Lapin

(an efficient authentication protocol based on Ring-LPN)

Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, Krzysztof Diotrzak

Christof Paar, Krzysztof Pietrzak

Authentication Protocols

Prover Verifier shared AES key K

HB-style authentication protocols based on LPN

suitable for light-weight authentication

Lightweight Authentication - Motivation

Lightweight authentication has many applications

- "We need security with less than 2000 gates for RFID tags" Sanjay Sarma (MIT AUTO-ID Labs) @ CHES 2002
- \$3 trillion damage annually due to product piracy*
 - \rightarrow replacement parts and devices need authentication

*Source: www.bascap.com

• Remote keyless entry systems for buildings, cars...

Lightweight Authentication - Motivation

- Many embedded applications are very cost-sensitive
 → we need lightweight authentication
- Since ≈ 2006 a lot of research on lightweight ciphers (PRESENT and many other proposals)
- All previous lightweight ciphers...
 - are optimized for hardware complexity (gate count), even though the vast majority of embedded applications run in software / firmware
 - \rightarrow very small code attractive for many applications
 - are not based on hardness assumptions

Learning Parity with Noise (LPN)

We have access to an oracle who has a secret \mathbf{s} in \mathbf{Z}_2^n On every query, the oracle:

1. Picks $\mathbf{r} \leftarrow \mathbf{Z}_2^n$

2. Picks a `noise' e $\leftarrow \beta_{\frac{1}{4}}$ (i.e. e= 0 w.p. $\frac{3}{4}$ and 1 w.p $\frac{1}{4}$)

3. Outputs (r, t=<r,s> + e)

The goal: Find s

Decision LPN

Thm [BFKL '93]: Decision-LPN is as hard as LPN

HB Protocol + Toeplitz Matrix [GRS '08] Verifier Prover common secrets $\mathbf{s}_1, \dots, \mathbf{s}_k$ in \mathbf{Z}_2^n Pick $\mathbf{r} \leftarrow \mathbf{Z}_2^n$ For $1 \le j \le k$ t₁, ... ,t_k generate $e_i \leftarrow \beta_{\frac{1}{4}}$ Accept iff for more than set $t_i = \langle \mathbf{r}, \mathbf{s}_i \rangle + e_i$ 60% of j, t_i=<**r**,**s**_i> As secure as "Toeplitz-LPN" against a passive adversary 1 0 1 0 0 t₁ t₂ k+n-1 $\approx 2^{10}$ bits

HB Protocol + Field $Z_2[x]/\langle x^4+x+1\rangle$

Ring-LPN Problem

$$f(x) = polynomial of degree n$$

 $R=Z_2[x]/$

Distinguish between the two distributions

Hardness of Ring-LPN

- Very little known
- For irreducible f(x), seems as hard as general LPN
- For reducible **f**(x) ... one needs to be careful
 - $\mathbf{f}(\mathbf{x}) = \mathbf{x}^{n} + 1$ (where n is a power of 2), there is a $2^{\sqrt{n}}$ algorithm
- No known connection between decision and search versions

What about active attacks?

Active Attack Model

Adversary Phase 1

Active Attack Model

Adversary Phase 2

Verifier

HB Protocol with Active Security [JW '05, KS '06, GRS '08, ...] Prover Verifier

secret size doubled

security proof uses rewinding (not tight):

adversary succeeding with probability δ lets us break LPN with probability δ^2

Our Result

• 2 round *efficient* protocol based on Ring-LPN

- Uses ideas from [KPCJV '10]
 - [KPCJV '10] is a 2-round LPN-based protocol
 - It suffers from the same efficiency drawback as HB
 - Don't know if it can be instantiated with a Toeplitz matrix

New Authentication Protocol <u>Prover</u> <u>Verifier</u>

common secrets s, s' in $\mathbf{R}=\mathbf{Z}_2[\mathbf{x}]/\langle \mathbf{f}(\mathbf{x})\rangle$ \mathbf{R}^* is the set of all invertible elements in \mathbf{R} **D** is a subset of \mathbf{R} such that for all $\mathbf{c} \neq \mathbf{c'}$ in \mathbf{D} , $\mathbf{c}+\mathbf{c'}$ is in \mathbf{R}^*

Security Proof

 $c^* \leftarrow D$, $a \leftarrow R$, $s' = c^*s + a$

Performance Comparisons

8-bit AVR ATmega163 smartcard implementations

Protocol	Online Time (cycles)	Offline Time (cycles)	Code Size (bytes)
f (x)=x ⁶²¹ + (reducible)	30,000	82,500	1356
f (x)=x ⁵³² +x+1 (irreducible)	21,000	174,000	459
AES-Based	10,121	0	4644

Open Problems

- Man-in-the-middle security?
 - There is a 2^{k/2} time MIM attack against our protocol (requires 2^{k/2} observations)
 - Can we design a *practical* protocol *provably secure* against man-in-the-middle attacks?
 - Big step taken in [DKPW '12]
 - Is Lapin already secure against MIM attacks?
- How hard is the Ring-LPN problem?
 Is there a search-decision reduction?
- A 2-round protocol with Toeplitz matrices?
 Thank You!