
Short-output universal hash functions
&

their use in fast and secure data authentication

Long Nguyen and Bill Roscoe

Oxford University
Department of Computer Science

ε-almost universal hash functions (UHF)

Definition: given R is the set of all different keys.
For any pair of different messages m1 ≠ m2, we have

Prob{k ∈ R}[h(k, m1) = h(k, m2)] ≤ ε

We denote b the bit length of the UHF then ε ≥ 2-b

Why short-output UHF?

Operation on word-size values (b = 16-32 bits) is very fast in any computer

Cryptographic applications:

– Message authentication codes: long-output UHF can be securely
constructed by concatenating several instances of short-output UHF.

– Manual authentication protocols: humans manually compare a short
string (i.e. a short universal hash value) to agree on the same data.

Multiplicative universal hash function
(M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen, Journal of Algorithms, 1997, 25:19-51)

Key k must be odd.

ε = 21-b

(equal-length messages)

Multiplication of a long
message is expensive.

×
k

h(k,m) = (k * m mod 2K) div 2K-b

m

Word-multiplication construction: digest(k,m)

Word-multiplication is fast.

We are interested in the overlap.

ε = 21-b, where b ∈{8,16,32}
(equal-length messages)

Each message word requires
 (M+b)/M ≈1 key-word
 2 additions (ADD)

2 multiplications (MULT)

k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +
digest(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b

 m3 * k3 + (m3*k4 div 2b)

Shortening digest

Truncation is secure in this
digest construction:

For any b’ ∈{1,…,b-1}:

ε = 2 * 2-b’

b’ < b
k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +

digest(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b'

 m3 * k3 + (m3*k4 div 2b)

MAC: Lengthening digest?

For MAC: we need to increase
the output length to b’ > b.

But the security proof does not
work for the following case:

m1 = m’1

m2 = m’2

m3 ≠ m’3 b’ > b

Multiple-word digest function

Output bit length is n * b where b ∈{8,16,32} and n ∈{1,2,….}

ε = (21 - b)n = 2n - nb

Each message word requires: (M+nb)/M ≈ 1 key word, 2n ADDs & n+1 MULTs

Two main competitors: MMH and NH

Our digest function (2010-2011): b-bit output and ε = 2 * 2-b

MMH of Halevi and Krawczyk (1997): b-bit output and ε = 6 * 2-b

NH (within UMAC) of Black et al. (1999): 2b-bit output and ε = 2-b

 MMH and NH are slightly faster than ours.

 The above security bounds are independent of message length.

 The opposite of polynomial based UHF, where collision probability
degrades linearly along the length of message being hashed.

MMH
(S. Halevi and H. Krawczyk, FSE 1997)

Fix a prime number p ∈[2b,2b+2b/2]:

MMH(k,m) = [(∑ mi * ki mod 22b) mod p] mod 2b

For single-word or b-bit output: ε = 6 * 2-b

Each message word requires: 1 key-word, 1 ADD, and 1 MULT

For multiple-word or (n*b)-bit output: ε = 6n * 2-nb

Each message word requires: ≈ 1 key-word, n ADDs, and n MULTs

NH
(J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, Crypto 1999)

 NH(k,m) = ∑ (m2i-1 + k2i-1) (m2i + k2i) mod 22b

For 2b-bit output: ε = 2-b

Each message word requires: 1 key-word, 3/2 ADDs, and 1/2 MULT

For multiple-word or (2n*b)-bit output: ε = 2-nb

Each message word requires: ≈ 1 key-word, 3n/2 ADDs, and n/2 MULTs

Summary

Scheme Data
length

Key length MULT
per word

 ADD
per word

 ε Output
length

Short-output schemes

 Digest M M+b 2 2 2 * 2-b b

 MMH M M 1 1 6 * 2-b b

 NH M M 1/2 3/2 2-b 2b

Summary

Scheme Data
length

Key length MULT
per word

ADD per
word

 ε Output
length

Short-output schemes

 Digest M M+b 2 2 2 * 2-b b

 MMH M M 1 1 6 * 2-b b

 NH M M 1/2 3/2 2-b 2b

Long-output schemes

 Digest M M + nb n+1 2n 2n * 2-nb nb

 MMH M M + (n-1)b n n 6n * 2-nb nb

 NH M M+2(n-1)b n/2 3n/2 2-nb 2nb

Message authentication codes

Digest, MMH and NH require key of similar size as data being hashed.

In MAC: each unviersal hash key is reused for a period of time.

Performance

Our workstation: 1 GHz AMD Athlon 64 X2

Digest

Output
(bits)

ε Speed
(cpb)

32

96

256

2 * 2-32

23* 2-96

28 * 2-256

0.53

1.54

3.44

MMH

Output
(bits)

ε Speed
(cpb)

32

96

256

6 * 2-32

63 * 2-96

68 * 2-256

0.31

0.76

2.31

NH

Output
(bits)

ε Speed
(cpb)

64

192

512

2-32

2-96

2-256

0.23

0.62

1.90

SHA160 SHA256 SHA512

1 GHz AMD Athlon 64 X2
ECRYPT Benchmarking

5.78
[7,14]

12.35
[16,20]

8.54
[10,14]

Manual authentication protocol

No need of passwords, private keys or PKIs: only human interactions.

Unlike MAC: h(k,m) must have a short output: b ∈ {8,16,32} bits.

But no key k = kA ⊕ kB is used to hash more than one message, i.e. a long key
generation must be done for each protocol run.

To avoid this, we propose: h(k,m) = digest(k1, hash(m || k2))

ε = 21-b + θ, where θ is the hash collision probability of hash().

1. A B: mA, hash(A || kA)

2. B A: mB, kB

3. A B: kA

4. A B: h(kA ⊕ kB , mA || mB)

Many thanks for your attention.

Manual authentication protocols

• Seek to authenticate (public) data from human trust and human
interactions.

• Remove the needs for shared secrets, passwords and PKIs.

• Use cryptographic or universal hash functions.

A protocol of Bafanz et al.

• Node A wants to authenticate public data m to B.

• Node A sends m over the high-bandwidth and insecure channel:

• hash() is a cryptographic hash function.

• The hash value is manually compared by humans over the phone, text
messages, or face-to-face conversations:

• However, it is not easy to compare a 160-bit number.

1. A B: m
2. A B: hash(m)

Pair-wise manual authentication protocol

• Unlike MAC: h(k,m) must have a short output: b ∈ {8,16,32} bits.

• No key (k = kA ⊕ kB) is used to hash more than one message, and so
resistance against substitution attacks is not required.

• What h(k,m) needs to resist is a collision attack.

1. A B: mA, hash(A || kA)

2. B A: mB, hash(B || kB)

3. A B: kA

4. B A: kB

5. A B: h(kA ⊕ kB , mA || mB)

Tightness of security

Proof says that

If key k is randomly
selected from {0,1}M+b then ε ≤
21-b on equal length messages.

 k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +
h(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b

 m3 * k3 + (m3*k4 div 2b)

Tightness of security

Proof says that

If key k is randomly
selected from {0,1}M+b then ε ≤
21-b on equal length messages.

Exhaustive tests for small
values of b ∈{6,7,8} shows
that:

 ε = 1.875 * 2-b

k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +
h(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b

 m3 * k3 + (m3*k4 div 2b)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

