

8 and {∆U}39 = ∆3
9 and therefore the estimations (13)

and (14) can be compared to each other.
In the case where the output UNAF set contains more than one element (i.e. {∆U}39 6= ∆3

9),
we propose to divide the resulting probability by the size of the output UNAF set #∆U :

p̂unaf =

∏

udpARX

#∆U
. (15)

The estimation (15) is based on the assumption that all additive differences from the output
UNAF set ∆U hold with approximately the same (or very close) probabilities. For the case of
Salsa20, our experiments confirm this assumption.

We use (15) to estimate the probabilities with which several differences from the output state
after Salsa20/3 hold, given input UNAF difference {∆U}08 = 0x80000000. The results are shown
in Table 4 and in Fig. 4.

The results presented in Table 4 and Fig. 4 show that although the probability estimations
p̂unaf/#∆U computed using UNAF differences with (15) deviate from the values obtained exper-
imentally pexper, they are still more accurate than the estimations p̂add based on single additive
differences and computed with (13).

3.3 Key-recovery Attack on Salsa20/5

In this section, we apply UNAF differences to mount a key-recovery attack on a version of
stream cipher Salsa20 reduced to 5 rounds, denoted as Salsa20/5. Although its complexity is
lower than exhaustive key search, the attack does not improve the best known attack on the
cipher. Therefore it is described only as a demonstration of a practical application of UNAF
differences.
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Table 2. The estimated probability p̂add (13) of the differential (12); adpARX refers to adpARX((∆+a+∆+b), ∆+d
t
−→

∆+e).

∆ ∆+a ∆+b ∆+d t ∆+e = ∆ adpARX

∆1
2 0 0 80000000 9 80000000 1

∆1
3 80000000 0 0 13 fffff000 2−1

∆1
0 fffff000 80000000 0 18 40020000 2−2.41

∆2
1 40020000 0 0 7 01000020 2−2.99

∆2
8 0 0 80000000 9 80000000 1

∆2
9 80000000 0 0 13 fffff000 2−1

∆3
9 0 01000020 fffff000 7 80000000 2−2.58

p̂add = 2−10

Table 3. The estimated probability p̂unaf (14) of the differential (12); udpARX refers to udpARX(∆Ua, ∆Ub, ∆Ud
t
−→

∆Ue).

∆U ∆Ua ∆Ub ∆Ud t ∆Ue = ∆U udpARX

{∆U}12 0 0 80000000 9 80000000 1
{∆U}13 80000000 0 0 13 00001000 1
{∆U}10 00001000 80000000 0 18 40020000 2−0.41

{∆U}21 40020000 0 0 7 01000020 2−0.99

{∆U}28 0 0 80000000 9 80000000 1
{∆U}29 80000000 0 0 13 00001000 1
{∆U}39 0 01000020 00001000 7 80000000 2−2.58

p̂unaf = 2−4

Using the best-first search algorithm from Sect. 2.4 we find the following UNAF differential
for 3 rounds of Salsa20:

{∆U}08 = 0x80000000→ {∆U}311 = 0x01000024 . (16)

The input UNAF set {∆U}08 = 0x80000000 consists of one element: the additive difference
0x80000000. The output UNAF set {∆U}311 = 0x01000024 contains the following 23 additive
differences: 0x01000024, 0x0100001c, 0x00ffffe4, 0x00ffffdc, 0xff000024, 0xff00001c,
0xfeffffe4, 0xfeffffdc. The probability that an additive difference ∆3

11 falls into the set
{∆U}311 was determined experimentally to be pexper = 2−3.38.

In our attack, we first invert the feed-forward operation to compute the differences ∆5
5,

∆5
6, . . ., ∆5

10 of the state after round 5. Next, we guess 5 of the 8 words of the secret key, in order
to compute the differences ∆5

1,∆
5
2,∆

5
3,∆

5
4,∆

5
11. Therefore, we do not only know the differences

∆5
1,∆

5
2,. . .,∆

5
11, but also the corresponding values of the word pairs. This allows us to compute

the differences ∆4
12,∆

4
13,∆

4
14 from the state after round 4. Using the latter, we can finally compute

the UNAF difference {∆U}311. If it is equal to 0x01000024, then our guess of the key words was
correct with some probability. This process is illustrated in Appendix D.

Since the probability of the differential (16) is 2−3.38 ≥ 2−4, from M = 26 chosen plaintext
pairs we expect that 2−4 ·26 = 22 = 4 pairs will follow the differential (i.e. will satisfy the output
difference {∆U}311).

We assume that a pair encrypted under a wrong key results in a uniformly random difference.
The probability that this difference falls into the set {∆U}311 is Prand = 23/232 = 2−29. Therefore
the probability that at least 4 plaintext pairs turn out to be all false positives (i.e. they satisfy
the differential, but are encrypted under a wrong key) can be calculated using the binomial
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{∆U}08 = ∆0
8

80000000

80000000 {∆U}12

00001000 fffff000 {∆U}13

40020000 3ffe0000 c0020000 bffe0000 {∆U}10 80000000 {∆U}28

01000020 00ffffe0 ff000020 feffffe0 {∆U}2

1 00001000 fffff000 {∆U}2

9

80000000

{∆U}39 = ∆3
9

1

2−1
1

2−2.41

1

2−2.99 2−1

2−2.58

Fig. 3. A single UNAF characteristic, satisfying the differential ∆0
8 → ∆3

9. It is composed of multiple additive
characteristics.

distribution:

64
∑

i=4

(

64

i

)

(2−29)i(1− 2−29)64−i ≈ 2−96.72 . (17)

As explained, because we guess 160 bits (5 words) of the secret key, in the attack we have
to make 2160 guesses. For each guess, we encrypt 26 chosen plaintext pairs and we partially
decrypt the resulting ciphertext pairs for 2 rounds in order to compute the output difference.
From 2160 guesses, the expected number of wrong keys that result in at least 4 pairs with the
right difference is 2−96.72 · 2160 ≈ 263. For each of those keys, we guess the remaining 96 bits (3
words) i.e. we make 296 guesses per candidate key. For each guess we encrypt one plaintext pair
(i.e. two encryptions are performed) under the full key and check if the encryption matches the
corresponding ciphertext pair. This results in 2 · 263 · 296 = 2160 additional operations. Thus we
estimate the total number of encryptions of our attack to be:

2 · 26 · 2160 + 2 · 263 · 296 = 2167 + 2160 ≈ 2167 . (18)

Therefore the presented attack on Salsa20/5 has data complexity 27 chosen plaintexts and
time complexity 2167 encryptions. As shown in Table 5, it is comparable to the attack proposed
by Crowley [5].

9



Table 4. Estimating the probabilities of differentials for three rounds of Salsa20 using UNAF differences.

i ∆3
i {∆U}3i p̂add p̂unaf/#∆U pexper

9 80000000 80000000 2−10.00 2−4.00 2−3.38

13 ffe00100 00200100 2−15.75 2−7.75 2−4.93

14 ff00001c 01000024 2−16.29 2−8.31 2−6.35

1 00e00fe4 01201024 2−23.01 2−13.04 2−10.18

2 00000800 00000800 2−35.59 2−16.62 2−11.08

3 fff000a0 001000a0 2−41.48 2−20.04 2−14.68

6 01038020 01048020 2−41.76 2−21.91 2−15.68

7 ffefc000 00104000 2−44.65 2−22.15 2−17.42
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Estimated experimentally
UNAF

Additive

Fig. 4. Three estimates of the probabilities of eight differentials for three rounds of Salsa20, based on the data
from Table 4: (1) estimation obtained experimentally, (2) based on UNAF differences and (3) based on single
additive differences.

4 Conclusion

In this paper, we introduced UNAF differences. These are sets of specially chosen additive
differences used to estimate the probabilities of differentials through sequences of ARX operations
more accurately.

We presented the main UNAF theorem, which shows how a UNAF difference groups several
possible additive differences together. Further, we investigated the propagation of UNAF dif-
ferences through the ARX operation. We defined the UNAF differential probability of ARX and
noted that it can be computed efficiently using the S-functions framework proposed by Mouha
et al.

UNAF differences were applied to the cryptanalysis of the stream cipher Salsa20. We found
that for three rounds of Salsa20, the probability of the best differential based on additive dif-
ferences is estimated as 2−10. Evaluating the same probability using UNAF differences leads
to the value 2−4. The latter is closer to the the probability of the differential 2−3.39 that was
determined experimentally.

A general algorithm for the automatic search for differentials was briefly discussed. It was
used to find high-probability UNAF differentials for three rounds of Salsa20. One of them was
used to mount a key-recovery attack on Salsa20 reduced to five rounds. The attack has a time
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Table 5. Overview of key-recovery attacks on Salsa20.

Rounds Reference Time Data Type of Differences

Salsa20/5 Our result 2167 27 Additive
Salsa20/5 Crowley [5] 2165 26 XOR

Salsa20/6 Fischer et al. [10] 2177 216 XOR

Salsa20/7 Aumasson et al. [1] 2151 226 XOR

Salsa20/8 Aumasson et al. [1] 2251 231 XOR

complexity of 27 and a data complexity of 2167. It therefore does not improve the best-known
attack on the cipher. Nevertheless, to the best of our knowledge, this is the first cryptanalysis
result on Salsa20 that is based on additive differences. Furthermore, we expect that the attack
can be extended to more rounds. One possibility in this direction is to group two or more ARX

operations and consider them as a single operation. Another is to improve the method for finding
differential characteristics for multiple rounds.

The results in this paper were obtained for the Salsa20 stream cipher. We see the application
of UNAF differences to other ARX-based ciphers as another interesting topic for future research.
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A Proof of Theorem 1

The following Lemma provides the condition under which the probability adp⊕ is non-zero.

Lemma 1 (Theorem 2 of [13]). All differences ∆+a, ∆+b and ∆+c for which adp⊕(∆+a, ∆+b→
∆+c) > 0, are ∆+a = ∆+b = ∆+c = 0, and

∆+a = ∆+a[n− 1 . . . q + 1] ‖ ∆+a[q] ‖ 0∗ , (19)

∆+b = ∆+b[n− 1 . . . q + 1] ‖ ∆+b[q] ‖ 0∗ , (20)

∆+c = ∆+c[n− 1 . . . q + 1] ‖ ∆+c[q] ‖ 0∗ , (21)

where ¬(∆+a[q] = ∆+b[q] = ∆+c[q] = 0) and ∆+a[q]⊕∆+b[q] = ∆+c[q]. Each of the sub-word
differences ∆+a[n−1 . . . q+1], ∆+b[n−1 . . . q+1] and ∆+c[n−1 . . . q+1] can take any arbitrary
value. The symbol ∗ represents the Kleene star.

We proceed next with the proof of Theorem 1.

Proof. From Reitwiesner’s algorithm for the construction of the NAF [16], it follows that if
the first non-zero bit (starting from the LSB) of ∆+ai is at position q, then the first non-zero
bit of its NAF representation ∆Nai is also at position q. Since all ∆+ai in (5) belong to the
same UNAF set ∆Ua, the first non-zero bit for all of them is in the same position q. The same
observation holds for ∆+bj and ∆+ck. From adp⊕(∆+a, ∆+b → ∆+c) > 0 and Lemma 1, it
follows that ∆+a[q] ⊕∆+b[q] = ∆+c[q]. Therefore ∆+ai[q] ⊕∆+bj [q] = ∆+ck[q],∀i, j, k. Again
by Lemma 1, it follows that if ∆+a is replaced by any ∆+ai belonging to the same UNAF set
∆Ua, the resulting probability adp⊕ is still non-zero. The same observation can be made for
∆+b and ∆+c, which completes the proof. ⊓⊔

B Computation of udpARX

The probability udpARX can be efficiently computed using the S-function framework [15, 18]. We
briefly describe this computation below. It is also a part of a toolkit that will be made publicly
available.

The propagation of input UNAF differences ∆Ua, ∆Ub and ∆Ud to output UNAF difference
∆Ue is represented as an S-function. The latter is used to compute 16 adjacency matrices. Each
of them corresponds to a given value of the i-th bit of each of the four UNAF differences and
connects a set of possible input states to a set of possible output states.

The differential (∆Ua[i], ∆Ub[i], ∆Ud[i + t]
t
−→ ∆Ue[i + t]) at bit position i is written as the

bit string w[i]← (∆Ua[i] ‖ ∆Ub[i] ‖ ∆Ud[i + t] ‖ ∆Ue[i + t]). At each bit position 0 ≤ i < n, the
index w[i] ∈ {0, . . . , 15} selects one of the 16 adjacency matrices Aw[i]. The probability udpARX

is computed as follows:

udpARX(∆Ua,∆Ub, ∆Ud
t
−→ ∆Ue) =

14
∑

j=0

Lj

(

n−1
∏

i=n−t

Aw[i]

)

R

(

n−t−1
∏

i=0

Aw[i]

)

Cj . (22)
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In (22), the summation is performed over each of the 14 possible initial states. The reason
for having multiple initial states is the bit rotation by t positions, as explained in [18]. The
multiplication by the projection matrix R at bit position t is necessary because of the rotation
operation. The column vectors Cj , 0 ≤ j < 15 represent the 15 possible initial states. The row
vectors Lj , 0 < j < 15 represent their corresponding final states. For further details, we refer
to [18].

Note that the matrices Aw[i] are of dimension 540 × 540, but these can be minimized to
60× 60 by combining equivalent states using the algorithm of [15, §3.5] .

C An Algorithm for Finding the Best Output Difference

Let � be an operation that takes a finite number of n-bit input words a1, b1, d1, . . . and computes
an n-bit output word c1 = �(a1, b1, d1, . . .). Let • be a type of difference. Let α,β,ζ,. . . and γ
be differences of type • such that a1 • a2 = α, b1 • b2 = β, d1 • d2 = ζ, . . . and c1 • c2 = γ
for some a2,b2,d2,. . . and some c2. The differential probability with which input differences
α, β, ζ, . . . propagate to output difference γ with respect to the operation � is denoted as
•dp�(α, β, ζ, . . . → γ). Finally, let the difference • be such that it is possible to express its
propagation through the operation � as an S-function consisting of N states. Therefore, there
exist adjacency matrices Aw[i] such that the probability •dp� can be efficiently computed as

LAw[n−1] . . . Aw[1]Aw[0]C, where L = [1 1 · · · 1 ] is a 1 × N matrix and C = [1 0 · · · 0 ]T is an
N ×1 matrix (as in [15]). The problem is to find an output difference γ such that its probability
pγ over all possible output differences is maximal:

pγ = •dp�(α, β, ζ, . . .→ γ) = max
j
• dp�(α, β, ζ, . . .→ γj) . (23)

We represent (23) as a problem of finding the shortest path in an node-weighted binary tree.
We define the binary tree T = (N, E), where N is the set of nodes and E is the set of edges. The
height of T is n + 1 with a dummy start node positioned at level −1 and the leaves positioned
at level n − 1. Each node at level i : 0 ≤ i < n contains a value of γ[i], where i = 0 is the LSB
and i = n− 1 is the MSB. Every node on level i has two children at level i + 1. Since the input
differences α, β, ζ, . . . are fixed, at every bit position i we can choose between two matrices Aw[i],
corresponding to the two possibilities for the output difference γ[i].

To find the output difference with the highest probability, we use the A* search algorithm [11].
In this algorithm, an evaluation function f can be computed for every node in the search tree.
The f -function represents the weight of a node, and is based on the cost of the path from the
start node, and a heuristic that estimates the distance to the goal node. The algorithm always
expands the node with the highest f -value (corresponding to the highest probability). The A*
search algorithm guarantees that the optimal solution will be found, provided that the evaluation
function f never underestimates the probability of the best output difference. After introducing
some definitions, we will define an evaluation function f and prove in Theorem 2 that this f
satisfies the required condition.

Let vector Xi = [xi,0 xi,1 · · · xi,N−1 ] be a transition probability vector, i.e. xi,r ≥ 0 for

0 ≤ r < N and
∑N−1

r=0 xi,r ≤ 1. We define Hr as a column vector of length N , of which the
r-th element (counting from 0) is 1 and all other elements are 0. The cost of a node at level i
is then denoted by ‖Xi‖ (the 1-norm of Xi) and is calculated as ‖Aw[i]Aw[i−1] · · ·Aw[0]C‖. Let

us define a sequence of row vectors Ĝi,r, 0 ≤ r < N and 0 ≤ i < n. Each Ĝi,r is a product of
matrices LAw[n−1]Aw[n−2] . . . Aw[i+1], where each of the A-matrices are chosen such that Ĝi,rHr is
maximized. The choice of the A-matrices may differ for different values of r. We define row vector
Gi as the product of matrices LAw[n−1]Aw[n−2] . . . Aw[i+1], where the A-matrices are chosen such

13



that GiXi is maximized. For a node at level i with cost ‖Xi‖, the evaluation function f is defined
as
∑N−1

r=0 Ĝi,rHrxi,r.

Theorem 2. The evaluation function f =
∑N−1

r=0 Ĝi,rHrxi,r never underestimates the probabil-
ity of the best output difference.

Proof. The following inequality holds: Ĝi,rHr ≥ GiHr for 0 ≤ r < N . The latter can be proven
by contradiction: if Ĝi,rHr < GiHr for some r, then Ĝi,r is not the product of A-matrices that
maximizes Ĝi,rHr, which contradicts its definition. Because probabilities are non-negative, we
can multiply both sides of the inequality by the state probability xi,r, to obtain Ĝi,rHrxi,r ≥
GiHrxi,r, 0 ≤ r < N . By summing the left and the right sides of the N inequalities, we

obtain
∑N−1

r=0 Ĝi,rHrxi,r ≥
∑N−1

r=0 GiHrxi,r = GiXi. By definition, GiXi is the best choice of
A-matrices, starting from transition probability Xi. This proves that the left-hand side of the
inequality never underestimates the probability, which proves the theorem. ⊓⊔

Before we can apply the A* algorithm to compute the best output difference, we must
determine the values of Ĝi,rHr for 0 ≤ i < n and 0 ≤ r < N . This is done by again running the
A* algorithm for the most significant bit, then for the two most significant bits, and so on until
we process the entire word. For the MSB, we define Ĝn−1,r = L for 0 ≤ r < N . For the two
MSBs, we run the A* algorithm for every 0 ≤ r < N , setting the transition probability vector
Xn−2 to Hr. This allows us to compute Ĝn−2,rHr. This process is continued until Ĝ0,rHr for
0 ≤ r < N is calculated. Having calculated all values of Ĝi,rHr, we then use the A* algorithm to
search for the best output difference by setting the state transition probability vector X−1 = C.
Pseudo-code of the entire A* search algorithm is provided in Algorithm 1.

D Attack on Salsa20/5 using UNAF Differences

Fig. 5 illustrates the attack presented in Sect. 3.3. Gray boxes denote guessed words and white
boxes denote words that are either known or can be computed.
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Fig. 5. Key-recovery attack on Salsa20/5 using the 3-round UNAF differential {∆U}08 → {∆
U}311. Gray boxes

denote guessed words; white boxes denote words that are either known or can be computed.
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Algorithm 1 Find the Best Output Diff. of Type • w.r.t. Operation �.

Input: Matrices Aw[i] for •dp� ; input diffs. α, β, ζ, . . .,; num. states N .
Output: Output difference γ and probability pγ such that

pγ = •dp�(α, β, ζ, . . .→ γ) = max
j
• dp�(α, β, ζ, . . .→ γj) .

1: Define struct node = {index, γ, findex−1, Ĥindex−1}
2: Init priority queue of nodes ordered by f : Q = ∅
3: Init output difference: γ ← ∅
4: for i = n− 1 downto 0 do
5: if i = n− 1 then
6: Ĝi ← L = [1 1 · · · 1 ]
7: else
8: Ĝi ← [ Ĝi,0 Ĝi,1 . . . Ĝi,N−1 ]
9: end if

10: if i = 0 then
11: N = 1
12: end if
13: for r = 0 to N − 1 do
14: Reset priority queue: Q = ∅
15: Init the total probability of node vi−1: fi−1 ← 1
16: Init the transition probability vector vi: Ĥi−1 ← Ĥi−1,r

17: Init node vi ← {i, γ, fi−1, Ĥi−1}
18: Add new node to the queue: Q.push(vi)
19: vbest ← Q.top(); {j, γ, fj−1, Ĥj−1} ← vbest

20: while j 6= n do
21: Remove vbest from the queue: Q.pop()
22: for q = 0 to 1 do
23: Set the j-th bit of γ: γ[j]← q
24: Estimate the total probability: fj ← ĜjA

q

w[j]Ĥj−1

25: Compute the transition probability vector: Ĥj ← Aq

w[j] Ĥj−1

26: Init child of vbest: node vq
j+1 ← {j + 1, γ, fj , Ĥj}

27: Add the child to the queue: Q.push(vq
j+1)

28: end for
29: Extract the node with the lowest total cost: vbest ← Q.top()
30: {j, γ, fj−1, Ĥj−1} ← vbest

31: end while
32: vbest ← Q.top(); fbest ← get cost(vbest)
33: Set the r-th element of Ĝi: Ĝi,r ← fbest

34: end for
35: end for
36: Extract the node with highest total probability: vbest ← Q.top()
37: Get the output difference associated to vbest: γ, pγ ← get gamma(vbest)
38: return γ, pγ
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