A Model for Structure Attacks, with Applications to PRESENT and Serpent

Meiqin Wang¹, Yue Sun², Elmar Tischhauser³ and Bart Preneel³

¹Shandong University, ²Tsinghua University, ³KU Leuven and IBBT

FSE 2012 March 19, 2012

- 1. Motivation
- 2. Modeling structure attacks
- 3. Attacking PRESENT and Serpent
- 4. Conclusions and outlook

Motivation: How to leverage multiple differentials?

Using multiple differentials has advantages

- More likely to hit right pair \Rightarrow decrease data complexity
- Unlike linear cryptanalysis: always constructive
- Success stories: DES, Serpent

Caveats

- Too many differentials can increase complexity
- Multiple input, multiple output, both?
- How many active bits/S-boxes at input/output?

 \implies General model needed for evaluation

Motivation: How to leverage multiple differentials?

Using multiple differentials has advantages

- More likely to hit right pair \Rightarrow decrease data complexity
- Unlike linear cryptanalysis: always constructive
- Success stories: DES, Serpent

Caveats

- Too many differentials can increase complexity
- Multiple input, multiple output, both?
- How many active bits/S-boxes at input/output?

\implies General model needed for evaluation

Motivation: How to leverage multiple differentials?

Using multiple differentials has advantages

- More likely to hit right pair \Rightarrow decrease data complexity
- Unlike linear cryptanalysis: always constructive
- Success stories: DES, Serpent

Caveats

- Too many differentials can increase complexity
- Multiple input, multiple output, both?
- How many active bits/S-boxes at input/output?

 \implies General model needed for evaluation

Historical introduction

- Biham and Shamir 1990: Quartets, Octets, etc.
- ... widespread informal use ...
- Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- Model of FSE'11: Analysis requires fairly restrictive condition on differentials
 - Can this be avoided?
- Some small technical problems with the attack on 18-round PRESENT

Historical introduction

- ▶ Biham and Shamir 1990: Quartets, Octets, etc.
- ... widespread informal use ...
- Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- Model of FSE'11: Analysis requires fairly restrictive condition on differentials
 - Can this be avoided?
- Some small technical problems with the attack on 18-round PRESENT

Historical introduction

- ▶ Biham and Shamir 1990: Quartets, Octets, etc.
- ... widespread informal use ...
- Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- Model of FSE'11: Analysis requires fairly restrictive condition on differentials
 - Can this be avoided?
- Some small technical problems with the attack on 18-round PRESENT

Historical introduction

- ▶ Biham and Shamir 1990: Quartets, Octets, etc.
- ... widespread informal use ...
- Blondeau and Gérard, FSE 2011: Comprehensive framework for multiple differentials

- Model of FSE'11: Analysis requires fairly restrictive condition on differentials
 - Can this be avoided?
- Some small technical problems with the attack on 18-round PRESENT

Structure attacks

Structure attacks

- Use multiple input, single output differences
- Proper subclass of multiple differential cryptanalysis
- Allow avoiding the condition of [Blondeau and Gérard, FSE'11]

Structures

- Consider set $\{\Delta_0^1, \ldots, \Delta_0^t\}$ of input differences
- Structure: collection of plaintexts of the form

$$\bigcup_{x} \{ x \oplus \Delta \mid \Delta \in \mathsf{span}\{\Delta_0^1, \dots, \Delta_0^t\} \}$$

Here: focus on SPNs

Structure attacks

Structure attacks

- Use multiple input, single output differences
- Proper subclass of multiple differential cryptanalysis
- Allow avoiding the condition of [Blondeau and Gérard, FSE'11]

Structures

- Consider set $\{\Delta_0^1, \ldots, \Delta_0^t\}$ of input differences
- Structure: collection of plaintexts of the form

$$\bigcup_{x} \{ x \oplus \Delta \mid \Delta \in \mathsf{span}\{\Delta_0^1, \dots, \Delta_0^t\} \}$$

Here: focus on SPNs

Structure attacks

Structure attacks

- Use multiple input, single output differences
- Proper subclass of multiple differential cryptanalysis
- Allow avoiding the condition of [Blondeau and Gérard, FSE'11]

Structures

- Consider set $\{\Delta_0^1, \ldots, \Delta_0^t\}$ of input differences
- Structure: collection of plaintexts of the form

$$\bigcup_x \{ x \oplus \Delta \mid \Delta \in \mathsf{span}\{\Delta_0^1, \dots, \Delta_0^t\} \}$$

Here: focus on SPNs

Notation

- *m*-bit block cipher, *k* bit key
- Attack on R rounds with r-round differentials
- Set Δ_0 of input differences, one output difference Δ_r

Modeling structure attacks: The setting

Structure of the structures

In each structure:

- $m N_p$ bits fixed,
- N_p bits take on all N_p -bit values

Structure of the structures

In each structure:

- $m N_p$ bits fixed,
- N_p bits take on all N_p -bit values

Structure of the structures

In each structure:

- $m N_p$ bits fixed,
- N_p bits take on all N_p-bit values

and so on

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
 - (a) Insert ciphertexts into hash table indexed by N_c
 - (b) For each entry: Check if input difference matches Δ_0
 - (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
 - (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
 - (a) Insert ciphertexts into hash table indexed by N_c
 - (b) For each entry: Check if input difference matches Δ_0
 - (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
 - (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
 - (a) Insert ciphertexts into hash table indexed by N_c
 - (b) For each entry: Check if input difference matches Δ_0
 - (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
 - (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
 - (a) Insert ciphertexts into hash table indexed by N_c
 - (b) For each entry: Check if input difference matches Δ_0
 - (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
 - (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

- 1. For each of the N_{st} structures:
 - (a) Insert ciphertexts into hash table indexed by N_c
 - (b) For each entry: Check if input difference matches Δ_0
 - (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
 - (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- Search through the ℓ best key candidates, find master key.

$$T_a = 2^{N_{st}+N_p}$$

 $T_b = 2^{N_{st}+2N_p-N_c}$

 $\Gamma_c = |\Delta_0| \cdot 2^{N_{st} + N_p - N_c}$

$$T_d \approx |\Delta_0| \cdot 2^{N_{st}+N_p-N_c}$$

$$T_2 = \ell \cdot 2^{k-n_k}$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round R
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- Search through the ℓ best key candidates, find master key.

 $T_a = 2^{N_{st}+N_p}$

$$T_b = 2^{N_{st} + 2N_p - N_c}$$

 $\Gamma_{c} = |\Delta_{0}| \cdot 2^{N_{st}+N_{p}-N_{c}}$

$$T_d \approx |\Delta_0| \cdot 2^{N_{st}+N_p-N_c}$$

$$T_2 = \ell \cdot 2^{k-n_k}$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- Search through the ℓ best key candidates, find master key.

 $T_{a} = 2^{N_{st}+N_{p}}$ $T_{b} = 2^{N_{st}+2N_{p}-N_{c}}$ $T_{c} = |\Delta_{0}| \cdot$

$$2^{N_{st}+N_p-N_c}$$

$$d \approx |\Delta_0| \cdot 2^{N_{st}+N_p-N_c}$$

$$T_2 = \ell \cdot 2^{k-n_k}$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

$$T_{a} = 2^{N_{st}+N_{p}}$$
$$T_{b} = 2^{N_{st}+2N_{p}-N_{c}}$$
$$T_{c} = |\Delta_{0}| \cdot$$
$$2^{N_{st}+N_{p}-N_{c}}$$

$$T_d \approx |\Delta_0| \cdot 2^{N_{st}+N_p-N_c}$$

$$T_2 = \ell \cdot 2^{k-n_k}$$

1. For each of the N_{st} structures:

- (a) Insert ciphertexts into hash table indexed by N_c
- (b) For each entry: Check if input difference matches Δ_0
- (c) If yes: For each pair, filter by output difference in active S-boxes in round *R*
- (d) If pair survives filter: Guess n_k subkey bits, decrypt to round r, maintain counters.
- 2. Search through the ℓ best key candidates, find master key.

 $T_{a} = 2^{N_{st}+N_{p}}$ $T_{b} = 2^{N_{st}+2N_{p}-N_{c}}$ $T_{c} = |\Delta_{0}| \cdot$

$$= |\Delta_0| \cdot 2^{N_{st}+N_p-N_c}$$

$$T_d \approx |\Delta_0| \cdot 2^{N_{st}+N_p-N_c}$$

$$T_2 = \ell \cdot 2^{k-n_k}$$

Dominating term depends on relation between N_p and N_c :

$$T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}$$

$$T_a = 2^{N_{st}+N_p}, T_b = 2^{N_{st}+2N_p-N_c}, T_2 = \ell \cdot 2^{k-n_k}$$

Implications

- If many differentials have probability close to 2^{-m} (requires large ℓ and hence T₂): Increase N_ρ, use more differentials
- If probabilites $\gg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive condition.

Dominating term depends on relation between N_p and N_c :

$$T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}$$

$$T_a = 2^{N_{st}+N_p}, T_b = 2^{N_{st}+2N_p-N_c}, T_2 = \ell \cdot 2^{k-n_k}$$

Implications

▶ If many differentials have probability close to 2^{-m} (requires large ℓ and hence T_2): Increase N_p , use more differentials

• If probabilites $\gg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive condition.

Dominating term depends on relation between N_p and N_c :

$$T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}$$

$$T_a = 2^{N_{st}+N_p}, T_b = 2^{N_{st}+2N_p-N_c}, T_2 = \ell \cdot 2^{k-n_k}$$

Implications

- If many differentials have probability close to 2^{-m} (requires large ℓ and hence T₂): Increase N_p, use more differentials
- ▶ If probabilites $\gg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive condition.

Dominating term depends on relation between N_p and N_c :

$$T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}$$

$$T_a = 2^{N_{st}+N_p}, T_b = 2^{N_{st}+2N_p-N_c}, T_2 = \ell \cdot 2^{k-n_k}$$

Implications

- If many differentials have probability close to 2^{-m} (requires large ℓ and hence T₂): Increase N_p, use more differentials
- ▶ If probabilites $\gg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive condition.

Dominating term depends on relation between N_p and N_c :

$$T_a + T_b + T_c + T_d + T_2 \simeq \begin{cases} T_a + T_2 & \text{if } N_p < N_c, \\ T_b + T_2 & \text{if } N_p > N_c, \\ 2T_a + T_2 & \text{if } N_p = N_c. \end{cases}$$

$$T_a = 2^{N_{st}+N_p}, T_b = 2^{N_{st}+2N_p-N_c}, T_2 = \ell \cdot 2^{k-n_k}$$

Implications

- If many differentials have probability close to 2^{-m} (requires large ℓ and hence T₂): Increase N_p, use more differentials
- ▶ If probabilites $\gg 2^{-m}$ (hence small ℓ and T_2): Take $N_p = N_c$

Success probability: use model of FSE'11 without restrictive condition.

On the ratio of weak keys for structure attacks

Differential probabilities vary over the keys: Implications?

Daemen and Rijmen 2006: Fixed-key cardinality of a (single) differential follows a Poisson distribution.

⇒ Theorem: Characterisation of the weak key ratio Consider differentials $\Delta_0^i \rightarrow \Delta_r$ with probability p_i , $1 \le i \le |\Delta_0|$. Then only a ratio of

$$r_w \stackrel{\text{def}}{=} 1 - \sum_{x=0}^{\mu-1} \mathsf{Poisson}(x, 2^{m-1} \sum_{j=1}^{|\Delta_0|} p_j)$$

"weak" keys produces μ right pairs or more.

On the ratio of weak keys for structure attacks

Differential probabilities vary over the keys: Implications?

Daemen and Rijmen 2006: Fixed-key cardinality of a (single) differential follows a Poisson distribution.

⇒ Theorem: Characterisation of the weak key ratio Consider differentials $\Delta_0^i \rightarrow \Delta_r$ with probability p_i , $1 \le i \le |\Delta_0|$. Then only a ratio of

$$r_w \stackrel{\text{def}}{=} 1 - \sum_{x=0}^{\mu-1} \mathsf{Poisson}(x, 2^{m-1} \sum_{j=1}^{|\Delta_0|} p_j)$$

"weak" keys produces μ right pairs or more.

On the ratio of weak keys for structure attacks

Differential probabilities vary over the keys: Implications?

Daemen and Rijmen 2006: Fixed-key cardinality of a (single) differential follows a Poisson distribution.

⇒ Theorem: Characterisation of the weak key ratio Consider differentials $\Delta_0^i \rightarrow \Delta_r$ with probability p_i , $1 \le i \le |\Delta_0|$. Then only a ratio of

$$r_w \stackrel{ ext{def}}{=} 1 - \sum_{x=0}^{\mu-1} \mathsf{Poisson}(x, 2^{m-1} \sum_{j=1}^{|\Delta_0|} p_i)$$

"weak" keys produces μ right pairs or more.

PRESENT

- ▶ 64-bit SPN block cipher with 80-bit key
- ▶ By Bogdanov et al (CHES 2007), now ISO standard
- Best attack: [Cho 2010], Multidimensional linear, 26 rounds
- Best differential attack: [Blondeau and Gérard 2011], multiple differential, 18 rounds (+ minor corrections)

Attacking PRESENT: Differential pattern propagation

Applying the structure attack to 18-round PRESENT

Parameters

- $|\Delta_0| = 36$ 16-round differentials
- ▶ 2^{24} structures, $N_p = 40$, $N_c = 32$
- key candidate list size $\ell = 2^{36}$

Complexities

- ► Time 2⁷⁶, data 2⁶⁴
- Success probability 86%
- Weak key ratio 57%

Applying the structure attack to 18-round PRESENT

Parameters

- $|\Delta_0| = 36$ 16-round differentials
- ▶ 2^{24} structures, $N_p = 40$, $N_c = 32$
- key candidate list size $\ell = 2^{36}$

Complexities

- Time 2⁷⁶, data 2⁶⁴
- Success probability 86%
- Weak key ratio 57%

Best previous differential attack: 18 rounds, revised multiple differential attack of Blondeau and Gérard, eprint 2011/115

Multiple differential		Structure attack			
l	Ps	l	Ps	data	time
2 ³⁸	65.27%	2 ³⁶	85.94%	2 ⁶⁴	2 ⁷⁶
2 ³⁹	79.68%	2 ³⁷	92.30%	2 ⁶⁴	2 ⁷⁷
2 ⁴¹	94.62%	2 ³⁹	98.36%	2 ⁶⁴	2 ⁷⁹

Second example: Serpent

Serpent

- 128-bit block cipher, 128 to 256-bit key
- ▶ By Anderson et al (1998), AES finalist
- Best attack: Differential-linear attack on 12 rounds, Dunkelman et al 2008

Differential attacks

	Biham et al (2001)		Structure attack	
rounds	time	data	time	data
7	2 ⁸⁵	2 ⁸⁴		
	2^{213}	2 ⁸⁴		

Second example: Serpent

Serpent

- 128-bit block cipher, 128 to 256-bit key
- ▶ By Anderson et al (1998), AES finalist
- Best attack: Differential-linear attack on 12 rounds, Dunkelman et al 2008

Differential attacks

	Biham et al (2001)		Structure attack		
rounds	time	data	time	data	
7	2 ⁸⁵	2 ⁸⁴	2 ⁷⁵	271	
8	2^{213}	2 ⁸⁴	2 ²⁰³	271	

Conclusions and outlook

Summary

- We propose a complete model for the analysis of structure attacks
- This leads to an explicit characterisation of the ratio of weak keys
- Structure attacks provide the currently best differential attacks on PRESENT and Serpent.

Future work

- More study is needed on the necessity of the restrictive condition in the model of FSE'11
- Applying structure attacks to other ciphers

Conclusions and outlook

Summary

- We propose a complete model for the analysis of structure attacks
- This leads to an explicit characterisation of the ratio of weak keys
- Structure attacks provide the currently best differential attacks on PRESENT and Serpent.

Future work

- More study is needed on the necessity of the restrictive condition in the model of FSE'11
- Applying structure attacks to other ciphers

Thank you for your attention!