
Practical Cryptanalysis of ARMADILLO2

Maŕıa Naya-Plasencia1,? and Thomas Peyrin2,??

1 University of Versailles, France
maria.naya-plasencia@prism.uvsq.fr

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

thomas.peyrin@gmail.com

Abstract. The ARMADILLO2 primitive is a very innovative hardware-oriented multi-purpose design
published at CHES 2010 and based on data-dependent bit transpositions. In this paper, we first
show a very unpleasant property of the internal permutation that allows for example to obtain a
cheap distinguisher on ARMADILLO2 when instantiated as a stream-cipher. Then, we exploit the very
weak diffusion properties of the internal permutation when the attacker can control the Hamming
weight of the input values, leading to a practical free-start collision attack on the ARMADILLO2

compression function. Moreover, we describe a new attack so-called local-linearization that seems
to be very efficient on data-dependent bit transpositions designs and we obtain a practical semi-free-
start collision attack on the ARMADILLO2 hash function. Finally, we provide a related-key recovery
attack when ARMADILLO2 is instantiated as a stream cipher. All collision attacks have been verified
experimentally, they require negligible memory and a very small number of computations (less than
one second on an average computer), even for the high security versions of the scheme.

Key words: ARMADILLO2, hash function, stream-cipher, MAC, cryptanalysis, collision

1 Introduction

Hash functions are among the most important and widely spread primitives in cryptography.
Informally a hash function H is a function that takes an arbitrarily long message as input
and outputs a fixed-length hash value of size n bits. The classical security requirements for
such a function are collision resistance and (second)-preimage resistance. Namely, it should be
impossible for an adversary to find a collision (two different messages that lead to the same
hash value) in less than 2n/2 hash computations, or a (second)-preimage (a message hashing to
a given challenge) in less than 2n hash computations. In general, a hash function H is built from
an iterative use of a n-bit output compression function h in a Merkle-Damg̊ard-like operating
mode [6, 4]. The compression function takes a chaining variable CV (fixed to an initial value IV
at the beginning) and a message block M as inputs and in order to allow security proofs on the
operating mode, one requires the same security properties as a hash function, namely collision
and (second)-preimage resistance. However, the compression function allows several flavors of
security properties depending on how well the attacker can control the chaining variable:

• free-start collision: the attacker fully controls the chaining variable, i.e. both its value and
difference
• semi-free-start collision: the attacker control partially the chaining variable, i.e. only its value,

and the difference is null
• collision: the attacker does not control the chaining variable, the value is defined by the IV

and the difference is null

? Supported by the French Agence Nationale de la Recherche through the SAPHIR2 project under Contract
ANR-08-VERS-014.

?? The author is supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and the Singapore National
Research Foundation Fellowship 2012.

For all three flavors, it should be impossible for an adversary to find a collision in less than
2n/2 compression function computations. Note that free-start collision is required as necessary
assumption regarding the compression function in the Merkle-Damg̊ard-like security proofs.
Moreover, a semi-free-start collision means there exists initial values IV for which it is possible
to find collisions for the hash function. Therefore, both these two notions are very important
and should be verified for a secure compression function.

ARMADILLO2 [2] is a very novel primitive dedicated to hardware, defining a FIL-MAC, a
stream cipher and a hash function. Originally, two versions were proposed, ARMADILLO and
ARMADILLO2, the later being the recommended one. A key recovery attack on ARMADILLO was
rapidly published by a subset of the designers [9]. ARMADILLO2 remained unbroken until Abdelra-
heem et al. [1] found a meet-in-the-middle technique that allows to invert the ARMADILLO2 main
function. This cryptanalysis eventually led to a key recovery attack on the FIL-MAC and the
stream cipher, and a (second)-preimage attack on the hash function. However, while being the
first weakness published on ARMADILLO2, this work is an improved meet-in-the-middle technique,
therefore requiring a lot of computations and memory, often close to the generic complexity. For
example, the preimage attack on the 256-bit output hash function requires either 2208 compu-
tations and 2205 memory or 2249 computations and 245 memory. With its data-dependent bit
transpositions and original compression function construction, ARMADILLO2 is clearly not follow-
ing the classical design trends for symmetric-key primitives (for example RC5 [7] and RC6 [8]
use data-dependent rotations, while IDEA [5] use data-dependent multiplication). As a conse-
quence, it would be interesting to look at this proposal without necessarily relying on known
cryptanalysis techniques.

Our contributions. In this paper, we first observe the very unpleasant property that the par-
ity bit is preserved through all ARMADILLO2 internal permutations. This allows us for example
to derive a very cheap distinguisher for the stream-cipher. Then, we analyze the differential dif-
fusion of the permutations and we provide practical free-start collision attacks for all versions of
the compression function of ARMADILLO2. We extend our results by introducing a new technique,
the local linearization, that seems very efficient against data-dependent bit transpositions. This
method led us to practical semi-free-start collision attacks for all versions of ARMADILLO2. All
attacks require very few computations (at most 210.2 operations for 256-bit output version) and
negligible memory. Moreover, our implementations validate our techniques and we provide colli-
sion examples. Finally, we provide a related-key recovery attack when ARMADILLO2 is instantiated
as a stream cipher.

2 The ARMADILLO2 function

We let X[i] denote the i-th bit of a word X. Let C be an initial vector of size c and U be a
message block of size m. The size of the register (C||U) is k = c + m, where || denotes the
concatenation operation. The internal ARMADILLO2 function transforms the vector (C,U) into
(Vc, Vt) as described in Figure 1, (Vc, Vt) = ARMADILLO2(C,U). The internal ARMADILLO2 function
relies on a parameterized permutation on k bits Q, instantiated by QU and QX , where U is a
m-bit parameter and X is a k-bit parameter.

Let σ0 and σ1 be two fixed bitwise permutations of size k. In [2], the permutations are not
specifically defined but some criteria they should fulfill is given. We denote by cst a constant of
size k defined by alternating 0?s and 1?s, i.e. : cst = 1010 · · · 10. Using these notations, we can
specify Q which is used twice in the internal ARMADILLO2 function. Let A be the a-bit parameter
and B be the k-bit input of Q, the parameterized permutation QA can be divided into a = |A|
simple steps. The i-th step of QA (reading A from its least significant bit to its most significant
one) is defined by:

C U

QX(C‖U) X

QU (C‖U)

C U

6

�

U

6

6

�
�
�
�
�
�
�
�
�
�
�
�

��
�
��

Y

6

�e6Vc Vt

Fig. 1. The internal function of ARMADILLO2. The thick line at the side of a register represents the least significant
bit.

• an elementary bitwise permutation: B ← σA[i](B), that is if the i-bit of A is 0 we apply
σ0 to B, otherwise we apply σ1.

• a constant addition (bitwise XOR) of cst: B ← B ⊕ cst.

The internal ARMADILLO2 function first computes X = QU (C||U), then Y = QX(C||U), and
finally outputs (Vc, Vt) = Y ⊕X.

Using this internal primitive, ARMADILLO2 builds a FIL-MAC, a stream-cipher and a hash
function:

• Stream-cipher: the secret key is inserted in the C register and the output sequence is
obtained by taking the k bits of the output (Vc, Vt) after one iteration. The keystream is
composed of k-bit frames indexed by U (which is a public value).

• Hash function: it uses a strengthened Merkle-Damg̊ard construction, where Vc represents
the output of the compression function (i.e. the next chaining value or the hash digest), U
is the incoming message block and C is the incoming chaining variable.

• FIL-MAC: the secret key is inserted in the C register and the challenge, considered known
by the attacker, is inserted in the U register. The response to the challenge is the m-bit
output Vt.

Five different sets of register sizes (k, c,m) are provided, namely (128, 80, 48), (192, 128, 64),
(240, 160, 80), (288, 192, 96) and (384, 256, 128).

3 First tools

We denote HAM(X) the Hamming weight of the word X. We recall from [1] that for two random
k-bit words A and B of Hamming weight a and b respectively, the probability that HAM(A∧B) = i

(where ∧ stands for the bitwise AND function) is given by the formula

Pand(k, a, b, i) =

(
a
i

)(
k−a
b−i
)(

k
b

) =

(
b
i

)(
k−b
a−i
)(

k
a

) .

Moreover, we would like to deduce from it the probability that HAM(A ⊕ B) = i (where ⊕
stands for the bitwise XOR function) for two randomly chosen k-bit words A and B of Hamming
weight a and b respectively. We remark that HAM(A⊕B) = a+ b− 2 · HAM(A∧B) and therefore
the probability that HAM(A⊕B) = i is given by the formula

Pxor(k, a, b, i) =

Pand(k, a, b, a+b−i2) for (a+ b− i) even

0 for (a+ b− i) odd

Since they have not been specified in the original ARMADILLO2 document, in the following we
assume that σ0 and σ1 are randomly chosen bit permutations.

4 Parity preservation

We call the parity bit of an a-bit word A the bit value
⊕a−1

i=0 A[i]. Regardless of the parameter A
of the internal permutation QA, we have that the parity of the input is always maintained
through the permutation. This can be easily verified by remarking that QA is composed
of several identical rounds, all satisfying this property. Indeed, one round is composed of a bit
permutation (which fully maintains the Hamming weight) and an XOR of the internal state
with the constant cst = 1010...10. This constant being always the same during the whole
ARMADILLO2 computation and its parity being even, the parity of the internal state remains the
same after application of the XOR. Note that even if this constant was changed during the
rounds, the attacker would only have to compute the parity of the XOR of all constants to be
able to tell if the parity bit will be maintained or negated. This property is moreover maintained
whatever number of rounds is applied in the permutations, thus the attack proposed in this
section is independent of the number of rounds.

Distinguisher for the stream cipher mode. We can exploit the previous property to build
a cheap distinguisher on ARMADILLO2 when used as a stream-cipher. In the attack model, the
whole output of the function is assumed to be known as it is a frame of the keystream. This
output is generated by a XOR of internal states X and Y . Since permutations QU and QX
will maintain the parity, their respective outputs X and Y will both have the same parity as
(C||U). As a consequence, the output of the function X ⊕ Y always has an even parity. For a
random sequence, this will only happen with probability 1/2, as for ARMADILLO2 this happens
with probability 1. In other words, the entropy of the ARMADILLO2 function output is reduced
by one bit.

5 Controlled diffusion: practical free-start collision attack

In this section, we show how an attacker can control the bit difference diffusion in ARMADILLO2

function by using the available inputs. This leads to a very cheap free-start collision attack
against the compression function.

5.1 General description

Assume that we insert a single bit difference in C, that is HAM(∆C) = 1, and no difference in
U that is ∆U = 0. We can use c distinct ∆C, one for each active bit position. The attack is
depicted in Figure 2.

HAM(∆C)
= 1

∆U
= 0

QX

∆X = 00...01

QU

sss sss
s

sss sss s ss s sss
s

ss s ssss ss s s s
............

...........
........

......
.....

......
.......

......
.........

.........
........

..
..........

........
.......

............
......

s

HAM(∆C)
= 1

∆U
= 0

6

�

∆U
= 0

6

6

�
�
�
�
�
�
�
�
�
�
�
�

��
�
��

∆Y = 0...0||*...*

6

�e6
∆Vc

= 0
∆Vt

= ∗..∗

Fig. 2. A schematic view of the free-start collision attack on ARMADILLO2. The thick line at the side of a register
represents the least significant bit and black circles stand for bit differences. The dashed box indicates the first
round of QX , which contains a difference on its corresponding parameter input bit.

Difference propagation in QU . Since we have no difference in U , the permutation QU always
remains the same. We only have to study the propagation of the bit difference in C through
QU . Note that one round of the internal permutation QU provides no difference diffusion since
it is only composed of a bit permutation and a constant addition. Therefore, the single bit
difference in C will be just transfered to some random bit position in X at the end of QU and
we have HAM(∆X) = 1. We would like the single bit difference in X to be positioned in bit 0, i.e.
∆X = 00...01 (this will later allow us to use the freedom degrees efficiently). For a randomly
chosen value of U and C, this happens with probability

PX =
1

k
.

Difference propagation in QX . Since we have a single difference on the first bit of X
(corresponding to the first step of QX), the permutation QX remains the same except for the
first step where we switch from bit permutation σ0 to σ1 or from σ1 to σ0. We denote by
Pstep(in, out) the probability that in active bits are mapped to out active bits through a step
of data-dependent permutation with a difference (i.e. σ0 and σ1 are swapped). Assume for the
moment that after this first step, only b bits are active in the internal state. This happens
with probability Pstep(1, b). Since the next rounds of the internal permutation QX provide no
difference diffusion, we end up in Y with b active bits randomly distributed. We need to ensure
that all the b active bits remaining in Y will go to the m-bit Vt part of the k-bit output, so
that all differences will be truncated and we eventually obtain a collision on the output of the
compression function. For b ≤ m, this happens with probability

Pout(b) = Pand(k,m, b, b) =

(
b
b

)(
k−b
m−b

)(
k
m

) =

i=b−1∏
i=0

m− i
k − i

.

During the feed-forward afterQX the single active bit ofX is already on the Vt part of the output.
Overall the probability of obtaining a compression function collision for randomly chosen U and
C values is:

Pcollision = PX ·
i=m∑
i=1

Pstep(1, i) · Pout(i).

the sum stopping at m because when i > m, we trivially have Pout(i) = 0. At this point our
problem is that in order for the probability Pout(i) to be high enough, we need the number i of
active bits to be small. On the other side, if i is small, Pstep(1, i) will be very low (we do not
explain how to compute Pstep(1, i) here as we will study a slightly more detailed problem in the
next section). However, in this scenario we only considered an attacker that randomly chooses
the value of U and C and the bit difference position in C, but we can do much better by using
the available degrees of freedom efficiently.

5.2 Using the freedom degrees

First, note that the event related to the probability PX only depends on the position of the bit
difference in C and on the value of U . We can therefore attack QU in a first phase (by fixing
the position of the bit difference in C and the value of U), and then independently attack QX
by choosing the value of C.

Handling QU . We will see later that we would like C and U values to have an extremely low
or extremely high Hamming weight. Therefore, we fix ∆X = 00...01 and test with the two
values U = 00..00 and U = 11..11 how the bit difference will propagate through Q−1U (note
that we are dealing with the inverse of QU , thus attacking backwards from ∆X). For each try,
we have a probability Pand(k, c, 1, 1) = c/k that the single bit difference is mapped to the C
part of the input. Since for all ARMADILLO2 versions we have 2c/k > 1, we expect at least one
of the two U candidates to satisfy ∆X = 00...01, HAM(∆C) = 1 and HAM(∆U) = 0. Overall,
this phase costs us only 2 operations. We assume without loss of generality that the selected
candidate has value U = 00..00.

Handling QX . At the present time, everything is fixed except the value of C and we have
∆X = 00...01 and U = 00..00. We now describe a simple criteria in order to choose the
values of C such that the first round probability Pstep(1, i) in QX is high, even for small i. As
an example, let’s assume that C = 0, that is HAM(C||U) = 0. In that case, we trivially have that
Pstep(1, 1) = 1 (and Pstep(1, i) = 0 for all other i) since changing the bit positions of the word
00..00 (switching from σ0 to σ1 or from σ1 to σ0) will not have any effect at all and the single bit
difference in C will just be placed to some random bit position. Similarly, with a single one-bit
in C, that is HAM(C||U) = 1, we have that Pstep(1, 1) = 1

128 + 2·127
1282

and Pstep(1, 3) = 127·126
1282

(and
Pstep(i) = 0 for all other i). More generally, we have to compute the probability Pstep(1, b, hw)
which corresponds to the probability Pstep(1, b) knowing that the input word hamming weight is
hw. This can be modeled as follows: choose two random k-bit words x and y both with Hamming
weight hw (they represent σ0(C||U) and σ1(C||U)) and compute z = x⊕ y⊕ 1 (the 1 represents
the single bit difference in C). Then Pstep(1, b, hw) is the probability that HAM(z) = b (note that
HAM(z) is always odd thus we have Pstep(1, 2i, hw) = 0 for all i) and we have:

Pstep(1, b, hw) =
hw

c
· Pxor(k, hw, hw − 1, b) +

c− hw
c

· Pxor(k, hw, hw + 1, b).

The complexity for handling QX is finally

Comp =
1∑i=m

i=1 Pstep(1, i, hw) · Pout(i)
.

5.3 Complexity results

The number C of candidate values we can generate with Hamming weight hw is
(
c
hw

)
and in

order to have a good chance to find a collision after QX with this amount, we need to ensure
that (

c

hw

)
≥ 1/

i=m∑
i=1

Pstep(1, i, hw) · Pout(i).

One can check that in order to minimize the complexity Comp, the dominant factor of the
sum is when i is small. Then, for i small, Pstep(1, i, hw) is higher when hw is close to 0 or close
to k, in other words the input should have very low or very high Hamming weight. Since we
previously chose U = 00..00 our goal is to find for each ARMADILLO2 versions the smallest hw
value hwmin that ensures enough C candidate values to handle the collision probability in QX
(but the same reasoning is possible with U = 11..11 and the biggest hw value hwmax). Overall,
the full attack runs in 2 + Comp operations (i.e. compression function calls) and negligible
memory in order to find a free-start collision for the ARMADILLO2 compression function. We
depict in Table 1 our results relative to all proposed versions of ARMADILLO2. This attack has
been implemented and verified in practice for k = 128 and we give free-start collision examples
in the Appendix.

Table 1. Summary of results for free-start collision attack on the different size variants of the ARMADILLO2

compression function. The number of C candidates must always be enough so as to handle the collision probability
in QX .

scheme parameters attack parameters

k c m
generic

hwmin

number of collision attack

complexity C candidates probability in QX complexity

128 80 48 240 1 26.3 2−4.1 27.5

192 128 64 264 1 27 2−4.6 27.8

240 160 80 280 1 27.3 2−4.7 28.1

288 192 96 296 1 27.6 2−4.7 28.3

384 256 128 2128 1 28 2−4.8 28.7

6 Local linearization: practical semi-free-start collision attack

In this section, we show how one can obtain a semi-free-start collision attack (no difference
on the input chaining variable) with a very low computational complexity for the ARMADILLO2

compression function.

6.1 General description

The previous method only allows to add differences on the capacity part of the input, thus leading
to free-start collision attacks. One can directly extend this technique to allow only differences

in the message part of the input, but this only leads to semi-free-start collisions for randomly
chosen bit permutations σ0 and σ1 with a not-so-high probability of success.

We would like to derive a semi-free-start collision attack that will output a result with very
high probability. In order to achieve this goal we propose a new technique for data-dependent
bit transposition ciphers, so-called local linearization: by guessing some part of the input we
are able to render a few rounds of the internal permutation linear. Indeed, by knowing the g
first bits of U we completely determine the permutations applied during the first g rounds of
QU . Therefore, for those g rounds the primitive QU only consists of known bit permutations
and known constant additions. With this method we neutralize for the first g rounds the only
non-linearity source: the fact that we don’t know which bit permutation σ0 or σ1 is applied each
round.

On a high-level view, our semi-free-start collision attack will force a collision on the X value
at the output of QU thanks to the local linearization technique. This collision on X will ensure
that the QX permutation will be the same for both inputs. Therefore, the difference Hamming
weight on the input of QX will remain the same in the output. We then hope that those bit
differences will be mapped in the truncated part of the output in order to eventually obtain the
semi-free-start collision (no difference is feed-forwarded from X since we forced a collision on
it). The attack is depicted in Figure 3.

HAM(∆C)
= 0

∆U

QX

∆X = 0

QU

s ss
s

s s s.............................
s

sss sss s ss s ss s
s

ss s ssss ss s s ss.........................
....

......
.......

......
.........

.........
........

..
..........

........
.......

............
......

s

ss

HAM(∆C)
= 0

∆U

6

�

∆U

6

6

�
�
�
�
�
�
�
�
�
�
�
�

��
�
��

∆Y = 0...0||*...*

6

�e6
∆Vc

= 0
∆Vt

= ∗..∗

Fig. 3. A schematic view of the semi-free-start collision attack on ARMADILLO2. The thick line at the side of a
register represents the least significant bit and black circles stand for bit differences. The dashed box indicates
the linearized part.

During a first phase, the input will be divided into two parts: the fixed and the unfixed part.
The fixed part z ∈ {0, 1}g is composed of the g first bits of U and we choose random values for
those g bits (so as to know the g first choices of σ0 or σ1). The unfixed part w ∈ {0, 1}k−g is
composed of the rest of the input bits and we will be set to a value later. We force the input
difference to be contained in the fixed part and we denote it ∆z ∈ {0, 1}g (since we are looking
for semi-free-start collisions we obviously have g ≤ m, otherwise we would have a difference in
the input chaining variable C). Let I1 = (C1||U1) (resp. I2 = (C2||U2)) be the k-bit value of the

first input (resp. second output), we have:

I1 = (x||z) and I2 = (x||z ⊕∆z).

and our goal is to have the collision X = QU1(I1) = QU2(I2).

Assume for the moment that this collision on X happens. Then the same permutation QX
will be used for both inputs I1 and I2 on the right side of Figure 1. As a consequence, no
additional bit difference will be introduced during the computation of QX , but the bit difference
positions will be randomly moved. In order to obtain a semi-free-start collision on the output of
the function, we need the b = HAM(∆z) active bits of the input to be mapped in the truncated
part of the output through QX . As already explained in Section 5, this happens with probability

Pout(b) = Pand(k,m, b, b) =
i=b−1∏
i=0

m− i
k − i

.

6.2 Colliding on X

We need now to evaluate the probability of getting a collision on X. Note that for any round, if
there is no difference on the bit choosing the permutation to apply σ0 or σ1, the bit differences
at the input of this round will only have their position changed and cannot be erased. Therefore,
if we want to obtain a collision on X, we need to obtain it at latest just after the last round of
QU for which a difference is inserted on the side (in U). We consider from now on that the input
difference ∆z contains at least one active bit on its MSB, thus this last round is the g-th one.

We know the value of the g first bit of U , therefore we know exactly the permutation applied
to I1 and I2 for the g first rounds of QU . For a collision after g rounds of QU , we want that

σU1[g−1](· · · (σU1[1](σU1[0](I1)⊕ cst)⊕ cst) · · ·)
= σU2[g−1](· · · (σU2[1](σU2[0](I2)⊕ cst)⊕ cst) · · ·)

and since all operations are linear, this can be rewritten as

ρ(I1)⊕A = ρ′(I2)⊕B = ρ′(I1 ⊕∆z)⊕B = ρ′(I1)⊕ ρ′(∆z)⊕B

where

ρ = σU1[g−1] ◦ · · ·σU1[1] ◦ σU1[0] A = σU1[g−1](· · · (σU1[1](cst)⊕ cst) · · ·)

ρ′ = σU2[g−1] ◦ · · ·σU2[1] ◦ σU2[0] B = σU2[g−1](· · · (σU2[1](cst)⊕ cst) · · ·).

Finally, we end up with the equation

ρ(I1)⊕ ρ′(I1) = A⊕B ⊕ ρ′(∆z) (1)

Since we know the value of the g first bit of U , we can compute the value of A and B.
Moreover, assuming that we already chose a ∆z, then the collision condition (1) can be rephrased
as

I1 ⊕ τ(I1) = C

where C = ρ−1(A⊕B ⊕ ρ′(∆z)) and τ = ρ−1 ◦ ρ′.

In order to study this system S of k bit equations, we model τ as a random bit permutation
and C as a random k-bit word. Note that since this equation system is linear finding the potential
solutions requires only a few operations, but we would like to know how many such systems we

need to generate before finding a solution, i.e. a collision on X. Thus, our goal is now to deduce
the probability that this system has at least one solution and what is the average number of
expected solutions.

The structure of this equation system is very particular and the number of independent
groups of bit equations is exactly the number of cycles of the bit permutation τ . More precisely,
let CYCLE(τ) represent the number of cycles of the permutation τ and let Si denote the set of
bits belonging to the i-th cycle of τ .

Theorem 1. The equation system S : I1 ⊕ τ(I1) = C admits a solution if and only if for every
cycle set Si of τ the parity of the sum of the corresponding C bit is null, that is⊕

p∈Si

C[p] = 0.

If this system is solvable, then the number of solutions that can be generated is exactly equal to
2CYCLE(τ).

The idea of the theorem is that when we want to find a solution for the system, we can start
by fixing one bit a0 to a random value. This bit is involved into two binary equations from S. All
equations having only two terms, one of the two equations directly links bit a0 with say bit a1,
and we can deduce the value of a1. The bit a1 is in turn linked with bit a2 through his second
equation and we directly deduce the value of a2. This chain of dependency will eventually cycle
(the new bit deduced will be a0 again) and will be validated if and only if the sum of the C
bits of the equations visited is null (otherwise we encounter a inconsistency). This check is then
performed for all cycles.

Proof. Since τ is a bit permutation, the equation system S can be represented as a collection
of cycles, each cycle depicting the direct cyclical dependencies between some set of bits: if bit x
and bit y are linked by one of the k equations, then they belong to the same cycle. The vertex
weight between two members x and y of the cycle is the value C[x].

If we fix the bit value of a member of a cycle Si, then this determines entirely all the other
bits of that cycle (according to the vertices values). Then, if the XOR of all the vertex weights is
different from zero, we have a direct contradiction. A solution can only exist if all cycles present
no internal contradiction.

Each cycle can have either zero or two solutions (the two solutions being their mutual
complement). If every cycle has no contradiction, then there exists exactly 2CYCLE(τ) distinct
combinations of cycle solutions, each one leading to a distinct solution for the whole equation
system S. ut

From Theorem 1, we directly deduce that the probability that the system admits a solution
is equal to 2−CYCLE(τ). The expected number of cycles for a randomly chosen permutation on
k elements is log(k). Therefore, we have to try at least 2log(k) different equation systems before
finding one admitting a solution. When one system admits a solution, we directly get 2log(k)

solutions for free. Overall, the cost for finding one solution of the system is 1 on average (the
average cost is the meaningful one here since we will have to find several inputs colliding on X
during the whole attack).

6.3 Complexity results

We now look for a solution such that the original guess of the g first bits of the input was right
(with probability 2−g) and such that the b bit differences in QX are mapped to the truncated

part of the output (with probability Pout(b)). Overall, the total complexity of the semi-free-start
collision attack is 2g ·P−1out(b) with b ≤ g. Minimizing g and b will minimize the overall complexity,
but we need to ensure that we can go through enough equation systems in order to have a good
chance to find a collision eventually. More precisely, we need

1/2 · 2g ·
(
g

b

)
≥ 2g · P−1out(b)

which can be rewritten as (
g

b

)
≥ 2 · P−1out(b).

We depict in Table 2 our results relative to all proposed versions of ARMADILLO2. This attack
has been implemented and verified in practice for k = 128 and we give semi-free-start collision
examples in the Appendix.

Table 2. Summary of results for semi-free-start collision attack on the different size variants of the ARMADILLO2

compression function.

scheme parameters attack parameters

k c m
generic

g b Pout(b)
time

complexity complexity

128 80 48 240 6 2 2−2.9 28.9

192 128 64 264 7 2 2−3.2 210.2

240 160 80 280 7 2 2−3.2 210.2

288 192 96 296 7 2 2−3.2 210.2

384 256 128 2128 7 2 2−3.2 210.2

7 Related-key recovery in stream cipher mode

In this section we will present a related key attack that will allow us to recover all key bits in
practical time when using ARMADILLO2 in the stream cipher mode. We will first present the main
idea of this attack, and afterwards, we will give a more detailed analysis of the probabilities and
complexities.

7.1 Using Related-keys for Recovering the Key

First of all, we consider a pair of related keys (K1,K2) that have one only bit of difference,
that is HAM(K1 ⊕ K2) = HAM(∆K) = 1. Our analysis will work for any bit difference position
d amongst all the bits of the key. Note that we expect a pair of keys valid for performing the
related-key attack to appear after using about (2k/k)1/2 keys.

Let us consider a value of U for generating k bits of key-stream with each of both keys K1

and K2. We use the index i for the intermediate states generated from the key Ki. We first make
the following observations, important in order to understand the whole attack procedure:

• Since no difference is inserted in the U part (it is a public value) and since HAM(∆K) = 1, we
have HAM(X1 ⊕X2) = 1. Let e be the bit position of this difference in X.

• The first (e− 1) intermediate states of QX will also have a difference of Hamming weight 1.

We assume that the attacker can choose the values of U . In this case, we can make the bit
difference in the key to go from position d to any wanted position e in X through QU . We expect
2m/k distinct values of U that make the bit difference go from position d to e for e ∈ [0, k − 1].
We denote by Ue each one of these k subgroups of U values.

The output of the function (Vc, Vt) = X ⊕ Y is known to the attacker, but concerning X he
only knows the m bits of the U part (since U is known, he can deduce directly where the bits
coming from U and C will be eventually located in X). Thus, he can recover m bits from the
outputs of QX , Y1 and Y2. If he could compute backward from Y1 and Y2 until the beginning of
the e-th step of QX , the colliding positions of the bits known from Y1 and from Y2 will have the
same values with maybe the exception of one, which would be the original single bit difference
before the step e.

Our attack basically consists in choosing several values for U from Ue, for decreasing e values
(starting from e = k − 1), that will gradually increase the number of key bits appearing in X
after position e. Each time we will guess the value of the new key bits appearing and discard
the guesses that will not lead to collisions on the bit values in the colliding positions just before
step e when computing backward from Y1 and Y2 in QX . The complexity of this attack depends
on the bit permutations σ0 and σ1, but in the next subsection we give a complexity analysis
assuming that these permutations are randomly chosen.

7.2 Generic Complexity Estimation

We start at e = k − 1. First, we choose the value of i (denoted imax), that maximizes the
probability Pand(k,m,m, i) that we denote pmax. For instance, if we consider the smallest version
of ARMADILLO2, where k = 128, c = 80 and m = 48, then we have imax = 18 and the probability
of obtaining 18 positions of known bits that collide is equal to pmax = 2−2.72.

Amongst the values from Uk−1, we choose pmax
−1 random ones. Each of them is introduced

in the ARMADILLO2 function parametrized with the keys K1 and K2. For each of the pmax
−1 pairs

of values, we guess the bit at position k − 1 of X1 and of X2 (for example 1 and 0 respectively
since there is a difference on this bit position) and we end up with 2 · pmax−1 pairs. Then, we
can undo the last round of QX for the known bits from Y1 and Y2. We consider that a guess
passes the test if it verifies the conditions on the number of colliding values on the colliding bit
positions. For one of these 2 · pmax−1 pairs (in our example (Q−11 (Y1), Q

−1
0 (Y2))), the number

of colliding bit positions will be imax. When this is the case, if the guess on the bit of X1 and
X2 was incorrect, we have a probability of 2−imax+1 to pass the test, while we will pass it with
probability one if the guess was correct. Finally, we have determined one bit of each key K1 and
K2 with a complexity of 2 · pmax−1, which in our example would be 23.72.

We can continue the process by considering e = k − 2 and pmax
−1 values from Uk−2 that

have a key bit at position k − 1. Following the same method as before, we will recover one key
bit, i.e. the one at position k − 1 in X when we have 18 colliding bits before the step k − 1 of
QX . Let us remark here that in practice we do not have to wait for having a collision on 18 bits,
but most of the time collisions on a different number of bits will also be enough for determining
if a guess passes the test or not. We can repeat this step in order to obtain the biggest possible
number of key bits and determining each bit will add at most a complexity of pmax

−1.

The next steps depend on the number of bits that we have already determined. All in all, we
conjecture that when both bit permutations behave like random ones, the complexity will not
exceed 2 · c · pmax−1.

Conclusion

We have presented some new and practical analysis of ARMADILLO2. Notably a free-start and
semi-free-start collision attacks for the full ARMADILLO2 hash functions. Extending this work to
real collisions (i.e. with a predefined IV) might be possible but it is not very appealing because
it is likely that several message blocks are required (all versions have c > m) and therefore the
task of the cryptanalyst would be quite complex to handle. ARMADILLO2 should not be used
in any security application since our attacks have a very low complexity. This work and the
local-linearization method is a first step in order to evaluate the security of data-dependent bit
transpositions cryptographic designs.

Acknowledgements

The authors would like to thank the anonymous referees and the ARMADILLO2 team for their
helpful comments.

References

1. Mohamed Ahmed Abdelraheem, Céline Blondeau, Maŕıa Naya-Plasencia, Marion Videau, and Erik Zenner.
Cryptanalysis of ARMADILLO2. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073
of Lecture Notes in Computer Science, pages 308–326. Springer, 2011.

2. Stéphane Badel, Nilay Dagtekin, Jorge Nakahara, Khaled Ouafi, Nicolas Reffé, Pouyan Sepehrdad, Petr Susil,
and Serge Vaudenay. ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware. In
Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of LNCS, pages 398–412. Springer,
2010.

3. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of LNCS. Springer,
1990.

4. Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [3], pages 416–427.
5. Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption Standard. In EUROCRYPT, pages

389–404, 1990.
6. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [3], pages 428–446.
7. Ronald L. Rivest. The RC5 Encryption Algorithm. pages 86–96. Springer-Verlag, 1995.
8. Ronald L. Rivest, M. J. B. Robshaw, and Yiqun Lisa Yin. RC6 as the AES, 2000.
9. Pouyan Sepehrdad, Petr Susil, and Serge Vaudenay. Fast Key Recovery Attack on ARMADILLO1 and Variants.

In CARDIS, 2011.

A Implementation of the collision attacks for k = 128

We implemented all attacks for k = 128 and they require less than a second and negligible
memory on an average computer (Intel Core2 Duo CPU @ 2.13 GHz) in order to find a collision.
Since no specific σ0 and σ1 bit transpositions are defined for ARMADILLO2, we run the attack
for many randomly chosen instances so as to ensure the soundness of our reasoning. We give
here examples of (semi)-free-start collisions for ARMADILLO2 with a σ0 and σ1 bit transpositions
instance that fulfill the criteria required in [2] for k = 128. Namely, we denote λ the second
largest eigenvalue of the matrix M = 1

4(Pσ0 + P 128
σ0 + Pσ1 + P 128

σ1), then for the σ0 and σ1
instance found we have λ = 0.87. This means that there exists a distinguisher with advantage
λ256 = 2−51.4, while our attacks have much better advantage.

Free-start collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(ffffffffffffffffbfff, ffffffffffff) = dfb0d8f2b763ce97f785

ARMADILLO2(fffffdffffffffffbfff, ffffffffffff) = dfb0d8f2b763ce97f785

Semi-free-start collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82e2) = 26827e3d614d2fc75d64

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82f0) = 26827e3d614d2fc75d64

Bit transpositions σ0 and σ1 used:

σ0 = 62, 98, 14, 114, 36, 77, 55, 3, 28, 88, 29, 122, 57, 90, 66, 52, 44, 22, 95, 118, 69, 86,

35, 56, 58, 82, 18, 97, 78, 21, 85, 101, 19, 65, 10, 6, 116, 121, 70, 99, 61, 102, 4, 91,

39, 119, 79, 16, 84, 50, 113, 45, 93, 104, 73, 112, 8, 5, 51, 9, 105, 46, 64, 94, 41, 54,

127, 67, 106, 23, 63, 49, 123, 15, 60, 81, 96, 72, 110, 37, 30, 89, 7, 92, 2, 68, 40, 32,

53, 11, 71, 26, 103, 59, 109, 111, 38, 74, 20, 48, 24, 43, 126, 117, 13, 124, 31, 33, 100,

125, 87, 27, 83, 128, 12, 42, 80, 107, 108, 17, 25, 120, 76, 75, 115, 47, 1, 34

σ1 = 10, 60, 111, 78, 38, 57, 110, 75, 104, 56, 88, 79, 23, 99, 16, 22, 128, 94, 120, 24, 64, 3,

6, 55, 42, 51, 43, 82, 114, 89, 26, 35, 61, 73, 77, 36, 28, 21, 105, 15, 67, 70, 113, 65, 39,

80, 122, 31, 101, 100, 107, 124, 18, 46, 85, 19, 49, 14, 12, 71, 86, 68, 102, 91, 58, 95, 1,

53, 83, 125, 66, 98, 81, 44, 48, 59, 27, 9, 119, 40, 45, 74, 92, 112, 93, 69, 5, 108, 106,

115, 90, 13, 84, 126, 7, 109, 54, 127, 33, 121, 62, 87, 30, 29, 63, 2, 97, 116, 4, 47, 11,

8, 34, 96, 118, 72, 52, 103, 37, 25, 123, 50, 76, 17, 20, 41, 117, 32

