Short-output universal hash functions \mathcal{R}_{I} their use in fast and secure data authentication

Long Nguyen and Bill Roscoe

Oxford University Department of Computer Science

ε-almost universal hash functions (UHF)

Definition: given R is the set of alldifferent keys. For any pair of different messages $m_1 \neq m_2$, we have

$$
\operatorname{Prob}_{\{k \in R\}}[h(k, m_1) = h(k, m_2)] \le \varepsilon
$$

We denote *b* the bit length of the UHF then $\epsilon \geq 2^{-b}$

Why short-output UHF?

Operation on word-size values ($b = 16-32$ bits) is very fast in any computer

Cryptographic applications:

- Message authentication codes: long-output UHF can be securely constructed by concatenating several instances of short-output UHF.
- Manual authentication protocols: humans manually compare a short string (i.e. a short universal hash value) to agree on the same data.

Multiplicative universal hash function

(M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen, Journal of Algorithms, 1997, 25:19-51)

Key *k* must be odd.

ε = 21*-b*

(equal-length messages)

Multiplication of a long message is expensive.

 $h(k,m) = (k * m \mod 2^K)$ div 2^{K-b}

Word-multiplication construction: *digest*(*k*,*m*)

Word-multiplication is fast.

We are interested in the overlap.

 $\varepsilon = 2^{1-b}$, where $b \in \{8, 16, 32\}$ (equal-length messages)

Each message word requires $(M+b)/M \approx 1$ key-word 2 additions (ADD) 2 multiplications (MULT)

k = (k1,k2,k3,k4) m = (m3,m2,m1) m1 * k1 + (m1*k2 div 2^b) + digest(k,m) = m2 * k2 + (m2*k3 div 2^b) + mod 2^b m3 * k3 + (m3*k4 div 2^b)

Shortening digest

Truncation is secure in digest construction:

For any
$$
b' \in \{1, ..., b-1\}
$$

 $\varepsilon = 2 * 2^{-b^2}$

b' < *b* k = (k1,k2,k3,k4) m = (m3,m2,m1) m1 * k1 + (m1*k2 div 2^b) + digest(k,m) = m2 * k2 + (m2*k3 div 2^b) + mod 2 b' m3 * k3 + (m3*k4 div 2^b)

MAC: Lengthening digest?

For MAC: we need to increase the output length to b ^{$\geq b$}.

But the security proof does not work for the following case:

$$
m1 = m'1
$$

$$
m2 = m'2
$$

$$
m3 \neq m'3
$$

Multiple-word digest function

Output bit length is $n * b$ where $b \in \{8,16,32\}$ and $n \in \{1,2,...\}$

$$
\varepsilon = (2^{1-b})^n = 2^{n-nb}
$$

Each message word requires: $(M+nb)/M \approx 1$ key word, 2*n* ADDs & *n*+1 MULTs

Two main competitors: MMH and NH

Our digest function (2010-2011): *b*-bit output and $\varepsilon = 2 * 2^{-b}$ MMH of Halevi and Krawczyk (1997): *b*-bit output and $\varepsilon = 6 * 2^{-b}$ NH (within UMAC) of Black et al. (1999): 2*b*-bit output and $\varepsilon = 2^{-b}$

- MMH and NH are slightly faster than ours.
- The above security bounds are independent of message length.
- The opposite of *polynomial* based UHF, where collision probability degrades linearly along the length of message being hashed.

MMH

(S. Halevi and H. Krawczyk, FSE 1997)

Fix a prime number *p* ∈ $[2^b,2^b+2^{b/2}]$: $MMH(k,m) = [(\sum m_i * k_i \mod 2^{2b}) \mod p] \mod 2^b$

For single-word or *b*-bit output: $\varepsilon = 6 * 2^{-b}$ Each message word requires: 1 key-word, 1 ADD, and 1 MULT

For multiple-word or $(n * b)$ -bit output: $\varepsilon = 6^n * 2^{-nb}$ Each message word requires: ≈ 1 key-word, *n* ADDs, and *n* MULTs NH

(J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, Crypto 1999)

NH(k,m) = \sum (m_{2i-1} + k_{2i-1}) (m_{2i} + k_{2i}) mod 2^{2*b*}

For 2*b*-bit output: $\varepsilon = 2^{-b}$

Each message word requires: 1 key-word, 3/2 ADDs, and 1/2 MULT

For multiple-word or $(2n *b)$ -bit output: $\varepsilon = 2^{-nb}$ Each message word requires: ≈ 1 key-word, $3n/2$ ADDs, and $n/2$ MULTs

Summary

Summary

Message authentication codes

Digest, MMH and NH require key of similar size as data being hashed.

In MAC: each unviersal hash key is reused for a period of time.

Performance

Our workstation: 1 GHz AMD Athlon 64 X2

Manual authentication protocol 1. *A* \longrightarrow *B*: *m_A*, *hash*(*A* || *k_A*) 2. $B \longrightarrow A: m_B, k_B$ 3. *A* $\longrightarrow B: k_A$ 4. *A* \longleftrightarrow *B*: $h(k_A \oplus k_B, m_A || m_B)$

No need of passwords, private keys or PKIs: only human interactions.

Unlike MAC: $h(k,m)$ must have a short output: $b \in \{8,16,32\}$ bits.

But no key $k = k_A \oplus k_B$ is used to hash more than one message, i.e. a long key generation must be done for each protocol run.

To avoid this, we propose: $h(k,m) = digest(k_1, hash(m \mid k_2))$

 $\varepsilon = 2^{1-b} + \theta$, where θ is the hash collision probability of *hash*().

Many thanks for your attention.

Manual authentication protocols

- Seek to authenticate (public) data from human trust and human interactions.
- Remove the needs for shared secrets, passwords and PKIs.
- Use cryptographic or universal hash functions.

A protocol of Bafanz et al.

1. $A \longrightarrow B$: *m* 2. $A \longrightarrow B$: $hash(m)$

- Node *A* wants to authenticate public data *m* to *B*.
- Node *A* sends *m* over the high-bandwidth and insecure channel: \rightarrow
- *hash*() is a cryptographic hash function.
- The hash value is *manually* compared by humans over the phone, text messages, or face-to-face conversations:
- However, it is not easy to compare a 160-bit number.

Pair-wise manual authentication protocol

- Unlike MAC: $h(k,m)$ must have a short output: $b \in \{8,16,32\}$ bits.
- No key $(k = k_A \oplus k_B)$ is used to hash more than one message, and so resistance against substitution attacks is not required.
- What $h(k,m)$ needs to resist is a collision attack.

Tightness of security

Proof says that

If key *k* is randomly selected from $\{0,1\}^{M+b}$ then $\varepsilon \leq$ 2^{1-b} on equal length messages.

 \int m3 * k3 + (m3*k4 div 2^b)

Tightness of security

Proof says that

If key *k* is randomly selected from $\{0,1\}^{M+b}$ then $\varepsilon \leq$ 2^{1-b} on equal length messages.

Exhaustive tests for small values of *b* \in {6,7,8} shows that:

$$
\epsilon = 1.875 * 2^{-b}
$$

k = (k1,k2,k3,k4)
\nm = (m3,m2,m1)
\nh(k,m) =
$$
\begin{bmatrix}\nm1 * k1 + (m1 * k2 \text{ div } 2^b) + \\
m2 * k2 + (m2 * k3 \text{ div } 2^b) + \\
m3 * k3 + (m3 * k4 \text{ div } 2^b)\n\end{bmatrix}
$$
mod 2^b