Short-output universal hash functions & their use in fast and secure data authentication

Long Nguyen and Bill Roscoe

Oxford University Department of Computer Science

ε-almost universal hash functions (UHF)

Definition: given R is the set of all different keys. For any pair of different messages $m_1 \neq m_2$, we have

$$\operatorname{Prob}_{\{k \in R\}}[h(k, m_1) = h(k, m_2)] \leq \varepsilon$$

We denote *b* the bit length of the UHF then $\varepsilon \ge 2^{-b}$

Why short-output UHF?

Operation on word-size values (b = 16-32 bits) is very fast in any computer

Cryptographic applications:

- Message authentication codes: long-output UHF can be securely constructed by concatenating several instances of short-output UHF.
- Manual authentication protocols: humans manually compare a short string (i.e. a short universal hash value) to agree on the same data.

Multiplicative universal hash function

(M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen, Journal of Algorithms, 1997, 25:19-51)

Key k must be odd. $\varepsilon = 2^{1-b}$ (equal-length messages) Multiplication of a long message is expensive.

 $h(k,m) = (k * m \mod 2^K) \operatorname{div} 2^{K-b}$

Word-multiplication construction: *digest(k,m)*

Word-multiplication is fast.

We are interested in the overlap.

 $\varepsilon = 2^{1-b}$, where $b \in \{8, 16, 32\}$ (equal-length messages)

Each message word requires $(M+b)/M \approx 1$ key-word 2 additions (ADD) 2 multiplications (MULT)

$$k = (k1, k2, k3, k4)$$

$$m = (m3, m2, m1)$$

$$k = (k1, k2, k3, k4)$$

$$m = (m3, m2, m1)$$

Shortening digest

Truncation is secure in digest construction:

For any
$$b' \in \{1, ..., b-1\}$$

 $\epsilon = 2 * 2^{-b'}$

MAC: Lengthening digest?

For MAC: we need to increase the output length to b' > b. But the security proof does not work for the following case:

$$m_1 = m'_1$$
$$m_2 = m'_2$$
$$m_3 \neq m'_3$$

Multiple-word digest function

Output bit length is n * b where $b \in \{8, 16, 32\}$ and $n \in \{1, 2, ...\}$

$$\varepsilon = (2^{1-b})^n = 2^{n-nb}$$

Each message word requires: $(M+nb)/M \approx 1$ key word, 2n ADDs & n+1 MULTs

Two main competitors: MMH and NH

Our digest function (2010-2011):*b*-bit output and $\varepsilon = 2 * 2^{-b}$ MMH of Halevi and Krawczyk (1997):*b*-bit output and $\varepsilon = 6 * 2^{-b}$ NH (within UMAC) of Black et al. (1999):2*b*-bit output and $\varepsilon = 2^{-b}$

- MMH and NH are slightly faster than ours.
- The above security bounds are independent of message length.
- The opposite of *polynomial* based UHF, where collision probability degrades linearly along the length of message being hashed.

MMH

(S. Halevi and H. Krawczyk, FSE 1997)

Fix a prime number $p \in [2^b, 2^b+2^{b/2}]$: $\mathbf{MMH}(\mathbf{k,m}) = [(\sum m_i * k_i \mod 2^{2b}) \mod p] \mod 2^b$

For single-word or *b*-bit output: $\varepsilon = 6 * 2^{-b}$ Each message word requires: 1 key-word, 1 ADD, and 1 MULT

For multiple-word or (n*b)-bit output: $\varepsilon = 6^n * 2^{-nb}$ Each message word requires: ≈ 1 key-word, *n* ADDs, and *n* MULTs NH

(J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, Crypto 1999)

NH(k,m) = $\sum (m_{2i-1} + k_{2i-1}) (m_{2i} + k_{2i}) \mod 2^{2b}$

For 2*b*-bit output: $\varepsilon = 2^{-b}$

Each message word requires: 1 key-word, 3/2 ADDs, and 1/2 MULT

For multiple-word or (2n*b)-bit output: $\varepsilon = 2^{-nb}$ Each message word requires: ≈ 1 key-word, 3n/2 ADDs, and n/2 MULTs

Summary

Scheme	Data length	Key length	MULT per word	ADD per word	3	Output length			
		<u> </u>	1						
Short-output schemes									
Digest	М	M+b	2	2	2 * 2 ^{-b}	b			
MMH	M	M	1	1	6 * 2 ^{-b}	b			
NH	M	M	1/2	3/2	2-b	2b			

Summary

Scheme	Data length	Key length	MULT per word	ADD per word	3	Output length				
Short-output schemes										
Digest	M	M+b	2	2	$2 * 2^{-b}$	b				
MMH	M	M	1	1	6 * 2 ^{-b}	b				
NH	М	M	1/2	3/2	2-b	2b				
Long-output schemes										
Digest	M	M + nb	<i>n</i> +1	2 <i>n</i>	$2^{n} * 2^{-nb}$	nb				
MMH	М	M + (n-1)b	п	п	$6^{n} * 2^{-nb}$	nb				
NH	M	<i>M</i> +2(<i>n</i> -1) <i>b</i>	n/2	3n/2	2 ^{-nb}	2nb				

Message authentication codes

Digest, MMH and NH require key of similar size as data being hashed.

In MAC: each unviersal hash key is reused for a period of time.

Performance

Digest			MMH			NH		
Output (bits)	3	Speed (cpb)	Output (bits)	3	Speed (cpb)	Output (bits)	3	Speed (cpb)
32	2*2-32	0.53	32	6*2 ⁻³²	0.31	64	2 ⁻³²	0.23
96	$2^{3*}2^{-96}$	1.54	96	6 ³ * 2 ⁻⁹⁶	0.76	192	2-96	0.62
256	$2^8 * 2^{-256}$	3.44	256	6 ⁸ * 2 ⁻²⁵⁶	2.31	512	2-256	1.90

Our workstation: 1 GHz AMD Athlon 64 X2

	SHA160	SHA256	SHA512
1 GHz AMD Athlon 64 X2 ECRYPT Benchmarking	5.78 [7,14]	12.35 [16,20]	8.54 [10,14]

No need of passwords, private keys or PKIs: only human interactions.

Unlike MAC: h(k,m) must have a short output: $b \in \{8,16,32\}$ bits.

But no key $k = k_A \oplus k_B$ is used to hash more than one message, i.e. a long key generation must be done for each protocol run.

To avoid this, we propose: $h(k,m) = digest(k_1, hash(m || k_2))$

 $\varepsilon = 2^{1-b} + \theta$, where θ is the hash collision probability of *hash*().

Many thanks for your attention.

Manual authentication protocols

- Seek to authenticate (public) data from human trust and human interactions.
- Remove the needs for shared secrets, passwords and PKIs.
- Use cryptographic or universal hash functions.

A protocol of Bafanz et al.

 $1. A \longrightarrow B: m$ 2. A \longrightarrow B: hash(m)

- Node *A* wants to authenticate public data *m* to *B*.
- Node *A* sends *m* over the high-bandwidth and insecure channel:
- *hash*() is a cryptographic hash function.
- The hash value is *manually* compared by humans over the phone, text messages, or face-to-face conversations:
- However, it is not easy to compare a 160-bit number.

Pair-wise manual authentication protocol

- Unlike MAC: h(k,m) must have a short output: $b \in \{8,16,32\}$ bits.
- No key $(k = k_A \oplus k_B)$ is used to hash more than one message, and so resistance against substitution attacks is not required.
- What h(k,m) needs to resist is a collision attack.

Tightness of security

Proof says that

If key *k* is randomly selected from $\{0,1\}^{M+b}$ then $\varepsilon \leq 2^{1-b}$ on equal length messages.

Tightness of security

Proof says that

If key *k* is randomly selected from $\{0,1\}^{M+b}$ then $\varepsilon \le 2^{1-b}$ on equal length messages.

Exhaustive tests for small values of $b \in \{6,7,8\}$ shows that:

$$\varepsilon = 1.875 * 2^{-b}$$

$$k = (k1, k2, k3, k4)$$

$$m = (m3, m2, m1)$$

$$h(k,m) = \begin{pmatrix} m1 * k1 + (m1*k2 \text{ div } 2^{b}) + \\ m2 * k2 + (m2*k3 \text{ div } 2^{b}) + \\ m3 * k3 + (m3*k4 \text{ div } 2^{b}) \end{pmatrix} \mod 2^{b}$$