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Galois / Counter Mode

Let C be a concatenation of optional unencrypted authenticated
data, CTR-encrypted ciphertext, and padding. This data is split
into m 128-bit blocks Ci:

C = C1 || C2 || · · · || Cm.

The authentication code GHASH is based on operations in
GF(2128). Horner’s rule is used in this field to evaluate
polynomial Y. The authentication key is H = EK(0).

Ym =
m∑

i=1

Ci ⊗ Hm−i+1.

The final authentication tag is T = Ym ⊕ EK(IV || 0311),
assuming a 96-bit IV.
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Four rounds of AES-GCM.

AES AES AES AES

P1 P2 P3 P4

C1 C2 C3 C4

AES

H

Y

K K K K

K

1 1 1

0

1

IV || 03010

Y1 Y2 Y3 Y4
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Known Attacks
I Known to be trivially breakable with a repeated IV (Joux’s

2004 “Forbidden Attack”). Therefore poorly suited for
connectionless protocols.

I Ferguson (2005) showed that an n-bit tag provides only
n− k bits of authentication security when messages are 2k

blocks long.
I Hence GCM was already known to be significantly weaker

than, say, HMAC-MD5 (which still has the expected 2−n

security in “unknown-start-value” mode) prior to its
standardization in NIST SP 800-38D.

I Despite these shortcomings and apparently due to industry
endorsement and its excellent hardware performance,
AES-GCM was adopted as part of NSA’s “Suite B” in 2007
and may still be used to secure classified data.
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Four rounds of AES-GCM.

Horner’s iteration:

Y1 = C1 × H

Y2 = (Y1 + C2)× H = C1 × H2 + C2 × H

Y3 = (Y2 + C3)× H = C1 × H3 + C2 × H2 + C3 × H

Y4 = (Y3 + C4)× H = C1 × H4 + C2 × H3 + C3 × H2 + C4 × H.

What if, say, H = H4 ? Then we may just swap C1 and C4 and
the Y4 value will remain unchanged:

Y4 = C4 × H4 + C2 × H2 + C3 × H2 + C1 × H.

A cycle will lead to a forgery attack.
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Switching Full Blocks

AES AES AES AES

P1 P2 P3 P4

C1 C2 C3 C4

AES

H

Y

K K K K

K

1 1 1

0

1

IV || 03010

Y1 Y2 Y3 Y4

swap blocks or bits
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Start With a H1 = AESk(0) for some k.

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845
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Generate H2 = H × H from it

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01
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.. and H3 from H × H2 ..

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01
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Wow! H16 = h1 again.

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

-H04-
44F17DD8
C39908FF
932A02B3
4422C845

01

-H05-
10D04D25
F93556E6
9F58CE2F
8D035A94 01

-H06-
92178D40
26DA1DCA
42967787
30EB9A9E

01

-H07-
02C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

-H08-
542130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H09-
82C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

-H10-
90D04D25
F93556E6
9F58CE2F
8D035A94

01

-H11-
56E6F098
E5431535
D1BC7534
74C952DB01

-H12-
D6E6F098
E5431535
D1BC7534
74C952DB

01

-H13-
12178D40
26DA1DCA
42967787
30EB9A9E

01

-H14-
C636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

-H00-
80000000
00000000
00000000
00000000

01

01



Markku-Juhani O. Saarinen: “Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes”, FSE 2012 – Washington D.C.

Hence H0 = H15. It’s the unique identity element
with cycle length 1.

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

-H04-
44F17DD8
C39908FF
932A02B3
4422C845

01

-H05-
10D04D25
F93556E6
9F58CE2F
8D035A94 01

-H06-
92178D40
26DA1DCA
42967787
30EB9A9E

01

-H07-
02C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

-H08-
542130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H09-
82C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

-H10-
90D04D25
F93556E6
9F58CE2F
8D035A94

01

-H11-
56E6F098
E5431535
D1BC7534
74C952DB01

-H12-
D6E6F098
E5431535
D1BC7534
74C952DB

01

-H13-
12178D40
26DA1DCA
42967787
30EB9A9E

01

-H14-
C636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

-H00-
80000000
00000000
00000000
00000000

01

01

00
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This subgroup is isomorphic to addition in Z15.
H′ = H14 will generate the same cycle backwards.

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H00-
80000000
00000000
00000000
00000000

14

14

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01
14

-H04-
44F17DD8
C39908FF
932A02B3
4422C845

01
14

-H05-
10D04D25
F93556E6
9F58CE2F
8D035A94

0114

-H06-
92178D40
26DA1DCA
42967787
30EB9A9E

01

14

-H07-
02C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01
14

-H08-
542130FD
3AAC5E19
0C72CC9C
C92192D1

01
14

-H09-
82C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01
14

-H10-
90D04D25
F93556E6
9F58CE2F
8D035A94

01
14

-H11-
56E6F098
E5431535
D1BC7534
74C952DB

01
14

-H12-
D6E6F098
E5431535
D1BC7534
74C952DB

01
14

-H13-
12178D40
26DA1DCA
42967787
30EB9A9E

01
14

-H14-
C636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

14

01

01

14

00
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If we skip over 4 (add 5 mod 15), we will get back
in 3 steps.

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

-H04-
44F17DD8
C39908FF
932A02B3
4422C845

01

-H05-
10D04D25
F93556E6
9F58CE2F
8D035A94 01

-H06-
92178D40
26DA1DCA
42967787
30EB9A9E

01

-H10-
90D04D25
F93556E6
9F58CE2F
8D035A94

05

-H07-
02C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

-H08-
542130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H09-
82C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

01

-H11-
56E6F098
E5431535
D1BC7534
74C952DB01

-H00-
80000000
00000000
00000000
00000000

05

-H12-
D6E6F098
E5431535
D1BC7534
74C952DB

01

-H13-
12178D40
26DA1DCA
42967787
30EB9A9E

01

-H14-
C636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

01

01
05

00
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This can also be generated backwards with
H′ = H10.

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

-H04-
44F17DD8
C39908FF
932A02B3
4422C845

01

-H05-
10D04D25
F93556E6
9F58CE2F
8D035A94 01

-H06-
92178D40
26DA1DCA
42967787
30EB9A9E

01

-H10-
90D04D25
F93556E6
9F58CE2F
8D035A94

05

-H00-
80000000
00000000
00000000
00000000

10

-H07-
02C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

-H08-
542130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H09-
82C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

01

10

-H11-
56E6F098
E5431535
D1BC7534
74C952DB01

05

-H12-
D6E6F098
E5431535
D1BC7534
74C952DB

01

-H13-
12178D40
26DA1DCA
42967787
30EB9A9E

01

-H14-
C636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

01

01
05

10

00
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Since 15 = 3× 5, there’s also an unique subgroup of
size 5.

-H01-
C4F17DD8
C39908FF
932A02B3
4422C845

-H02-
D42130FD
3AAC5E19
0C72CC9C
C92192D1

01

-H03-
4636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

-H04-
44F17DD8
C39908FF
932A02B3
4422C845

01

-H06-
92178D40
26DA1DCA
42967787
30EB9A9E

03

-H09-
82C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

06

-H12-
D6E6F098
E5431535
D1BC7534
74C952DB

09

-H00-
80000000
00000000
00000000
00000000

12

-H05-
10D04D25
F93556E6
9F58CE2F
8D035A94 01

01

-H10-
90D04D25
F93556E6
9F58CE2F
8D035A94

05

10
12

-H07-
02C7C065
DFEF4B2C
DDCEB9A8
BDE8C00A

01

03
06

09

-H08-
542130FD
3AAC5E19
0C72CC9C
C92192D1

01

01
09

12

01 03

06
10

-H11-
56E6F098
E5431535
D1BC7534
74C952DB01

05

01

06
09

12
-H13-

12178D40
26DA1DCA
42967787
30EB9A9E

01

03

-H14-
C636BDBD
1C7643D3
4EE4BB1B
F9CA084F

01

01

01
03

05

06

09

10

12

00
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Elementary Number Theory & Abstract Algebra 101

I The (full) multiplicative group of GF(2128) is isomorphic to
the additive group Z2128−1 (all elements except 0).

I There are subgroups of size n for any n | 2128 − 1.
I 2128 − 1 = 3 ∗ 5 ∗ 17 ∗ 257 ∗ 641 ∗ 65537 ∗ 274177 ∗

6700417 ∗ 67280421310721 – nine prime factors.
I Hence there are 29 = 512 different-sized subgroups, almost

log-uniformly distributed in the range.

Theorem.
Let n be a number satisfying gcd(2128 − 1,n) = n. Blindly
swapping blocks Ci and Cj, where i ≡ j (mod n) will result in a
successful forgery with probability of at least n+1

2128 if H is random.
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Probability vs Length is Almost Log-Linear

20 216 232 248 264 280 296 2112 2128

Cycle size / ord(H) bound.
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Multiforgery Attack

I The H value depends solely on the AES key, which may be a
fixed key or something from a key exchange algorithm.

I If a cycle of n is detected, any number of subsequent
forgeries can be performed with probability P = 1.

I The average complexity of an individual forgery can be
made arbitrarily small (compare to multicollision attacks)
if we assume an attack model FRK where the advisory can
force rekeying until a successful forgery occurs.

I Note that FRK is a reasonably realistic model in real-world
VPN protocols which disconnect and rekey immediately on
a MAC mismatch. Under this model the security bound of
the proof is broken (in the average case).
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Any Number of Targeted Bit Forgeries
Counter mode behaves like a stream cipher; flipping a
ciphertext bit will result in the corresponding plaintext bit being
flipped after decryption.

If ord(H) | (i− j) the authentication tag will remain valid as long
as the following equation holds (for some c):

Ci × Hm−i+1 + Cj × Hm−j+1 = c.

Writing Hm−i+1 = Hm−j+1 = Hc, this can be simplified to

Ci + Cj = c× H−1
c .

The tag will be valid if the XOR sum of ciphertext blocks on the
left side remains constant. We may manipulate any number of
specific target bits by appropriately compensating them.
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Secure Fields

I For polynomial authentication, use either:

1. GF(p) prime fields with (p− 1)/2 also a prime. These are
called Sophie Germain prime fields. If H /∈ {0,1, p− 1} the
cycle is (p− 1) or (p− 1)/2, depending on the quadratic
residuosity (Legendre symbol) of H.

.. or ..
2. GF(2p) binary fields with 2p − 1 a prime. These may be

called Mersenne binary fields. If H /∈ {0,1}, the cycle is
2p − 1.

I However, an n-bit MAC can and should have 2−n security
against forgery. Polynomial MACs do not have that.

I Remember: A good MAC should also be able to resist
repeated-IV attacks. These polynomial MACs do not resist
them.
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Some Fields Are Much Better! GF(2128) vs GF(2127)

20 216 232 248 264 280 296 2112 2128

Cycle size / ord(H) bound.
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Testing for AES-GCM Weak Keys

I Finding weak H values is easy, so a natural question arises
on how to determine weak AES keys K that produce these
weak H roots.

I To determine group order, we use a simple algorithm which
is related to the Silver-Pohlig-Hellman algorithm for
discrete logarithms [PoHe78].

I The algorithm can be made especially fast due to the linear
nature of binary field squaring.

I Raising to “Fermat exponents” 2n + 1 (as 2128 − 1 factors
into Fermat numbers) involves repeated squarings and a
single multiplication. The X2n

tables do not depend on the
particular H value.
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Experimental Results

Over couple of days I tested 232 AES-128 keys on my laptop and
found progressively smaller subgroups:

n ≈ 2126.4 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

n ≈ 2125.6 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03

· · ·
n ≈ 296.52 K = 00 00 00 00 00 00 00 00 00 00 00 00 24 3E 8B 40

n ≈ 296.00 K = 00 00 00 00 00 00 00 00 00 00 00 00 37 48 CF CE

n ≈ 293.93 K = 00 00 00 00 00 00 00 00 00 00 00 00 42 87 3C C8

n ≈ 293.41 K = 00 00 00 00 00 00 00 00 00 00 00 00 EC 69 7A A8

Here n = ord(AESK(0)). The groups size shrinks slightly faster
than the keyspace is exhausted (as expected).
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Concluding

I Since the authenticator H is derived as H = AESk(0) and
there are plenty of low-order roots of unity in GF(2128),
there are large classes of weak AES-GCM keys.

I In a forced-rekeying attack model the average cost of a
single forgery is less than what is indicated by the security
proof (the cost can be made arbitrarily low, à la
multicollision attacks on hash functions).

I Don’t use GCM with something like SSH. However, there
may be rational grounds for using it with extremely
high-speed VPN (IPSec) links if the risks are understood
(and parallelism is required).

I If you absolutely want to do polynomial message
authentication, use a secure field rather than GF(2128).
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