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Differential propagation analysis of Keccak

Introduction

Differential trails and iterated mappings

Differential trails in iterated mappings

Trail: sequence of differences

DP(Q): fraction of pairs that exhibit qi differences
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Introduction

Differential trails and iterated mappings

Differential trails and weight

w = − log2(DP)

If independent rounds and w(Q) < b: #pairs(Q) ≈ 2b−w(Q)
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Differential propagation analysis of Keccak

Introduction

Design approaches

Different design approaches

Rijndael-inspired: strong alignment
estimating #pairs(Q) from Q: easy
easy demonstration of strong trail weight bounds
still, truncated trails, rebound attack, …

ARX
estimating #pairs(Q) from Q: hard
no strong trail weight bounds
revert to pre-DC/LC folklore such as avalanche effect

Keccak: weak alignment
#pairs(Q) from Q: easy
cryptanalysis seems hard
…but proving strong lower bounds also
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Introduction

Keccak-f: an iterative permutation

Keccak-f: an iterative permutation

Operates on 3D state:

x

y z
state

(5× 5)-bit slices

2ℓ-bit lanes

parameter 0 ≤ ℓ < 7

Round function with 5 steps:

θ: mixing layer

ρ: inter-slice bit transposition

π: intra-slice bit transposition

χ: non-linear layer

ι: round constants

# rounds: 12+ 2ℓ for width b = 2ℓ25

12 rounds in Keccak-f[25]

24 rounds in Keccak-f[1600]
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Introduction

Goal of this work

This work

Security of Keccak relies on absence of exploitable trails
…and not on presumed hardness of finding them
Bounds for small versions of Keccak-f

b bound

25 30 per 5 rounds tight
50 54 per 6 rounds tight
100 146 per 16 rounds non-tight
200 206 per 18 rounds non-tight

1600 this work

Inspired by similar efforts for
Noekeon [Nessie, 2000]
MD6 [Rivest et al., SHA-3 2008][Heilman, Ecrypt Hash 2011]
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Trails in Keccak-f

Conventions and concepts

Trails in Keccak-f

Round: linear step λ = π ◦ ρ ◦ θ and non-linear step χ

ai fully determines bi = λ(ai)

χ has degree 2: w(bi−1) independent of ai
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Trails in Keccak-f

Conventions and concepts

Trails in Keccak-f

For Keccak-f:

w(Q): # conditions on intermediate state bits

b: # degree of freedom

10 / 28



Differential propagation analysis of Keccak

Trails in Keccak-f

Trail generation techniques

Trail generation techniques

Given a trail, we can extend it:
forward: iterate ar+1 over A(br)
backward: iterate b−1 over all differences χ−1-compatible
with a0 = λ−1(b0)

Tree search:
extension can be done recursively
pruning as soon as weight exceeds some limit
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Generating all trails up to some weight

First order approach

First-order approach

Fact

An r-round trail Q with w(Q) ≤ T has at
least one bi with weight ≤ T/r

Generating trails up to weight T, first order approach

Generate V1 = {b|w(b) ≤ tavg} with tavg = T/r
∀0 ≤ i < r, iterate bi over V1

extend forward up to br−1
extend backward down to b0
prune as soon as weight exceeds T
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Generating all trails up to some weight

First order approach

Limits of first-order approach

V1 grows quickly with tavg and Keccak-f width:
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Generating all trails up to some weight

Second order approach

Definitions: minimum reverse weight and trail cores

Minimum reverse weight:

wrev(a) , min
b : a∈A(b)

w(b)

Can be used to lower bound of set of trails
Trail core: set of trails with b1, b2, . . . in common
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Differential propagation analysis of Keccak

Generating all trails up to some weight

Second order approach

Second-order approach

Observation

For most low-weight a, b = λ(a) has
high weight and vice versa

Generating trails up to weight T, second order approach

Generate V2 = {b|b = λ(a) and wrev(a) +w(b) ≤ 2tavg}
∀0 ≤ i < r, iterate bi over V2

extend forward up to br−1
extend backward down to b0
prune as soon as weight exceeds T

But how does the size of V2 behave with tavg?
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Generating all trails up to some weight

Intermezzo: θ properties

θ, the mixing layer

+ =

column parity θ effect

combine

Compute parity cx,z of each column

Add to each cell the parities of two nearby columns
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Differential propagation analysis of Keccak

Generating all trails up to some weight

Intermezzo: θ properties

θ, the mixing layer

+ =

column parity θ effect

combine

Single-bit parity flips already 10 bits

Other linear mapping ρ and π just move bits around
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Generating all trails up to some weight

Intermezzo: θ properties

θ, the mixing layer

+ =

column parity θ effect

combine

Effect collapses if parity is zero

The kernel
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Generating all trails up to some weight

Limits of the second-order approach

Limits of second-order approach

V2 still grows quickly with tavg and Keccak-f width
Reason: V2 contains states in kernel
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Generating all trails up to some weight

Third-order approach

Third-order approach: dealing with the kernel

V3: trail cores (b, d) with wrev(a) +w(b) +w(d) ≤ 3tavg
a = λ−1(b) is in the kernel
c = λ−1(d) is in the kernel

Elements of V3 can then be extended as usual
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Generating all trails up to some weight

ρ and π

Tame states

Tame state: value of b that satisfies two conditions
1 a = λ−1(b) is in the kernel
2 Intersection of A(b) and kernel is not empty

Second condition can be handled slice-by-slice:
orbital: two bits in the same column
knot: at least 3 active bits

First condition: bits occur in pairs per column in a
Combined with orbitals these form chains between knots
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Generating all trails up to some weight

ρ and π

Chains

Sequence of active bits pi with:

p2i and p2i+1 are in same column in a

p2i+1 and p2i are in same column in b

0

1

2

3

4
5

y

x

z

ρ, π

0
1

2

3

4

5
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Generating all trails up to some weight

ρ and π

Third-order approach

We efficiently generate V3 using this representation
set of chains between knots
plus some circular chains: vortices

Full coverage guaranteed by
monotonous weight prediction function
well-defined order of chains
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Illustration

An in-kernel 3-round trail with a single knot
z = 0 z = 21 z = 43 z = 54

weight: 16

χ
z = 0 z = 21 z = 43 z = 54

a
θ, ρ, π

z = 0 z = 18 z = 34

bweight: 13

χ
z = 0 z = 18 z = 34

c
θ, ρ, π
z = 15 z = 35 z = 36 z = 38 z = 57 z = 62

dweight: 12
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Illustration

An in-kernel 3-round trail with a vortex
z = 9 z = 43 z = 56

weight: 12

χ
z = 9 z = 43 z = 56

a
θ, ρ, π

z = 0 z = 6 z = 7

bweight: 12

χ
z = 0 z = 6 z = 7

c
θ, ρ, π
z = 25 z = 26 z = 28 z = 33 z = 43

dweight: 11
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Conclusions

Conclusions

Current bound for Keccak-f[1600]:
scanned all 3-round trails up to weight 36
after extension: minimum weight 74 for 6-round trails

Work in progress:
improving bounds by increasing tavg
probabilistic evidence for absence of low-weight trails
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Conclusions

Questions?

Thanks for your attention!

Q?
http://keccak.noekeon.org/
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