A Model for Structure Attacks, with Applications to PRESENT and Serpent

Meiqin Wang¹, Yue Sun², Elmar Tischhauser³ and Bart Preneel³

¹Shandong University, ²Tsinghua University, ³KU Leuven and IBBT

FSE 2012 March 19, 2012

- 1. [Motivation](#page-2-0)
- 2. [Modeling structure attacks](#page-9-0)
- 3. [Attacking PRESENT and Serpent](#page-36-0)
- 4. [Conclusions and outlook](#page-43-0)

Motivation: How to leverage multiple differentials?

Using multiple differentials has advantages

- \triangleright More likely to hit right pair \Rightarrow decrease data complexity
- \triangleright Unlike linear cryptanalysis: always constructive
- ▶ Success stories: DES, Serpent

Caveats

- \triangleright Too many differentials can increase complexity
- \triangleright Multiple input, multiple output, both?
- \blacktriangleright How many active bits/S-boxes at input/output?

Motivation: How to leverage multiple differentials?

Using multiple differentials has advantages

- \triangleright More likely to hit right pair \Rightarrow decrease data complexity
- \triangleright Unlike linear cryptanalysis: always constructive
- ▶ Success stories: DES, Serpent

Caveats

- \triangleright Too many differentials can increase complexity
- \blacktriangleright Multiple input, multiple output, both?
- \blacktriangleright How many active bits/S-boxes at input/output?

Motivation: How to leverage multiple differentials?

Using multiple differentials has advantages

- \triangleright More likely to hit right pair \Rightarrow decrease data complexity
- \triangleright Unlike linear cryptanalysis: always constructive
- ▶ Success stories: DES, Serpent

Caveats

- \triangleright Too many differentials can increase complexity
- \blacktriangleright Multiple input, multiple output, both?
- \blacktriangleright How many active bits/S-boxes at input/output?

 \implies General model needed for evaluation

Historical introduction

- ▶ Biham and Shamir 1990: Quartets, Octets, etc.
- \blacktriangleright ... widespread informal use ...
- \triangleright Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- \triangleright Model of FSE'11: Analysis requires fairly restrictive condition on differentials
	- \triangleright Can this be avoided?
- \triangleright Some small technical problems with the attack on 18-round PRESENT

Historical introduction

- ▶ Biham and Shamir 1990: Quartets, Octets, etc.
- \blacktriangleright ... widespread informal use ...
- \triangleright Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- \triangleright Model of FSE'11: Analysis requires fairly restrictive condition on differentials
	- \triangleright Can this be avoided?
- \triangleright Some small technical problems with the attack on 18-round PRESENT

Historical introduction

- ▶ Biham and Shamir 1990: Quartets, Octets, etc.
- \blacktriangleright ... widespread informal use ...
- \triangleright Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- \triangleright Model of FSE'11: Analysis requires fairly restrictive condition on differentials
	- \triangleright Can this be avoided?
- \triangleright Some small technical problems with the attack on 18-round PRESENT

Historical introduction

- ▶ Biham and Shamir 1990: Quartets, Octets, etc.
- \blacktriangleright ... widespread informal use ...
- \triangleright Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- \triangleright Model of FSE'11: Analysis requires fairly restrictive condition on differentials
	- \blacktriangleright Can this be avoided?
- \triangleright Some small technical problems with the attack on 18-round PRESENT

Structure attacks

Structure attacks

- \triangleright Use multiple input, single output differences
- \triangleright Proper subclass of multiple differential cryptanalysis
- \triangleright Allow avoiding the condition of [Blondeau and Gérard, FSE'11]

Structures

- ► Consider set $\{\Delta^1_0,\ldots,\Delta^t_0\}$ of input differences
- \triangleright Structure: collection of plaintexts of the form

$$
\bigcup_{\mathsf{x}} \{x\oplus \Delta \bigm| \Delta \in \mathsf{span}\{\Delta_0^1,\ldots,\Delta_0^t\}\}
$$

Structure attacks

Structure attacks

- \triangleright Use multiple input, single output differences
- \triangleright Proper subclass of multiple differential cryptanalysis
- \triangleright Allow avoiding the condition of [Blondeau and Gérard, FSE'11]

Structures

- ► Consider set $\{\Delta^1_0,\ldots,\Delta^t_0\}$ of input differences
- \triangleright Structure: collection of plaintexts of the form

$$
\bigcup_x \{x \oplus \Delta \bigm| \Delta \in \text{span}\{\Delta_0^1,\ldots,\Delta_0^t\}\}
$$

Structure attacks

Structure attacks

- \triangleright Use multiple input, single output differences
- \triangleright Proper subclass of multiple differential cryptanalysis
- \triangleright Allow avoiding the condition of [Blondeau and Gérard, FSE'11]

Structures

- ► Consider set $\{\Delta^1_0,\ldots,\Delta^t_0\}$ of input differences
- \triangleright Structure: collection of plaintexts of the form

$$
\bigcup_x \{x \oplus \Delta \bigm| \Delta \in \text{span}\{\Delta_0^1,\ldots,\Delta_0^t\}\}
$$

Here: focus on SPNs

[Modeling structure attacks](#page-9-0) 5 / 18

Notation

- \blacktriangleright m-bit block cipher, k bit key
- \triangleright Attack on R rounds with r-round differentials
- \triangleright Set Δ_0 of input differences, one output difference Δ_r

Modeling structure attacks: The setting

Structure of the structures

In each structure:

- \blacktriangleright m − N_p bits fixed,
- \blacktriangleright N_p bits take on all N_p-bit values

Structure of the structures

In each structure:

- \blacktriangleright m N_p bits fixed,
- \triangleright N_p bits take on all N_p-bit values

Structure of the structures

In each structure:

- \blacktriangleright m N_p bits fixed,
- $\triangleright N_p$ bits take on all N_p -bit values

and so on

[Modeling structure attacks](#page-9-0) **7** / 18

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
	- (a) Insert ciphertexts into hash table indexed by N_c
	- (b) For each entry: Check if input difference matches Δ_0
	- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
	- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
	- (a) Insert ciphertexts into hash table indexed by N_c
	- (b) For each entry: Check if input difference matches Δ_0
	- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
	- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
	- (a) Insert ciphertexts into hash table indexed by N_c
	- (b) For each entry: Check if input difference matches Δ_0
	- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
	- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
	- (a) Insert ciphertexts into hash table indexed by N_c
	- (b) For each entry: Check if input difference matches Δ_0
	- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
	- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
	- (a) Insert ciphertexts into hash table indexed by N_c
	- (b) For each entry: Check if input difference matches Δ_0
	- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
	- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

$$
\mathcal{T}_d \approx \frac{|\Delta_0|}{2^{N_{st}+N_p-N_c}}
$$

$$
T_2=\,\ell\cdot 2^{k-n_k}
$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

 $T_a = 2^{N_{st}+N_p}$

 $T_b = 2^{N_{st} + 2N_p - N_c}$

 $T_c = |\Delta_0|$.

$$
\mathcal{T}_d \approx \frac{|\Delta_0|}{2^{N_{st}+N_p-N_c}}
$$

$$
T_2=\,\ell\cdot 2^{k-n_k}
$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- $T_b = 2^{N_{st} + 2N_p N_c}$
- ${\mathcal T}_c = \ \vert \Delta_0 \vert \cdot \vert$ $2^{N_{st}+N_p-N_c}$

$$
T_d \approx \frac{|\Delta_0|}{2^{N_{st}+N_p-N_c}}
$$

$$
\mathcal{T}_2=\,\ell\cdot 2^{k-n_k}
$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- $T_b = 2^{N_{st} + 2N_p N_c}$
- ${\mathcal T}_c = \ \vert \Delta_0 \vert \cdot \vert$ $2^{N_{st}+N_p-N_c}$

$$
\mathcal{T}_d \approx \frac{|\Delta_0|}{2^{N_{st}+N_p-N_c}}
$$

$$
T_2=\,\ell\cdot 2^{k-n_k}
$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r , maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- $T_b = 2^{N_{st} + 2N_p N_c}$
- ${\mathcal T}_c = \ \vert \Delta_0 \vert \cdot \vert$ $2^{N_{st}+N_p-N_c}$

$$
\mathcal{T}_d \approx \frac{|\Delta_0|}{2^{N_{st}+N_p-N_c}}
$$

$$
\mathcal{T}_2=\,\ell\cdot 2^{k-n_k}
$$

Dominating term depends on relation between N_p and N_c :

$$
T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}
$$

$$
T_a = 2^{N_{st} + N_p}, T_b = 2^{N_{st} + 2N_p - N_c}, T_2 = \ell \cdot 2^{k - n_k}
$$

Implications

-
-

Success probability: use model of FSE'11 without restrictive

[Modeling structure attacks](#page-9-0) **10** / 18 $\overline{10}$ / 18

Dominating term depends on relation between N_p and N_c :

$$
T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}
$$

$$
\mathcal{T}_a = 2^{N_{st} + N_p}, \, \mathcal{T}_b = 2^{N_{st} + 2N_p - N_c}, \, \mathcal{T}_2 = \ell \cdot 2^{k - n_k}
$$

Implications

Success probability: use model of FSE'11 without restrictive

[Modeling structure attacks](#page-9-0) **10** / 18 $\overline{10}$ / 18

Dominating term depends on relation between N_p and N_c :

$$
T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}
$$

$$
\mathcal{T}_a = 2^{N_{st}+N_p}, \, \mathcal{T}_b = 2^{N_{st}+2N_p-N_c}, \, \mathcal{T}_2 = \ell \cdot 2^{k-n_k}
$$

Implications

- If many differentials have probability close to 2^{-m} (requires large ℓ and hence T_2): Increase N_p , use more differentials
- ► If probabilites $\gg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive

[Modeling structure attacks](#page-9-0) **10** / 18

Dominating term depends on relation between N_p and N_c :

$$
T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}
$$

$$
\mathcal{T}_a = 2^{N_{st}+N_p}, \, \mathcal{T}_b = 2^{N_{st}+2N_p-N_c}, \, \mathcal{T}_2 = \ell \cdot 2^{k-n_k}
$$

Implications

- If many differentials have probability close to 2^{-m} (requires large ℓ and hence T_2): Increase N_p , use more differentials
- ► If probabilites $\ggg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive

[Modeling structure attacks](#page-9-0) **10** / 18

Dominating term depends on relation between N_p and N_c :

$$
T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}
$$

$$
\mathcal{T}_a = 2^{N_{st}+N_p}, \, \mathcal{T}_b = 2^{N_{st}+2N_p-N_c}, \, \mathcal{T}_2 = \ell \cdot 2^{k-n_k}
$$

Implications

- If many differentials have probability close to 2^{-m} (requires large ℓ and hence T_2): Increase N_p , use more differentials
- ► If probabilites $\ggg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive condition.

[Modeling structure attacks](#page-9-0) **10** / 18

On the ratio of weak keys for structure attacks

Differential probabilities vary over the keys: Implications?

Daemen and Rijmen 2006: Fixed-key cardinality of a (single) differential follows a Poisson distribution.

 \Rightarrow Theorem: Characterisation of the weak key ratio Consider differentials $\Delta_0^i \to \Delta_r$ with probability p_i , $1 \leq i \leq |\Delta_0|$. Then only a ratio of

$$
r_{w} \stackrel{\text{def}}{=} 1 - \sum_{x=0}^{\mu-1} \text{Poisson}(x, 2^{m-1} \sum_{j=1}^{|{\Delta_0}|} p_j)
$$

"weak" keys produces μ right pairs or more.

On the ratio of weak keys for structure attacks

Differential probabilities vary over the keys: Implications?

Daemen and Rijmen 2006: Fixed-key cardinality of a (single) differential follows a Poisson distribution.

 \Rightarrow Theorem: Characterisation of the weak key ratio Consider differentials $\Delta_0^i \to \Delta_r$ with probability p_i , $1 \leq i \leq |\Delta_0|$. Then only a ratio of

$$
r_{w} \stackrel{\text{def}}{=} 1 - \sum_{x=0}^{\mu-1} \text{Poisson}(x, 2^{m-1} \sum_{j=1}^{|{\Delta_0}|} p_j)
$$

"weak" keys produces μ right pairs or more.

On the ratio of weak keys for structure attacks

Differential probabilities vary over the keys: Implications?

Daemen and Rijmen 2006: Fixed-key cardinality of a (single) differential follows a Poisson distribution.

 \Rightarrow Theorem: Characterisation of the weak key ratio Consider differentials $\Delta_0^i \to \Delta_r$ with probability p_i , $1 \leq i \leq |\Delta_0|.$ Then only a ratio of

$$
r_{w} \stackrel{\text{def}}{=} 1 - \sum_{x=0}^{\mu-1} \text{Poisson}(x, 2^{m-1} \sum_{j=1}^{\vert \Delta_0 \vert} p_j)
$$

"weak" keys produces μ right pairs or more.

PRESENT

- \triangleright 64-bit SPN block cipher with 80-bit key
- ► By Bogdanov et al (CHES 2007), now ISO standard
- \triangleright Best attack: [Cho 2010], Multidimensional linear, 26 rounds
- \triangleright Best differential attack: [Blondeau and Gérard 2011], multiple differential, 18 rounds $(+)$ minor corrections)

Attacking PRESENT: Differential pattern propagation

Applying the structure attack to 18-round PRESENT

Parameters

- $|\Delta_0|$ = 36 16-round differentials
- \blacktriangleright 2²⁴ structures, $N_p=40,~N_c=32$
- Exev candidate list size $\ell = 2^{36}$

- \blacktriangleright Time 2⁷⁶, data 2⁶⁴
- \blacktriangleright Success probability 86%
- \triangleright Weak key ratio 57%

Applying the structure attack to 18-round PRESENT

Parameters

- $|\Delta_0|$ = 36 16-round differentials
- \blacktriangleright 2²⁴ structures, $N_p=40,~N_c=32$
- ightharpoonup key candidate list size $\ell = 2^{36}$

Complexities

- \blacktriangleright Time 2⁷⁶, data 2⁶⁴
- \blacktriangleright Success probability 86%
- \blacktriangleright Weak key ratio 57%

Best previous differential attack: 18 rounds, revised multiple differential attack of Blondeau and Gérard, eprint $2011/115$

Second example: Serpent

Serpent

- \blacktriangleright 128-bit block cipher, 128 to 256-bit key
- \triangleright By Anderson et al (1998), AES finalist
- \triangleright Best attack: Differential-linear attack on 12 rounds, Dunkelman et al 2008

Differential attacks

Second example: Serpent

Serpent

- \blacktriangleright 128-bit block cipher, 128 to 256-bit key
- \triangleright By Anderson et al (1998), AES finalist
- \triangleright Best attack: Differential-linear attack on 12 rounds, Dunkelman et al 2008

Differential attacks

Conclusions and outlook

Summary

- \triangleright We propose a complete model for the analysis of structure attacks
- \triangleright This leads to an explicit characterisation of the ratio of weak keys
- \triangleright Structure attacks provide the currently best differential attacks on PRESENT and Serpent.

Future work

- \triangleright More study is needed on the necessity of the restrictive condition in the model of FSE'11
- \triangleright Applying structure attacks to other ciphers

Conclusions and outlook

Summary

- \triangleright We propose a complete model for the analysis of structure attacks
- \triangleright This leads to an explicit characterisation of the ratio of weak keys
- \triangleright Structure attacks provide the currently best differential attacks on PRESENT and Serpent.

Future work

- \triangleright More study is needed on the necessity of the restrictive condition in the model of FSE'11
- \triangleright Applying structure attacks to other ciphers

Thank you for your attention!