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Abstract. Zero correlation linear cryptanalysis is a novel key recovery technique for block ci-
phers proposed in [5]. It is based on linear approximations with probability of exactly 1/2 (which
corresponds to the zero correlation). Some block ciphers turn out to have multiple linear approxi-
mations with correlation zero for each key over a considerable number of rounds. Zero correlation
linear cryptanalysis is the counterpart of impossible differential cryptanalysis in the domain of lin-
ear cryptanalysis, though having many technical distinctions and sometimes resulting in stronger
attacks.
In this paper, we propose a statistical technique to significantly reduce the data complexity using the
high number of zero correlation linear approximations available. We also identify zero correlation
linear approximations for 14 and 15 rounds of TEA and XTEA. Those result in key-recovery attacks
for 21-round TEA and 25-round XTEA, while requiring less data than the full code book. In the
single secret key setting, these are structural attacks breaking the highest number of rounds for
both ciphers.
The findings of this paper demonstrate that the prohibitive data complexity requirements are not
inherent in the zero correlation linear cryptanalysis and can be overcome. Moreover, our results
suggest that zero correlation linear cryptanalysis can actually break more rounds than the best
known impossible differential cryptanalysis does for relevant block ciphers. This might make a
security re-evaluation of some ciphers necessary in the view of the new attack.
Keywords: block ciphers, key recovery, linear cryptanalysis, zero correlation linear cryptanalysis,
data complexity, TEA, XTEA

1 Introduction

1.1 Motivation

Differential and linear cryptanalyses [3, 30] are the two basic tools for evaluating the security
of block ciphers such as the former U.S. encryption standard DES as well as its successor
AES. While DES was developed at the time when differential and linear cryptanalyses were not
publicly known, the design of AES provably addresses these attacks.

Design strategies have been proposed such as the wide-trail design strategy [13] or decor-
relation theory [42] to make ciphers resistant to the basic flavours of differential and linear
cryptanalysis. However, a proof of resistance according to these strategies does not necessarily
imply resistance to the extensions of these techniques such as impossible differential cryptanal-
ysis [1, 6] and the recently proposed zero correlation linear cryptanalysis [5].

Standard differential cryptanalysis uses differentials with probabilities significantly higher
than those expected for a randomly drawn permutation. Similarly, basic linear cryptanalysis
uses linear approximations whose probabilities detectably deviate from 1/2. At the same time,
impossible differential cryptanalysis and zero correlation linear cryptanalysis are based on struc-
tural deviations of another kind: Differentials with zero probability are targeted in impossible
differential cryptanalysis and linear approximations with probability of exactly 1/2 correlation
are exploited in zero correlation linear cryptanalysis. Thus, zero correlation linear cryptanalysis
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can be seen as the counterpart of impossible differential cryptanalysis in the domain of linear
cryptanalysis.

The name of the attack originated from the notion of correlation [11,34]: If 1+c
2 is the proba-

bility for a linear approximation to hold, c is called the correlation of this linear approximation.
Clearly, putting c = 0 yields an unbiased linear approximation of probability 1/2, or a zero
correlation linear approximation.

Impossible differential cryptanalysis has been known to the cryptographic community since
over a decade now. It has turned out a highly useful tool of attacking block ciphers [2,15,27–29,
41]. In fact, among meet-in-the-middle [14] and multiset-type attacks [18], it is the impossible
differential cryptanalysis [28] that breaks the highest numbers of rounds of AES-128 and AES-
256 in the classical single-key attack model as to date, the recent biclique cryptanalysis [4] being
the notable exception though.

Zero correlation linear cryptanalysis is a novel promising attack technique that bears some
technical similarities to impossible differential cryptanalysis but has its theoretical foundation
in a different mathematical theory. Despite its newness, it has already been demonstrated to
successfully apply to round-reduced AES and CLEFIA even in its basic form [5], which is highly
motivating for further studies.

In this paper, we show how to remove the data requirement of the full codebook which
was the major limitation of basic zero correlation linear cryptanalysis [5]. As an application of
zero correlation linear cryptanalysis and this data complexity reduction technique, we propose
attacks against round-reduced TEA and XTEA. For both ciphers, we can cryptanalyze more
rounds than it was previously possible using less than the full code book.

1.2 Contributions

The work at hand has two major contributions.

Data complexity reduction for zero correlation linear cryptanalysis. The data require-
ments of the full codebook have been a crucial limitation for the recent zero correlation linear
cryptanalysis to become a major cryptanalytic technique, though the length of the fundamen-
tal property (the length of the zero correlation linear approximation) was demonstrated to be
comparable to that of impossible differentials for several cipher structures [5]. Overcoming this
annoying limitation, a statistical technique of data complexity reduction for zero correlation
linear cryptanalysis is the first contribution of this paper.

The data complexity reduction technique is based on the fact that, like any exploitable
impossible differential, a typical zero correlation linear approximation is truncated : That is,
once a zero correlation linear approximation has been identified that holds for all keys, it will as
a rule imply an entire class of similar zero correlation linear approximations to exist. Those can
be typically obtained by just changing several bits of the input mask, output mask or both. In
other words, in most practical cases, there will be multiple zero correlation linear approximations
available to the adversary which has been ignored by the previous analysis.

However, unlike in impossible differential cryptanalysis, the actual value of the correlation has
to be estimated in zero correlation linear cryptanalysis and it is not enough to just wait for the
impossible event to occur. In fact, the idea we use for zero correlation linear cryptanalysis is more
similar to that of multiple linear cryptanalysis: We estimate the correlation of each individual
linear approximation using a limited number of texts. Then, for a group of zero correlation linear
approximations (i.e. for the right key), we expect the cumulative deviation of those estimations
from 0 to be lower than that for a group of randomly chosen linear approximations (i.e. for a
wrong key). Given the statistical behaviour of correlation for a randomly drawn permutation
[12, 35], this consideration results in a χ2 statistic and allows for a theoretical analysis of the



complexity and error probabilities of a zero correlation linear attack that are confirmed by
experiments.

Table 1. Summary of cryptanalytic results on round-reduced TEA∗ and XTEA in the single-key setting

attack #rounds data comp. compl. memory Pr[success] ref.

TEA

impossible differential 11 252.5 CP 284 NA NA [32]
truncated differential 17 1920 CP 2123.37 NA NA [20]
impossible differential 17 257 CP 2106.6 249 NA [8]

zero correlation linear 21 262.62 KP 2121.52 negligible 0.846 this paper

zero correlation linear 23 264 2119.64 negligible 1 this paper

XTEA

impossible differential 14 262.5 CP 285 NA NA [32]
truncated differential 23 220.55 CP 2120.65 NA 0.969 [20]
meet-in-the-middle 23 18 KP 2117 1− 2−1025 [37]

impossible differential 23 262.3 CP 2114.9 294.3 NA [8]
impossible differential 23 263 2101 MA +2105.6 2103 NA [8]

zero correlation linear 25 262.62 KP 2124.53 230 0.846 this paper

zero correlation linear 27 264 2120.71 negligible 1 this paper

CP: Chosen Plaintexts, KP: Known Plaintexts.
Memory: the number of 32-bit words.
∗The effective key length for TEA is 126 bit

Zero correlation linear cryptanalysis of round-reduced TEA and XTEA. TEA (Tiny
Encryption Algorithm) is one of the first lightweight block ciphers. It is a 64-bit block cipher
based on a balanced Feistel-type network with a simple ARX round function. TEA has 64 rounds
and accepts a key of 128 bits. It favours both efficient hardware [22] and software implementa-
tions. TEA was designed by Wheeler and Needham and proposed at FSE’94 [43]. It was used in
Microsoft’s Xbox gaming console for checking software authenticity until its weakness as a hash
function was used [40] to compromise the chain of trust. The block cipher XTEA [33] is the fixed
version of TEA eliminating this property (having the same number rounds, block size, and key
size). TEA and XTEA being rather popular ciphers, both are implemented in the Linux kernel.

Similarly to the complementation property of DES, TEA has an equivalent key property
and its effective key size is 126 bits (compared to 128 bits suggested by the nominal key input
size) [23]. Kelsey, Scheier and Wagner [24] proposed a practical related-key attack on the full
TEA. Using complementation cryptanalysis [7], up to 36 rounds of XTEA can be attacked with
related keys for all keys. The work [7] also contains related-key attacks for up to 50 rounds of
XTEA working for a weak key class.

In the classical single-key setting, however, by far not all rounds of TEA are broken by
structural attacks (whereas the effective key size is 126 bits for the full cipher). The truncated
differential result on 17 rounds remains the best cryptanalysis of TEA [20]. Impossible differential
cryptanalysis [8] has yielded a faster attack against 17 rounds of TEA. Similarly, 23 rounds of
XTEA have been cryptanalyzed so far using truncated differential [20], impossible differential [8]
and well as meet-in-the-middle attacks [37]. That is, for both TEA and XTEA, there has been
no progress in terms of the number of attacked rounds since 2003.

In this paper, using zero correlation linear cryptanalysis, we cryptanalyze 21 rounds of TEA
and 25 rounds of XTEA with 262.62 known plaintexts (in contrast to chosen texts required in
impossible differential cryptanalysis). Certainly, zero correlation linear cryptanalysis for lower
number of rounds yields a lower data complexity for both TEA and XTEA. Moreover, unlike
most impossible differential attacks including those on TEA and XTEA [8], zero correlation linear
cryptanalysis is able to profit from the full code available. If all 264 texts are available to the



adversary, we propose zero correlation linear cryptanalysis for 23 rounds of TEA and 27 rounds
of XTEA. Our cryptanalytic results are summarized and compared to previous cryptanalysis in
Table 1.

As opposed to the initial intuition expressed in [5], both major contributions of this work
— the data complexity reduction and the new attacks on more rounds of TEA and XTEA —
demonstrate that zero correlation linear cryptanalysis can actually perform better than impossi-
ble differential cryptanalysis. Moreover, we expect the security of more ciphers to be reevaluated
under the consideration of zero correlation linear cryptanalysis.

1.3 Outline

We start with a review of the basic zero correlation linear cryptanalysis for block ciphers in
Section 2. In Section 3, we introduce a χ2 statistical technique for reducing the data requirements
of zero correlation linear cryptanalysis and thoroughly investigate its complexity. In Section 4,
the 14- and 15-round zero correlation linear approximations are demonstrated for block ciphers
TEA and XTEA. Section 5 gives several zero correlation key recoveries for round-reduced TEA
and XTEA. We conclude in Section 6. Appendices contain proofs of some technical statements
as well as further zero correlation linear attacks on round-reduced TEA and XTEA.

2 Basic zero correlation linear cryptanalysis

Zero correlation linear cryptanalysis has been introduced in [5]. Below we briefly review its basic
ideas and methods.

2.1 Linear approximations with correlation zero

Consider an n-bit block cipher fK with key K. Let P denote a plaintext which is mapped to
ciphertext C under key K, C = fK(P ). If ΓP and ΓC are nonzero plaintext and ciphertext linear
masks of n bit each, we denote by ΓP → ΓC the linear approximation

Γ T
P P ⊕ Γ T

CC = 0.

Here, Γ T
AA denotes the multiplication of the transposed bit vector ΓA (linear mask for A) by a

column bit vector A over F2. The linear approximation ΓP → ΓC has probability

pΓP ,ΓC
= Pr

P∈Fn
2

{Γ T
P P ⊕ Γ T

CC = 0}. (1)

The value
cΓP ,ΓC

= 2pΓP ,ΓC
− 1 (2)

is called the correlation (or bias) of linear approximation ΓP → ΓC . Note that pΓP ,ΓC
= 1/2 is

equivalent to zero correlation cΓP ,ΓC
= 0:

pΓP ,ΓC
= Pr

P∈Fn
2

{Γ T
P P ⊕ Γ T

CC = 0} = 1/2. (3)

In fact, for a randomly drawn permutation of sufficiently large bit size n, zero is the most
frequent single value of correlation for a nontrivial linear approximation. Correlation goes to
small values for increasing n, the probability to get exactly zero decreases as a function of n
though. More precisely, the probability of the linear approximation ΓP → ΓC with ΓP , ΓC 6= 0
to have zero correlation has been shown [5, Proposition 2] to be approximated by

1√
2π

2
4−n
2 . (4)



2.2 Two examples

Given a randomly chosen permutation, however, it is hard to tell a priori which of its nontrivial
linear approximations in particular has zero correlation. At the same time, it is often possible
to identify groups of zero correlation linear approximations for a block cipher fK once it has
compact description with a distinct structure. Moreover, in many interesting cases, these linear
approximations will have zero correlation for any key K. Here are two examples provided in [5]:

– AES: The data transform of AES has a set of zero correlation linear approximations over
4 rounds (3 full rounds appended by 1 incomplete rounds with MixColumns omitted). If
Γ and Γ ′ are 4-byte column linear masks with exactly one nonzero byte, then each of the
linear approximations (Γ, 0, 0, 0) → (Γ ′, 0, 0, 0) over 4 AES rounds has zero correlation [5,
Theorem 2].

– CLEFIA-type GFNs: CLEFIA-type generalized Feistel networks [39] (also known as type-
2 GFNs with 4 lines [44]) have zero correlation linear approximations over 9 rounds, if
the underlying F-functions of the Feistel construction are invertible. For a 6= 0, the linear
approximations (a, 0, 0, 0) → (0, 0, 0, a) and (0, 0, a, 0) → (0, a, 0, 0) over 9 rounds have zero
correlation [5, Theorem 1].

D

E

rounds covered by
zero correlation

linear approximation

plaintext P

plaintext C

partial encryption

partial decryption

check for zero correlation

Fig. 1. High-level view of key recovery in zero correlation linear cryptanalysis

2.3 Key recovery with zero correlation linear approximations

Based on linear approximations of correlation zero, a technique similar to Matsui’s Algo-
rithm 2 [30] can be used for key recovery. Let the adversary have N known plaintext-ciphertexts
and ℓ zero correlation linear approximations {ΓE → ΓD} for a part of the cipher, with
ℓ = |{ΓE → ΓD}|. The linear approximations {ΓE → ΓD} are placed in the middle of the
attacked cipher. Let E and D be the partial intermediate states of the data transform at the
boundaries of the linear approximations.

Then the key can be recovered using the following approach (see also Figure 1):

1. Guess the bits of the key needed to compute E and D. For each guess:



(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts up to the boundaries
of the zero correlation linear approximation ΓE → ΓD.

(b) Estimate the correlations {ĉΓE ,ΓD
} of all linear approximations in {ΓE → ΓD} for the

key guess using the partially encrypted and decrypted values E and D by counting how
many times Γ T

EE ⊕ Γ T
DD is zero over N input/output pairs, see (1) and (2).

(c) Perform a test on the estimated correlations {ĉΓE ,ΓD
} for {ΓE → ΓD} to tell of the

estimated values of {ĉΓE ,ΓD
} are compatible with the hypothesis that all of the actual

values of {cΓE ,ΓD
} are zero.

2. Test the surviving key candidates against a necessary number of plaintext-ciphertext pairs
according to the unicity distance for the attacked cipher.

Step 1(c) of the technique above relies on an efficient test distinguishing between the hypoth-
esis that {cΓE ,ΓD

} are all zero and the alternative hypothesis. The work [5] requires the exact
evaluation of the correlation value (defined by the probability of a linear approximation) and the
data complexity is restricted to N = 2n in [5]. Thus, a small number ℓ of linear approximations
is usually enough in [5] and ĉΓE ,ΓD

= cΓE ,ΓD
, though the data complexity of the full codebook

is too restrictive.
For most ciphers (including the examples of Subsection 2.2), however, a large number ℓ of zero

correlation linear approximations is available. This freedom is not used in [5]. At the same time,
it has been shown in the experimental work [9] that any value of correlation can be used for key
recovery in a linear attack with reduced data complexity, once enough linear approximations are
available. Despite its convincing experimental evidence, [9] gives no theoretical data complexity
estimations and does not provide any ways of constructing linear approximations with certain
properties.

In the next section of this paper, we provide a framework for reducing the data complexity
N if many zero correlation linear approximations are known.

3 Reduction of data complexity with many approximations

3.1 Distinguishing between two normal distributions

Consider two normal distributions: N (µ0, σ0) with mean µ0 and standard deviation σ0, and
N (µ1, σ1) with mean µ1 and standard deviation σ1. A sample s is drawn from either N (µ0, σ0)
or N (µ1, σ1). It has to be decided if this sample is from N (µ0, σ0) or from N (µ1, σ1). The test
is performed by comparing the value s to some threshold value t. Without loss of generality,
assume that µ0 < µ1. If s ≤ t, the test returns ”s ∈ N (µ0, σ0)”. Otherwise, if s > t, the test
returns ”s ∈ N (µ1, σ1)”. There will be error probabilities of two types:

β0 = Pr{”s ∈ N (µ1, σ1)”|s ∈ N (µ0, σ0)},
β1 = Pr{”s ∈ N (µ0, σ0)”|s ∈ N (µ1, σ1)}.

Here a condition is given on µ0, µ1, σ0, and σ1 such that the error probabilities are β0 and β1.
The proof immediately follows from the basics of probability theory (see e.g. [17, 19]) and is
given in Appendix A for completeness.

Proposition 1. For the test to have error probabilities of at most β0 and β1, the parameters of
the normal distributions N (µ0, σ0) and N (µ1, σ1) with µ0 6= µ1 have to be such that

z1−β1
σ1 + z1−β0

σ0
|µ1 − µ0|

= 1,

where z1−β1
and z1−β0

are the quantiles of the standard normal distribution.



3.2 A known plaintext distinguisher with many zero correlation linear
approximations

Let the adversary be given N known plaintext-ciphertext pairs and ℓ zero correlation linear
approximations for an n-bit block cipher. The adversary aims to distinguish between this cipher
and a randomly drawn permutation.

The procedure is as follows. For each of the ℓ given linear approximations, the adversary
computes the number Ti of times the linear approximations are fulfilled on N plaintexts, i ∈
{1, . . . , ℓ}. Each Ti suggests an empirical correlation value ĉi = 2Ti

N − 1. Then, the adversary
evaluates the statistic:

ℓ
∑

i=1

ĉ2i =
ℓ
∑

i=1

(

2
Ti

N
− 1

)2

. (5)

It is expected that for the cipher with ℓ known zero correlation linear approximations, the
value of statistic (5) will be lower than that for ℓ linear approximations of a randomly drawn
permutation. In a key-recovery setting, the right key will result in statistic (5) being among the
lowest values for all candidate keys if ℓ is high enough. In the sequel, we treat this more formally.

3.3 Correlation under right and wrong keys

Consider the key recovery procedure outlined in Subsection 2.3 given N known plaintext-
ciphertext pairs. There will be two cases:

– Right key guess: Each of the values ĉi in (5) approximately follows the normal distribution
with zero mean and standard deviation 1/

√
N with good precision (c.f. e.g. [21, 38]) for

sufficiently large N :
ĉi ∼ N (0, 1/

√
N).

– Wrong key guess: Each of the values ĉi in (5) approximately follows the normal distribution
with mean ci and standard deviation 1/

√
N for sufficiently large N :

ĉi ∼ N (ci, 1/
√
N) with ci ∼ N (0, 2−n/2),

where ci is the exact value of the correlation which is itself distributed as N (0, 2−n/2) over
random permutations with n ≥ 5 — a result due to [12,35]. Thus, our wrong key hypothesis
is that for each wrong key, the adversary obtains a permutation with linear properties close
to those of a randomly chosen permutation.

3.4 Distribution of the statistic

Based on these distributions of ĉi, we now derive the distributions of statistic (5) in these two
cases.

Right key guess. In this case, we deal with ℓ zero correlation linear approximations:

ℓ
∑

i=1

ĉ2i ∼
ℓ
∑

i=1

N 2
(

0, 1/
√
N
)

=
1

N

ℓ
∑

i=1

N 2(0, 1) =
1

N
χ2
ℓ ,

where χ2
ℓ is the χ2-distribution with ℓ degrees of freedom which has mean ℓ and standard

deviation
√
2ℓ, assuming the independency of underlying distributions. For sufficiently large ℓ,

χ2
ℓ converges to the normal distribution. That is, χ2

ℓ approximately follows N (ℓ,
√
2ℓ), and:

ℓ
∑

i=1

ĉ2i ∼
1

N
χ2
ℓ ≈

1

N
N
(

ℓ,
√
2ℓ
)

= N
(

ℓ

N
,

√
2ℓ

N

)

. (6)



Proposition 2. Consider ℓ nontrivial zero correlation linear approximations for a block cipher
with a fixed key. If N is the number of known plaintext-ciphertext pairs, Ti is the number of times
such a linear approximation is fulfilled for i ∈ {1, . . . , ℓ}, and ℓ is high enough, then, assuming
the counters Ti are independent, the following approximate distribution holds for sufficiently
large N and n:

ℓ
∑

i=1

(

2
Ti

N
− 1

)2

∼ N
(

ℓ

N
,

√
2ℓ

N

)

.

Wrong key guess. The wrong key hypothesis is that we deal with pick a permutation at
random for each wrong key. Therefore, the ℓ given linear approximations will have randomly
drawn correlations, under this hypothesis. Thus, as mentioned above:

ℓ
∑

i=1

ĉ2i ∼
ℓ
∑

i=1

N 2
(

ci, 1/
√
N
)

, where ci ∼ N
(

0, 2−n/2
)

.

First, we show that the underlying distribution of ĉi is actually normal with mean 0. Then
we show that the sum approximately follows χ2-distribution assuming the independency of
underlying distributions, and can be approximated by another normal distribution.

Since
N
(

ci, 1/
√
N
)

= ci +N
(

0, 1/
√
N
)

= N
(

0, 1/
√
2n
)

+N
(

0, 1/
√
N
)

= N
(

0,
√

1/N + 1/2n
)

,

the distribution above is a χ2-distribution with ℓ degrees of freedom up to a factor, under the
independency assumption:

∑ℓ
i=1N 2

(

ci, 1/
√
N
)

=
∑ℓ

i=1N 2
(

0,
√

1
N + 1

2n

)

=
(

1
N + 1

2n

)
∑ℓ

i=1N 2 (0, 1)
=
(

1
N + 1

2n

)

χ2
ℓ .

As for the right keys, for sufficiently large ℓ, χ2
ℓ can be approximated by the normal distribution

with mean ℓ and standard deviation
√
2ℓ. Thus:

∑ℓ
i=1 ĉ

2
i ∼

(

1
N + 1

2n

)

χ2
ℓ ≈

(

1
N + 1

2n

)

N
(

ℓ,
√
2ℓ
)

= N
(

ℓ
N + ℓ

2n ,
√
2ℓ
N +

√
2ℓ

2n

)

.

Proposition 3. Consider ℓ nontrivial linear approximations for a randomly drawn permutation.
If N is the number of known plaintext-ciphertext pairs, Ti is the number of times a linear ap-
proximation is fulfilled for i ∈ {1, . . . , ℓ}, and ℓ is high enough, then, assuming the independency
of Ti, the following approximate distribution holds for sufficiently large N and n:

ℓ
∑

i=1

(

2
Ti

N
− 1

)2

∼ N
(

ℓ

N
+

ℓ

2n
,

√
2ℓ

N
+

√
2ℓ

2n

)

.

3.5 Data complexity of the distinguisher

Combining Propositions 2 and 3 with Proposition 1, one obtains the condition:

z1−β1

(√
2ℓ
N

+
√
2ℓ

2n

)

+z1−β0

√
2ℓ
N

( ℓ
N
+ ℓ

2n )−
ℓ
N

= 1.



The left part of this equation can be simplified to

2n+0.5

N
√
ℓ
(z1−β0

+ z1−β1
) +

z1−β1

√
2

√
ℓ

,

which yields

Theorem 1. With the assumptions of Propositions 1 to 3, using ℓ nontrivial zero correlation
linear approximations, to distinguish between a wrong key and a right key with probability β1 of
false positives and probability β0 of false negatives, a number N of known plaintext-ciphertext
pairs is sufficient if the following condition is fulfilled:

2n+0.5

N
√
ℓ
(z1−β0

+ z1−β1
) +

z1−β1

√
2√

ℓ
= 1.

The success probability of an attack is defined by the probability β0 of false negatives. The
probability β1 of false positives determines the number of surviving key candidates and, thus,
influences the computational complexity of the key recovery.

4 Linear approximations with correlation zero for TEA and XTEA

In [5], a sufficient condition is given for a linear approximation to have a correlation of zero.
Namely, if for a linear approximation there exist no linear characteristics with non-zero correla-
tion contributions, then the correlation of the linear approximation is exactly zero.

4.1 The block ciphers TEA and XTEA

TEA is a 64-round iterated block cipher with 64-bit block size and 128-bit key which consist
of four 32-bit words K[0],K[1],K[2] and K[3]. TEA does not have any iterative key schedule
algorithm. Instead, the key words are used directly in round functions. The round constant is
derived from the constant δ = 9e3779b9x and the round number. We denote the input and the
output of the r-th round for 1 ≤ r ≤ 64 by (Lr, Rr) and (Lr+1, Rr+1), respectively. Lr+1 = Rr

and Rr+1 is computed as follows:

Rr+1 =

{

Lr + (((Rr ≪ 4) +K[0])⊕ (Rr + i · δ)⊕ (Rr ≫ 5 +K[1])) r = 2i− 1, 1 ≤ i ≤ 32,

Lr + (((Rr ≪ 4) +K[2])⊕ (Rr + i · δ)⊕ (Rr ≫ 5 +K[3])) r = 2i, 1 ≤ i ≤ 32.

Like TEA, XTEA is also a 64-round Feistel cipher with 64-bit block and 128-bit key. Its 128-
bit secret key K is represented by four 32-bit words K[0],K[1],K[2] and K[3] as well. The
derivation of the subkey word number is slightly more complex though. The input of the r-th
round is (Lr, Rr) and the output is (Lr+1, Rr+1). Again, Lr+1 = Rr and Rr+1 is derived as:

Rr+1 =

{

Lr + (((Rr ≪ 4⊕Rr ≫ 5) +Rr)⊕ ((i− 1) · δ +K[((i− 1) · δ ≪ 11)&3])) r = 2i− 1, 1 ≤ i ≤ 32,

Lr + (((Rr ≪ 4⊕Rr ≫ 5) +Rr)⊕ (i · δ +K[(i · δ ≪ 11)&3])) r = 2i, 1 ≤ i ≤ 32.

These round functions of TEA and XTEA are illustrated in Figure 2.

4.2 Notations

To demonstrate zero correlation linear approximations for TEA and XTEA, we will need the
following notations (the least significant bit of a word has number 0):

– ei,∼ is a 32-bit word that has zeros in bits (i+ 1) to 31, one in bit i and undefined values in
bits 0 to (i− 1),
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Fig. 2. Round function for TEA(left) and XTEA(right)

– ei∼j is a 32-bit word that has zeros in bits (i+ 1) to 31 and bits 0 to (j − 1), a one in bit i
and undefined values in bits j to (i− 1) for j < i,

– ēi,∼ is a 32-bit word that has zeros in bits (i+ 1) to 31, undefined values in bits 0 to i,
– ? is an undefined value,
– Xi∼j is bits from j to i of the value X, j < i, and
– Xi is the value of bit i of X.

4.3 Linear approximation of modular addition

Here, we first demonstrate the properties of linear approximations with non-zero correlation over
the modular addition, which is the only nonlinear part of the TEA and XTEA transformation
(summarized as Property 1). Then we use it to show a condition for linear approximation with
non-zero correlation for one round of TEA and XTEA (stated as Property 2).

For the modular addition of two n-bit inputs x and y, the output z can be computed as:

z = (x+ y) mod 2n.

We denote the mask values for x, y and z as Γx, Γy and Γz, respectively (x, y, z, Γx, Γy, and
Γz ∈ F

n
2 ). The linear approximation for the modular addition is then ΓxT ·x⊕ΓyT ·y = ΓzT · z

and is referred to as
+ : (Γx|Γy) → Γz.

Property 1 (Modular addition). In any linear approximation (Γx|Γy) → Γz of the modular
addition with a non-zero correlation, the most significant non-zero mask bit for Γx, Γy and Γz
is the same.

Property 1 is proven in Appendix B.

4.4 Linear approximation of one TEA/XTEA round

Using Property 1 for modular addition, as all other operations in TEA and XTEA are linear,
we can derive conditions on a special class of approximations with non-zero correlation for the
round function of TEA and XTEA. See Figures 4 and 3 for an illustration.

As in Subsection 4.1, the input and output of round r in TEA and XTEA are (Lr|Rr)
and (Lr+1|Rr+1), respectively. Correspondingly, (Γ

L
r |ΓR

r ) and (ΓL
r+1|ΓR

r+1) are input and output
linear masks of the round. So the linear approximation over the round is

(X)TEA round r : (ΓL
r |ΓR

r ) → (ΓL
r+1|ΓR

r+1)

and has the following



Property 2 (One round). If ΓL
r = ei,∼ and ΓR

r = ej,∼, (j < i), then one needs ΓR
r+1 = ei,∼

and ΓL
r+1 = ei,∼ ⊕ ei+5∼5 for the approximation to have a non-zero correlation. Similarly, for

the decryption round function of TEA, if the input mask and the output mask for round r are
(ΓL

r |ΓR
r ) and (ΓL

r+1|ΓR
r+1), respectively. If ΓR

r = ei,∼ and ΓL
r = ej,∼, (j < i), then we have

ΓL
r+1 = ei,∼ and ΓR

r+1 = ei,∼ ⊕ ei+5∼5.

4.5 Zero correlation approximations for 14 and 15 rounds of TEA/XTEA

With the one-round property of linear approximation in TEA and XTEA derived in the previous
subsection, we can identify zero correlation approximations over 14 and 15 rounds of both TEA
and XTEA.

Proposition 4. Over 15 rounds of TEA and XTEA, any linear approximation with input
mask (ΓR

1 |ΓL
1 ) = (1|0) and output mask (ΓR

15|ΓL
15) = (0|e1,∼) has a correlation of exactly

zero. Moreover, over 14 rounds of TEA and XTEA, any linear approximation with input mask
(ΓR

1 |ΓL
1 ) = (1|0) and output mask (ΓR

14|ΓL
14) = (e1,∼|ē5,∼) has zero correlation.
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Fig. 3. Zero correlation linear approximation for 14-
round TEA and XTEA (grey – undefined bits, black –
bits set to 1)
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Fig. 4. Zero correlation linear approximation for 15-
round TEA and XTEA (grey – undefined bits, black –
bits set to 1)

Proof. First, we follow the linear approximation in the forward direction. From ΓL
1 = 0 and

ΓR
1 = 1, it is obtained that ΓL

2 = 0 and ΓR
2 = 1, then we get ΓL

3 = 1 ⊕ (1 << 5) and ΓR
3 = 1.

From Property 2, ΓL
3 = 1 ⊕ (1 << 5) and ΓR

3 = 1, then we have ΓR
4 = e5,∼ and ΓL

4 =



e5,∼ ⊕ e5+5∼5 ⊕ 1 = e10,∼. Similarly, we get (ΓR
5 |ΓL

5 ) = (e10,∼|e15,∼), (ΓR
6 |ΓL

6 ) = (e15,∼|e20,∼),
(ΓR

7 |ΓL
7 ) = (e20,∼|e25,∼), (ΓR

8 |ΓL
8 ) = (e25,∼|e30,∼) and (ΓR

9 |ΓL
9 ) = (e30,∼|?).

Second, we follow the 7-round linear approximation in the backward direction. From
ΓL
16 = e1,∼ and ΓR

16 = 0, we can derive that (ΓR
15|ΓL

15) = (e1,∼|0), (ΓR
14|ΓL

14) = (e1,∼ ⊕ e6∼5|e1,∼),
(ΓR

13|ΓL
13) = (e11,∼|e6,∼), (ΓR

12|ΓL
12) = (e16,∼|e11,∼), (ΓR

11|ΓL
11) = (e21,∼|e16,∼), (ΓR

10|ΓL
10) =

(e26,∼|e21,∼) and (ΓR
9 |ΓL

9 ) = (e31,∼|e26,∼).
From the forward direction, the most significant bit of ΓR

9 has to be zero, and from the
backward direction, the most significant bit of ΓR

9 has to be one. This yields a contradiction
and shows that there are no characteristics for this linear approximation. By the sufficient
condition of [5] for constructing zero correlation linear approximations, this is enough for the
approximation to have correlation zero. So the linear approximation for 15-round TEA and
XTEA with the input mask (1|0) and the output mask (0|e1,∼) has zero correlation. By restricting
this linear approximation to 14 rounds and adding several undefined bits to the output mask,
one gets all the claims of the proposition. �

There are only 2 zero correlation linear approximations of this form over 15 rounds. We
note however that there are 27 different zero correlation linear approximations over 14 rounds
of both TEA and XTEA. They can be generated by setting the undefined bits (depicted in gray
in Figure 3 and Figure 4) to different values.

5 Zero correlation linear cryptanalysis of round-reduced (X)TEA

5.1 Key recovery for 21 rounds of TEA

For the cryptanalysis of 21-round TEA, we use the 14-round zero correlation approximations of
the type depicted in Figure 3 of Subsection 4.5. The availability of many such approximations
allows us to use the data complexity reduction technique of Section 3.

We place the 14-round zero correlation linear approximations in the middle of the 21-round
TEA. It covers rounds 5 to 18. Following the procedure outlined in Subsection 2.3, up to the
boundaries of the linear approximations, we partially encrypt over the 4 first rounds 1 to 4 and
partially decrypt over the 3 last rounds 19 to 21. The attack is illustrated in Figure 5.

The linear approximations involve 9 state bits: R0
5, R

1∼0
19 , and L5∼0

19 . In the corresponding 9

bits of the input and output masks, only 7 can take on 0 and 1 values: ΓR
19

0
and ΓL

19
5∼0

. For
the evaluation of the linear approximations from a plaintext-ciphertext pair, we guess 54 key
bits K15∼0

0 , K15∼0
1 , K10∼0

2 , and K10∼0
3 . The attack flow is as follows given N known plaintext-

ciphertext pairs.

For each possible guess of the 54-bit subkey κ = (K15∼0
0 |K15∼0

1 |K10∼0
2 |K10∼0

3 ):

1. Allocate a 128-bit counter W and set it to zero. W will contain the χ2 statistic for the subkey
guess κ.

2. Allocate a 64-bit counter V [x] for each of 29 possible values of

x = (R0
5|R1∼0

19 |L5∼0
19 )

and set it to 0. V [x] will contain the number of times the partial state value x occurs for N
texts.

3. For each of N plaintext-ciphertext pairs: partially encrypt 4 rounds and partially decrypt 3
rounds, obtain the 9-bit value for x = (R0

5|R1∼0
19 |L5∼0

19 ) and add one to the counter V [x].
4. For each of 27 zero correlation linear approximations:

(a) Set the 64-bit counter U to zero.
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(b) For 29 values of x, verify if the linear approximation holds. If so, add V [x] to U .

(c) W = W + (2 · U/N − 1)2.

5. If W < t, then κ is a possible subkey candidate and all cipher keys it is compatible with are
tested exhaustively against a maximum of 3 plaintext-ciphertext pairs.

The correct 54-bit subkey κ is likely to be among the candidates with the χ2 statisticW lower

than the threshold t = σ0 · z1−β0
+ µ0 =

√
2l
N · z1−β0

+ l
N =

√
2·27
N · z1−β0

+ 27

N , see Subsection 3.1
with its Proposition 1 as well as Theorem 1.

In this attack, we set β0 = 2−2.7, β1 = 2−4.49 and get z1−β0
= 1, z1−β1

= 1.7. Note once
again that n = 64 and ℓ = 27. Theorem 1 suggests the data complexity of N = 262.62 known
plaintext-ciphertexts with those parameters. The decision threshold is t = 2−55.56.

The computational complexity is dominated by Steps 3 and 5. The computational complexity
T3 of Step 3 is 254 times 7 half-round encryptions for each of N texts. This gives T3 = 254 ·
262.62 · 7 · 0.5/21 = 2114.03 21-round TEA encryptions.

One in 1/β1 = 24.49 keys is expected to survive the test against zero correlation. The remain-
ing key space is be covered by exhaustive search which is performed in Step 5. The computational
complexity T5 of Step 5 is about T5 = 2126−4.49 = 2121.51 21-round encryptions using the equiv-
alent key property. T5 dominates the total computational complexity.

Summarizing the attack, its computational complexity is about 2121.51, data complexity is
about 262.62 known plaintext-ciphertext pairs, and the memory complexity is negligible. The
success probability is about 0.846.



5.2 Key recovery for 25-round XTEA

Similarly to the attack on 21 rounds of TEA provided in the previous subsection, we use the
14-round zero correlation linear approximation depicted in Figure 3 to attack 25-round XTEA.
Note that the attack covers rounds 8 to 32. It is illustrated in Figure 6. The linear approximations
are placed in rounds 14 to 27. We partially encrypt 6 rounds (8 to 13) and partially decrypt 5
rounds (28 to 32) to evaluate the parity of approximations.

The linear approximations involve 9 bits and in the corresponding 9 bits of the input and
output masks, again only 7 can take on 0 and 1 values: ΓR

28
0
and ΓL

28
5∼0

. For the evaluation
of the linear approximations from a plaintext-ciphertext pair, we guess altogether 74 key bits
K25∼0

0 , K10∼0
1 , K10∼0

2 , and K25∼0
3 . The attack itself is similar to that on 21-round TEA.

For each possible 63-bit value of (K25∼0
0 |K10∼0

1 |K25∼0
3 ):

1. Allocate and set to zero the 32-bit counter V1[x] for each of 230 possible values of

x = (R0
13|R5

13|L0
13|R10∼0

30 |L15∼0
30 ).

2. For each of N plaintext-ciphertext pairs: partially encrypt 5 rounds and partially decrypt 3
rounds, obtain 30-bit x = (R0

13|R5
13|L0

13|R10∼0
30 |L15∼0

30 ), and add one to V1[x].
3. For each possible 11 bits value of K10∼0

2 :
(a) Allocate and set to zero a 128-bit counter W .
(b) Allocate and set to zero a 64-bit counter V2[y] for each of 29 possible values of

y = (R0
14|L5∼0

28 |R1∼0
28 ).

(c) Encrypt one round and decrypt two rounds for 230 values for x to get 9 bits of y and add
V1[x] to V2[y].

(d) For each of 27 zero correlation linear approximations:
i. Set the 64-bit counter U to zero.
ii. For 29 values of y, verify if the linear approximation holds. If so, add V2[y] to the

counter U .
iii. W = W + (2 · U/N − 1)2.

(e) If W < t, then κ is a possible subkey candidate and all cipher keys it is compatible with
are tested exhaustively against a maximum of 3 plaintext-ciphertext pairs.

The correct 74-bit subkey is likely to be among the candidates with the χ2 statistic W lower
than the threshold t. As we again set β0 = 2−2.7 and β1 = 2−4.49, we obtain N = 262.62 and
t = 2−55.56.

The computational complexity is dominated by Step 2 and checking for false positives in
Step 3(e). T2 of Step 2 is constituted by 263N computations of 5 rounds of 25-round XTEA
and by 263N increments in the memory of 230 32-bit counters. Assuming that one increment of
a memory cell costs one XTEA round, we obtain T2 = 263 · 262.62 · (5/25 + 1/25) = 2123.56. In
Step 3(e), the remaining T3(e) = 2128−4.49 = 2123.51 keys can checked exhaustively by the same
number of 25-round XTEA encryptions. Thus, the overall computational complexity is about
T2 + T3(e) = 2123.56 + 2123.51 = 2124.53 25-round XTEA encryptions. The memory complexity is
230 32-bit words. Again, the data complexity is about 262.62 known plaintext-ciphertext pairs,
and the success probability is about 0.846.

5.3 Attacking more rounds with the full codebook

The attacks in the previous subsections use 14-round zero correlation linear approximations to
enable data complexity reduction. As we only identified 2 15-round approximations, we cannot
use this longer property to attack more rounds and still get a non-negligible decrease in the
number of texts required. By taking advantage of the full codebook, we are however able to
perform key recovery for up to 23 rounds of TEA and up to 27 rounds of XTEA, see Appendix D.



6 Conclusions

In this paper, we have demonstrated a technique for data complexity reduction for the promising
recent zero correlation linear cryptanalysis which is based on linear approximations holding
with a probability of exactly 1/2. This attack vector can be seen as the counterpart of the
successful impossible differential cryptanalysis in the domain of linear cryptanalysis. Using ℓ
linear approximations, we are able to reduce the data complexity to O(2n/

√
ℓ), where n is the

block size of the cipher.
As an application, we show 14- and 15-round linear approximations with correlation zero for

round-reduced TEA and XTEA. Based on those, we propose key recovery attacks on 21-round
TEA and 25-round XTEA with data complexity 262.62 as well as on 23-round TEA and 27-
round XTEA by taking advantage of all 264 texts. All four attacks are the best key recoveries for
both TEA and XTEA published to date in the single secret key setting. For these ciphers, our
zero correlation linear attacks outperform their differential counterpart (impossible differential
attacks), among other techniques.

These two contributions make the zero correlation linear cryptanalysis one of the major
cryptanalytic techniques available today for attacking and evaluating symmetric-key ciphers.
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14. H. Demirci and A.A. Selçuk: A Meet-in-the-Middle Attack on 8-Round AES. In: FSE’08, LNCS, vol. 5086,
pp. 116–126, Springer-Verlag, 2008.

15. O. Dunkelman, N. Keller: An Improved Impossible Differential Attack on MISTY1. In: ASIACRYPT’08,
LNCS, vol. 5350, pp. 441–454, Springer-Verlag, 2008.

16. J. Etrog, M. J. B. Robshaw: On Unbiased Linear Approximations. In ACISP’10, LNCS, vol. 6168, pp. 74–86.
Springer-Verlag, 2010.

17. W. Feller: An Introduction to Probability Theory and Its Applications, vol. 1, Wiley & Sons, 1968.

18. O. Dunkelman, N. Keller, A. Shamir: Improved Single-Key Attacks on 8-Round AES-192 and AES-256. In:
ASIACRYPT’10, LNCS, vol. 6477, pp. 158–176, Springer-Verlag, 2010.

19. P. Hoel, S. Port, C. Stone: Introduction to Probability Theory, Brooks Cole, 1972.

20. S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, S. Lee: Differential Cryptanalysis of TEA and XTEA. In:
ICISC’03, LNCS, vol. 2971, pp. 402–417, Springer-Verlag, 2004.

21. P. Junod: On the Complexity of Matsui’s Attack. In: SAC’01, LNCS, vol. 2259, pp. 199–211, Springer-Verlag,
2001.

22. J.-P. Kaps: Chai-Tea, Cryptographic Hardware Implementations of xTEA. In: INDOCRYPT 2008, LNCS,
vol. 5365, pp. 363–375, Springer-Verlag, 2008.

23. J. Kelsey, B. Schneier, D. Wagner: Key-Schedule Cryptoanalysis of IDEA, G-DES, GOST, SAFER, and
Triple-DES. In: CRYPTO 1996, LNCS, vol. 1109, pp. 237–251, Springer-Verlag, 1996.

24. J. Kelsey, B. Schneier, D. Wagner: Related-key Cryptanalysis of 3-WAY, Biham-DES,CAST, DES-X,
NewDES, RC2, and TEA. In: ICICS’97, LNCS, vol. 1334, pp. 233–246, Springer-Verlag, 1997.

25. E. Lee, D. Hong, D. Chang, S. Hong, J. Lim: A Weak Key Class of XTEA for a Related-Key Rectangle
Attack. In: VIETCRYPT 2006, LNCS, vol. 4341, pp. 286–297, Springer-Verlag, 2006.

26. J. Lu: Related-key rectangle attack on 36 rounds of the XTEA block cipher. International Journal of Infor-
mation Security 8(1), 1-11 (2009)

27. J. Lu, J. Kim, N. Keller, O. Dunkelman: Improving the Efficiency of Impossible Differential Cryptanalysis of
Reduced Camellia and MISTY1. In: CT-RSA’08, LNCS, vol. 4964, pp. 370–386, Springer-Verlag, 2008.

28. J. Lu, O. Dunkelman, N. Keller, J. Kim: New Impossible Differential Attacks on AES. In: INDOCRYPT’08,
LNCS, vol. 5365, pp. 279–293, Springer-Verlag, 2008.

29. H. Mala, M. Dakhilalian, V. Rijmen, M. Modarres-Hashemi: Improved Impossible Differential Cryptanalysis
of 7-Round AES-128. In: INDOCRYPT’10, LNCS, vol. 6498, pp. 282–291, Springer-Verlag, 2010.

30. M. Matsui: Linear cryptanalysis method for DES cipher. In: EUROCRYPT’93, LNCS, vol. 765, pp. 386–397,
Springer-Verlag, 1993.

31. M. Matsui: The First Experimental Cryptanalysis of the Data Encryption Standard. In: CRYPTO’94, LNCS,
vol. 839, pp. 1–11, Springer-Verlag, 1994.

32. D. Moon, K. Hwang, W. Lee, S. Lee, J. Lim,: Impossible Differential Cryptanalysis of Reduced Round XTEA
and TEA. In: FSE 2002, LNCS, vol. 2365, pp. 49–60, Springer-Verlag, 2002.

33. R.M. Needham, D.J. Wheeler: Tea extensions. Technical report, Computer Laboratory, University of Cam-
bridge, October 1997, http://www.cix.co.uk/∼ klockstone/xtea.pdf

34. K. Nyberg: Correlation theorems in cryptanalysis. Discrete Applied Mathematics, 111(1-2):177–188, 2001.

35. L. O’Connor: Properties of Linear Approximation Tables. In: FSE 1994, LNCS, vol. 1008, pp. 131–136,
Springer-Verlag, 1995.
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A Proof of Proposition 1 (distinguishing distributions)

Proof. Again, first assume that µ0 < µ1. The error probabilities β0 and β1 can be derived from
the value of threshold t and the CDFs of the two normal distributions:

β0 = 1− Φµ0,σ0
(t),

β1 = Φµ1,σ1
(t),

(7)

where Φµi,σi
is the CDF of the respective normal distribution. (7) can be rewritten as follows

using the CDF of the standard normal distribution:

β0 = 1− Φ0,1

(

t−µ0

σ0

)

,

β1 = Φ0,1

(

t−µ1

σ1

)

.
(8)

By going to quantiles in (8), one obtains

z1−β0
= t−µ0

σ0
,

zβ1
= t−µ1

σ1
.

Expressing and equating t in the two cases yields:

µ0 + σ0z1−β0
= µ1 + σ1zβ1

and, eventually, recalling that zβ1
= −z1−β1

gives the relation

σ0z1−β0
+ σ1z1−β1

µ1 − µ0
= 1. (9)

Considering µ0 > µ1 yields a change of denominator in (9) to µ0−µ1. The claim of the theorem
follows. �

B Proof of Property 1 (modular addition)

Proof. We denote the i-th bit for x, y and z as xi, yi and zi, 0 ≤ i ≤ n − 1, respectively. From
the modular addition, we have

z0 = x0 ⊕ y0, c0 = 0,
z1 = x1 ⊕ y1 ⊕ c1, c1 = f1(x0, y0),
· · · ,
zi = xi ⊕ yi ⊕ ci, ci = fi(x0, x1, . . . , xi−1, y0, y1, . . . , yi−2). · · · ,
zn−1 = xn−1 ⊕ yn−1 ⊕ cn−1, cn−1 = fn−1(x0, x1, . . . , xn−2, y0, y1, . . . , yn−2),

where ci is the carrying bit of the i-th bit and fi is the non-linear carrying function of the i-th
bit. From the above equations, the linear approximations with non-zero bias have the following
form:

z0 = x0 ⊕ y0,
z1 = x1 ⊕ y1[⊕x0 ⊕ y0],
z2 = x2 ⊕ y2[⊕x1 ⊕ y1 ⊕ x0 ⊕ y0],
· · · ,
zi = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0],
· · · ,
zn−1 = xn−1 ⊕ yn−1[⊕xn−2 ⊕ yn−2 ⊕ . . .⊕ x0 ⊕ y0],



where the terms in the square brackets are optional. So any linear approximation with non-zero
bias will be produced from any one or the combination from the above linear relations which
can be denoted as follows,

zi[⊕zi−1 ⊕ · · · ⊕ z0] = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0].

If there is a linear approximation with the following form,

zj ⊕ zi[⊕zi−1 ⊕ · · · ⊕ z0] = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n. (10)

We substitute the equation zj = xj ⊕ yj ⊕ cj , cj = fi(x0, x1, . . . , xj−1, y0, y1, . . . , yj−1) into
Equation 10, we get

xj ⊕ yj ⊕ fi(x0, x1, . . . , xj−1, y0, y1, . . . , yj−1)
⊕zi[⊕zi−1 ⊕ · · · ⊕ z0] = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n.

In the above equation, x[j], x[j − 1], . . . x[i + 1], y[j], y[j − 1], . . . y[i + 1] are not related with
zi, zi−1, . . . , z0, so they are independent random variables. The involved independent random
variables will make the linear approximation Equation (10)be random, so the bias for Equation
(10)will be zero. Similarly, the linear approximation with the following forms will also have zero
bias,

zi[⊕zi−1 ⊕ · · · ⊕ z0] = x[j]⊕ xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n.
zi[⊕zi−1 ⊕ · · · ⊕ z0] = y[j]⊕ xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n.

(11)

This means that the most non-zero significant bits for Γx, Γy and Γz must be same, otherwise,
the linear approximation will have zero bias. ⊓⊔
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Fig. 7. Linear approximation of one TEA round
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Fig. 8. Linear approximation of one XTEA round

C Proof of Property 2 (one round)

Proof. The linear approximation for the encryption round function of TEA and XTEA have
been shown in Fig.7 and Fig. 8, we use the notations A,B,C,D,E, F,G,H, I, J,K,L,M to
denote the intermediate variables and the notation ΓX to denote the respective mask value
for X ∈ {A,B,C,D,E, F,G,H, I, J,K,L,M}. Next, we will only give the proof for the linear
approximation of TEA. The proof for XTEA is similar as that for TEA and we will not describe
it due to the limited space.

From Theorem 1, C = A + B, MA = ei,∼, so we have ΓB = ei,∼ and ΓC = ei,∼. Then
from Lemma 1 in [5] and C = D ⊕ E ⊕ F , we can get ΓD = ΓE = ΓF = ΓC = ei,∼. From



Theorem 1, D = G + K[0] and ΓD = ei,∼, so ΓG = ei,∼; E = H + δ and ΓE = ei,∼, so
ΓH = ei,∼; F = I + K[1] and ΓF = ei,∼, so ΓI = ei,∼. As G = J ≪ 4 and I = L ≫ 5,
then ΓJ = ΓG ≫ 4 = ei−4,∼ and ΓL = ΓI ≪ 5 = ei+5∼5. From Lemma 2 in [5], we have
ΓK = ΓG ⊕ ΓH ⊕ ΓI = ΓH ⊕ ΓJ ⊕ ΓL = ei,∼ ⊕ ei−4,∼ ⊕ ei+5∼5 = ei,∼ ⊕ ei+5∼5. As j < i,
ΓM = ΓK ⊕ ΓR

n = ei,∼ ⊕ ei+5∼5 ⊕ ej,∼ = ei,∼ ⊕ ei+5∼5.
The proof for the linear approximation of the decryption round function can be proved in

the same way. ⊓⊔
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D Key Recovery for More Rounds of (X)TEA with the Full Codebook

D.1 Key Recovery for 23 Rounds of TEA

We use the 15-round zero correlation linear approximations of Figure 4 to attack 23-round TEA,
see Figure 9 for an illustration.

Now we use the basic zero correlation linear cryptanalysis with the full code book. To compute
the parity of the approximation, we need to guess 58 bits: (K16∼0

0 |K16∼0
1 |K11∼0

2 |K11∼0
3 ). For

each guess, we partially encrypt 4 rounds and decrypt 4 rounds for the whole code book to get
R0

5|L1
20 and verify if the equation holds. The computational complexity is dominated by those



computations: 258+64 · (1 + 0.5 · 3 + 0.5 · 4)/23 ≃ 2119.64. Memory complexity is negligible. Data
complexity is 264. Success probability is 1.

D.2 Key Recovery for 27 Rounds of XTEA

We use the same 15-round zero correlation linear approximation to attack 27-round XTEA, see
Figure 10 for the attack. Again, using the full codebook, we rely on the basic zero correlation
linear cryptanalysis procedure of [5].

The attack is proceeded as follows:
For each possible 59 bits value of (K25∼0

0 |K26∼0
1 |K5∼0

2 ):

– Allocate and set to zero the 64-bit counter V [x] for each of 222 possible values of

x = (R5
30|R0

30||L0
30|R6∼0

48 |L11∼0
48 ).

– Partially encrypt 5 rounds from round 25 and partially decrypt 4 rounds from round 51 for
the whole code book, get 22-bit (R5

30|R0
30||L0

30|R6∼0
48 |L11∼0

48 ) and add one to V [x].
– For each possible 7 bits value of K6∼0

3 :
• Partially encrypt 1 round from round 30 and decrypt 2 rounds from 47 for 222 possible
values for x to get 2 bits of (R0

31|L1
46) and verify if the linear approximation holds.

• If the counter equals to zero, it means that the guessed value for key bits is right with
high probability.

The computational complexity of the attack is dominated by the partial encryption and
decryption: 259 · 264 · (2 + 0.5 · 3 + 2 + 0.5 · 2)/27 = 2120.71 27-round XTEA encryptions. The
memory complexity is 223 32-bit words. Data complexity is 264. Success probability is 1.


