Differential propagation analysis of Keccak

Joan DAEMEN and Gilles VAN ASSCHE

STMicroelectronics

Fast Software Encryption, March 19-21, 2012

Outline

1 Introduction

- Trails in Кессак-f
- 3 Generating all trails up to some weight

4 Illustration

5 Conclusions

Introduction

Outline

1 Introduction

- 2 Trails in Keccak-f
- 3 Generating all trails up to some weight

4 Illustration

5 Conclusions

Introduction

Differential trails and iterated mappings

Differential trails in iterated mappings

Trail: sequence of differences

■ DP(Q): fraction of pairs that exhibit q_i differences

- Introduction

Differential trails and iterated mappings

Differential trails and weight

$$w = -\log_2(DP)$$

If independent rounds and w(Q) < b: #pairs $(Q) \approx 2^{b-w(Q)}$

Introduction

Design approaches

Different design approaches

- Rijndael-inspired: strong alignment
 - estimating #pairs(Q) from Q: easy
 - easy demonstration of strong trail weight bounds
 - still, truncated trails, rebound attack, ...
- ARX
 - estimating #pairs(Q) from Q: hard
 - no strong trail weight bounds
 - revert to pre-DC/LC folklore such as avalanche effect
- KECCAκ: weak alignment
 - #pairs(Q) from Q: easy
 - cryptanalysis seems hard
 - ...but proving strong lower bounds also

Introduction

KECCAK-*f*: an iterative permutation

KECCAK-f: an iterative permutation

Operates on 3D state:

- (5×5) -bit slices • 2^{ℓ} -bit lanes
- **parameter 0** $\leq \ell <$ 7

Round function with 5 steps:

- θ: mixing layer
- ρ : inter-slice bit transposition
- π: intra-slice bit transposition
- χ : non-linear layer
- *i*: round constants

rounds: 12 + 2 ℓ for width $b = 2^{\ell}$ 25

- 12 rounds in Кессак-f[25]
- 24 rounds in Keccaκ-f[1600]

- Introduction

KECCAK-*f*: an iterative permutation

KECCAK-f: an iterative permutation

Operates on 3D state:

- (5×5) -bit slices
- 2^l-bit lanes

a parameter
$$0 \le \ell < 7$$

Round function with 5 steps:

- θ: mixing layer
- ρ : inter-slice bit transposition
- **\pi**: intra-slice bit transposition
- χ : non-linear layer
- *i*: round constants

rounds: $12 + 2\ell$ for width $b = 2^{\ell}25$

- 12 rounds in Keccak-f[25]
- 24 rounds in Keccaκ-f[1600]

- Introduction

KECCAK-*f*: an iterative permutation

KECCAK-f: an iterative permutation

Operates on 3D state:

- (5×5) -bit slices
- 2^l-bit lanes

parameter
$$0 \le \ell < 7$$

Round function with 5 steps:

- θ: mixing layer
- ρ : inter-slice bit transposition
- π: intra-slice bit transposition
- χ : non-linear layer
- *i*: round constants

rounds: 12 + 2 ℓ for width $b = 2^{\ell}$ 25

- 12 rounds in Кессак-f[25]
- 24 rounds in Keccaκ-f[1600]

Introduction

KECCAK-*f*: an iterative permutation

KECCAK-f: an iterative permutation

Operates on 3D state:

- (5×5) -bit slices • 2^{ℓ} -bit lanes
- parameter 0 $\leq \ell <$ 7

Round function with 5 steps:

- θ: mixing layer
- ρ : inter-slice bit transposition
- **\pi**: intra-slice bit transposition
- χ : non-linear layer
- *i*: round constants

rounds: $12 + 2\ell$ for width $b = 2^{\ell}25$

- 12 rounds in Keccak-f[25]
- 24 rounds in Keccaκ-f[1600]

Introduction

└─ Goal of this work

This work

- Security of KECCAK relies on absence of exploitable trails ...and not on presumed hardness of finding them
- Bounds for small versions of Keccaκ-f

b	bound	
25	30 per 5 rounds	tight
50	54 per 6 rounds	tight
100	146 per 16 rounds	non-tight
200	206 per 18 rounds	non-tight
1600	this work	

Inspired by similar efforts for

- Noekeon [Nessie, 2000]
- MD6 [Rivest et al., SHA-3 2008][Heilman, Ecrypt Hash 2011]

Trails in KECCAK-f

Outline

2 Trails in Кессак-f

3 Generating all trails up to some weight

4 Illustration

5 Conclusions

└─ Trails in KECCAK-f

└─ Conventions and concepts

Trails in KECCAK-f

Round: linear step $\lambda = \pi \circ \rho \circ \theta$ and non-linear step χ

- **a**_{*i*} fully determines $b_i = \lambda(a_i)$
- χ has degree 2: w(b_{i-1}) independent of a_i

└─ Trails in KECCAK-f

└─ Conventions and concepts

Trails in KECCAK-f

For KECCAK-f: w(Q): # conditions on intermediate state bits b: # degree of freedom

└─ Trails in Кессак-f

└─ Trail generation techniques

Trail generation techniques

- Given a trail, we can extend it:
 - forward: iterate a_{r+1} over $\mathcal{A}(b_r)$
 - backward: iterate b₋₁ over all differences χ⁻¹-compatible with a₀ = λ⁻¹(b₀)
- Tree search:
 - extension can be done recursively
 - pruning as soon as weight exceeds some limit

Outline

1 Introduction

2 Trails in Кессак-f

3 Generating all trails up to some weight

4 Illustration

5 Conclusions

Generating all trails up to some weight

└─ First order approach

First-order approach

Fact

An *r*-round trail *Q* with $w(Q) \le T$ has at least one b_i with weight $\le T/r$

Generating trails up to weight T, first order approach

Generate
$$\mathcal{V}_1 = \{b | w(b) \le t_{avg}\}$$
 with $t_{avg} = T/r$

•
$$orall 0 \leq i < r$$
, iterate b_i over \mathcal{V}_1

- extend forward up to b_{r-1}
- extend backward down to b₀
- prune as soon as weight exceeds T

Generating all trails up to some weight

└─ First order approach

Limits of first-order approach

 \mathcal{V}_1 grows quickly with t_{avg} and KECCAK-f width:

Second order approach

Definitions: minimum reverse weight and trail cores

Minimum reverse weight:

$$\mathbf{w}^{\mathsf{rev}}(a) \triangleq \min_{b \ : \ a \in \mathcal{A}(b)} \mathbf{w}(b)$$

- Can be used to lower bound of set of trails
- **Trail core**: set of trails with b_1, b_2, \ldots in common

Second order approach

Definitions: minimum reverse weight and trail cores

Minimum reverse weight:

$$\mathsf{w}^{\mathsf{rev}}(a) \triangleq \min_{b \ : \ a \in \mathcal{A}(b)} \mathsf{w}(b)$$

Can be used to lower bound of set of trails

Trail core: set of trails with b_1, b_2, \ldots in common

Generating all trails up to some weight

└─ Second order approach

Second-order approach

Observation

For most low-weight a, $b = \lambda(a)$ has high weight and vice versa

Generating trails up to weight T, second order approach

Generate $\mathcal{V}_2 = \{b | b = \lambda(a) \text{ and } w^{rev}(a) + w(b) \leq 2t_{avg}\}$

•
$$orall 0 \leq i < r$$
, iterate b_i over \mathcal{V}_2

- extend forward up to b_{r-1}
- extend backward down to b_0
- prune as soon as weight exceeds T

But how does the size of V_2 behave with t_{avg} ?

Generating all trails up to some weight

 \square Intermezzo: θ properties

$\boldsymbol{\theta}$, the mixing layer

Compute parity $c_{x,z}$ of each column

Add to each cell the parities of two nearby columns

Generating all trails up to some weight

 \square Intermezzo: θ properties

$\boldsymbol{\theta}$, the mixing layer

- Single-bit parity flips already 10 bits
- Other linear mapping ρ and π just move bits around

Generating all trails up to some weight

 \square Intermezzo: θ properties

$\boldsymbol{\theta}$, the mixing layer

Effect collapses if parity is zeroThe kernel

Limits of the second-order approach

Limits of second-order approach

- **\mathbf{V}_2** still grows quickly with t_{avg} and KECCAK-*f* width
- Reason: V_2 contains states in kernel

L Third-order approach

Third-order approach: dealing with the kernel

■ \mathcal{V}_3 : trail cores (b, d) with $w^{rev}(a) + w(b) + w(d) \le 3t_{avg}$ ■ $a = \lambda^{-1}(b)$ is in the kernel ■ $c = \lambda^{-1}(d)$ is in the kernel

Elements of \mathcal{V}_3 can then be extended as usual

L Third-order approach

Third-order approach: dealing with the kernel

■ \mathcal{V}_3 : trail cores (b, d) with $w^{rev}(a) + w(b) + w(d) \le 3t_{avg}$ ■ $a = \lambda^{-1}(b)$ is in the kernel ■ $c = \lambda^{-1}(d)$ is in the kernel

Elements of \mathcal{V}_3 can then be extended as usual

Generating all trails up to some weight

 $\vdash \rho$ and π

Tame states

Tame state: value of b that satisfies two conditions

1 $a = \lambda^{-1}(b)$ is in the kernel

2 Intersection of $\mathcal{A}(b)$ and kernel is not empty

Second condition can be handled slice-by-slice:

orbital: two bits in the same column

knot: at least 3 active bits

First condition: bits occur in pairs per column in *a*

Combined with orbitals these form chains between knots

 $\rho \text{ and } \pi$

Chains

Sequence of active bits p_i with:

- p_{2i} and p_{2i+1} are in same column in a
- p_{2i+1} and p_{2i} are in same column in b

Generating all trails up to some weight

 $\rho \text{ and } \pi$

Third-order approach

• We efficiently generate \mathcal{V}_3 using this representation

- set of chains between knots
- plus some circular chains: vortices
- Full coverage guaranteed by
 - monotonous weight prediction function
 - well-defined order of chains

- Illustration

Outline

1 Introduction

- 2 Trails in Keccak-f
- 3 Generating all trails up to some weight

4 Illustration

5 Conclusions

- Illustration

An in-kernel 3-round trail with a single knot

- Illustration

An in-kernel 3-round trail with a vortex

d

- Conclusions

Outline

1 Introduction

- 2 Trails in Keccak-f
- 3 Generating all trails up to some weight

4 Illustration

5 Conclusions

- Conclusions

Conclusions

- Current bound for Keccaκ-f[1600]:
 - scanned all 3-round trails up to weight 36
 - after extension: minimum weight 74 for 6-round trails
- Work in progress:
 - improving bounds by increasing tavg
 - probabilistic evidence for absence of low-weight trails

Conclusions

Thanks for your attention!

http://keccak.noekeon.org/