
Short-output universal hash functions
&

their use in fast and secure data authentication

Long Nguyen and Bill Roscoe

Oxford University
Department of Computer Science

ε-almost universal hash functions (UHF)

Definition: given R is the set of all different keys.
For any pair of different messages m1 ≠ m2, we have

Prob{k ∈ R}[h(k, m1) = h(k, m2)] ≤ ε

We denote b the bit length of the UHF then ε ≥ 2-b

Why short-output UHF?

Operation on word-size values (b = 16-32 bits) is very fast in any computer

Cryptographic applications:

– Message authentication codes: long-output UHF can be securely
constructed by concatenating several instances of short-output UHF.

– Manual authentication protocols: humans manually compare a short
string (i.e. a short universal hash value) to agree on the same data.

Multiplicative universal hash function
(M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen, Journal of Algorithms, 1997, 25:19-51)

Key k must be odd.

ε = 21-b

(equal-length messages)

Multiplication of a long
message is expensive.

×
k

h(k,m) = (k * m mod 2K) div 2K-b

m

Word-multiplication construction: digest(k,m)

Word-multiplication is fast.

We are interested in the overlap.

ε = 21-b, where b ∈{8,16,32}
(equal-length messages)

Each message word requires
 (M+b)/M ≈1 key-word
 2 additions (ADD)

2 multiplications (MULT)

k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +
digest(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b

 m3 * k3 + (m3*k4 div 2b)

Shortening digest

Truncation is secure in this
digest construction:

For any b’ ∈{1,…,b-1}:

ε = 2 * 2-b’

b’ < b
k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +

digest(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b'

 m3 * k3 + (m3*k4 div 2b)

MAC: Lengthening digest?

For MAC: we need to increase
the output length to b’ > b.

But the security proof does not
work for the following case:

m1 = m’1

m2 = m’2

m3 ≠ m’3 b’ > b

Multiple-word digest function

Output bit length is n * b where b ∈{8,16,32} and n ∈{1,2,….}

ε = (21 - b)n = 2n - nb

Each message word requires: (M+nb)/M ≈ 1 key word, 2n ADDs & n+1 MULTs

Two main competitors: MMH and NH

Our digest function (2010-2011): b-bit output and ε = 2 * 2-b

MMH of Halevi and Krawczyk (1997): b-bit output and ε = 6 * 2-b

NH (within UMAC) of Black et al. (1999): 2b-bit output and ε = 2-b

 MMH and NH are slightly faster than ours.

 The above security bounds are independent of message length.

 The opposite of polynomial based UHF, where collision probability
degrades linearly along the length of message being hashed.

MMH
(S. Halevi and H. Krawczyk, FSE 1997)

Fix a prime number p ∈[2b,2b+2b/2]:

MMH(k,m) = [(∑ mi * ki mod 22b) mod p] mod 2b

For single-word or b-bit output: ε = 6 * 2-b

Each message word requires: 1 key-word, 1 ADD, and 1 MULT

For multiple-word or (n*b)-bit output: ε = 6n * 2-nb

Each message word requires: ≈ 1 key-word, n ADDs, and n MULTs

NH
(J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, Crypto 1999)

 NH(k,m) = ∑ (m2i-1 + k2i-1) (m2i + k2i) mod 22b

For 2b-bit output: ε = 2-b

Each message word requires: 1 key-word, 3/2 ADDs, and 1/2 MULT

For multiple-word or (2n*b)-bit output: ε = 2-nb

Each message word requires: ≈ 1 key-word, 3n/2 ADDs, and n/2 MULTs

Summary

Scheme Data
length

Key length MULT
per word

 ADD
per word

 ε Output
length

Short-output schemes

 Digest M M+b 2 2 2 * 2-b b

 MMH M M 1 1 6 * 2-b b

 NH M M 1/2 3/2 2-b 2b

Summary

Scheme Data
length

Key length MULT
per word

ADD per
word

 ε Output
length

Short-output schemes

 Digest M M+b 2 2 2 * 2-b b

 MMH M M 1 1 6 * 2-b b

 NH M M 1/2 3/2 2-b 2b

Long-output schemes

 Digest M M + nb n+1 2n 2n * 2-nb nb

 MMH M M + (n-1)b n n 6n * 2-nb nb

 NH M M+2(n-1)b n/2 3n/2 2-nb 2nb

Message authentication codes

Digest, MMH and NH require key of similar size as data being hashed.

In MAC: each unviersal hash key is reused for a period of time.

Performance

Our workstation: 1 GHz AMD Athlon 64 X2

Digest

Output
(bits)

ε Speed
(cpb)

32

96

256

2 * 2-32

23* 2-96

28 * 2-256

0.53

1.54

3.44

MMH

Output
(bits)

ε Speed
(cpb)

32

96

256

6 * 2-32

63 * 2-96

68 * 2-256

0.31

0.76

2.31

NH

Output
(bits)

ε Speed
(cpb)

64

192

512

2-32

2-96

2-256

0.23

0.62

1.90

SHA160 SHA256 SHA512

1 GHz AMD Athlon 64 X2
ECRYPT Benchmarking

5.78
[7,14]

12.35
[16,20]

8.54
[10,14]

Manual authentication protocol

No need of passwords, private keys or PKIs: only human interactions.

Unlike MAC: h(k,m) must have a short output: b ∈ {8,16,32} bits.

But no key k = kA ⊕ kB is used to hash more than one message, i.e. a long key
generation must be done for each protocol run.

To avoid this, we propose: h(k,m) = digest(k1, hash(m || k2))

ε = 21-b + θ, where θ is the hash collision probability of hash().

1. A B: mA, hash(A || kA)

2. B A: mB, kB

3. A B: kA

4. A B: h(kA ⊕ kB , mA || mB)

Many thanks for your attention.

Manual authentication protocols

• Seek to authenticate (public) data from human trust and human
interactions.

• Remove the needs for shared secrets, passwords and PKIs.

• Use cryptographic or universal hash functions.

A protocol of Bafanz et al.

• Node A wants to authenticate public data m to B.

• Node A sends m over the high-bandwidth and insecure channel:

• hash() is a cryptographic hash function.

• The hash value is manually compared by humans over the phone, text
messages, or face-to-face conversations:

• However, it is not easy to compare a 160-bit number.

1. A B: m
2. A B: hash(m)

Pair-wise manual authentication protocol

• Unlike MAC: h(k,m) must have a short output: b ∈ {8,16,32} bits.

• No key (k = kA ⊕ kB) is used to hash more than one message, and so
resistance against substitution attacks is not required.

• What h(k,m) needs to resist is a collision attack.

1. A B: mA, hash(A || kA)

2. B A: mB, hash(B || kB)

3. A B: kA

4. B A: kB

5. A B: h(kA ⊕ kB , mA || mB)

Tightness of security

Proof says that

If key k is randomly
selected from {0,1}M+b then ε ≤
21-b on equal length messages.

 k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +
h(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b

 m3 * k3 + (m3*k4 div 2b)

Tightness of security

Proof says that

If key k is randomly
selected from {0,1}M+b then ε ≤
21-b on equal length messages.

Exhaustive tests for small
values of b ∈{6,7,8} shows
that:

 ε = 1.875 * 2-b

k = (k1,k2,k3,k4)
m = (m3,m2,m1)

 m1 * k1 + (m1*k2 div 2b) +
h(k,m) = m2 * k2 + (m2*k3 div 2b) + mod 2b

 m3 * k3 + (m3*k4 div 2b)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

