
McOE:
A Family of Almost Foolproof

On-Line Authenticated Encryption
Schemes

Ewan Fleischmann Christian Forler Stefan Lucks

Bauhaus-Universität Weimar

FSE 2012

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –1–



Overview

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –2–



1. Motivation

I Goldwasser and Micali (1984):

requirement: given 2 ciphertexts, adversary cannot even detect
when the same plaintext has been encrypted twice

consequence: encryption stateful or probabilitistic (or both)

I Rogaway (FSE 2004): formalizes state/randomness by nonces

Plaintext Header

Key Nonce
01 02 03 ...

Ciphertext Authentication Tag

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –3–



Authenticated Encryption

I first studied by Katz and Young (FSE 2000)
and Bellare and Namprempre (Asiacrypt 2000)

I since then many proposed schemes,

I nonce based,
Plaintext Header

Key Nonce
01 02 03 ...

Ciphertext Authentication Tag

I and proven secure assuming a “nonce-respecting adversary”

I any implementation allowing a nonce reuse is not our problem
. . . but maybe it should

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –4–



Nonce Reuse in Practice

I IEEE 802.11 [Borisov, Goldberg, Wagner 2001]

I PS3 [Hotz 2010]

I WinZip Encryption [Kohno 2004]

I RC4 in MS Word and Excel [Wu 2005]

I . . .

application programmer
mistakes:

other issues:

I restoring a file from a
backup

I cloning the virtual machine
the application runs on

I . . .

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –5–



Nonce Reuse – what to Expect?
our reasonable (?) expectations

I some plaintext
information leaks:

I identical plaintexts
I common prefixes
I ect.

I but not too much
damage:

1. authentication not
affected

2. no immediate
plaintext recovery

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –6–



Nonce Reuse – what Really Happens!
a double-disaster for almost all current AE schemes

1. forgeries

2. plaintext
recoveries
(often like
“one-time-pad
used twice”)

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –7–



Systems with Protection from Nonce Reuse
SIV (Rogaway, Shrimpton, Eurocrypt 06) and similar schemes

Sequentially execute the following two steps:

1. generate authentication tag (from nonce, header, plaintext)

2. encrypt plaintext, using tag as “syntetic” nonce

Header

Nonce
01 02 03 ...

Key

Ciphertext

Plaintext

Tag

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –8–



Properties of SIV and its Fellows?

security under nonce reuse meets our “reasonable expectations”:

authenticity: not affected!

privacy: leaks whether two
plaintexts are equal,
but not more

but inherently off-line (user must read entire plaintext twice):

I high latency (first bit of ciphertext can only be sent after last bit
of plaintext has been read)

I storage issues (enjoy encrypting your harddisk backup . . . )

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –9–



2. The McOE Approach

on-line permutations
(Bellare et al., Crypto 01):

1P 4 5 62 3P P P P

1P 4 5 62 3P P P P P

2nd plaintext

1st plaintext

P’

ciphertexts

common prefix

security under nonce reuse still meets “reasonable expectations”:

authenticity: not affected!

privacy: leaks whether two
plaintexts are equal
the length of
common plaintext
prefixes, but not more

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –10–



Our Main Tool: Chaining Blockciphers
for the moment, assume we actually have such primitives

input cv output cv

plaintext

ciphertext

I like a block cipher

I two additional parameters:
I “input chaining value”
I “output chaining value”

I for fixed input cv good block cipher (PRP)

I regarding the output cv good keyed hash function:
I weak collision resistance

(hard to find two input pairs with colliding output cvs)
I weak preimage resistance

(hard to find an input pair with output cv = 000)

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –11–



McOE

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

1. Encrypt nonce, using 000, to generate H[1] and secret Z.

2. For i in 1, . . . , m:

encrypt P[i], using H[i], to generate H[i+1] and C[i].

3. Encrypt Z, using H[m+1], to generate the authentication tag.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –12–



3. Why is this secure? (Some Intuition)

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

1. nonce-reuse: an Ind-CPA secure OPerm (→ next slide)
(common plaintext prefixes ↔ common ciphertext prefixes)

2. nonce-respecting: Ind-CPA secure
(different nonces make common plaintext prefixes disappear)

3. Int-CTXT secure: A forger would need to predict tag, the
encryption of Z using H[m+1]. But Z is secret.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –13–



3. Why is this secure? (Some Intuition)

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

1. nonce-reuse: an Ind-CPA secure OPerm (→ next slide)
(common plaintext prefixes ↔ common ciphertext prefixes)

2. nonce-respecting: Ind-CPA secure
(different nonces make common plaintext prefixes disappear)

3. Int-CTXT secure: A forger would need to predict tag, the
encryption of Z using H[m+1]. But Z is secret.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –13–



3. Why is this secure? (Some Intuition)

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

1. nonce-reuse: an Ind-CPA secure OPerm (→ next slide)
(common plaintext prefixes ↔ common ciphertext prefixes)

2. nonce-respecting: Ind-CPA secure
(different nonces make common plaintext prefixes disappear)

3. Int-CTXT secure: A forger would need to predict tag, the
encryption of Z using H[m+1]. But Z is secret.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –13–



Nonce-Reuse: Ind-CPA-secure OPerm (1)

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

I Consider a query (nonce, P[1], . . . , P[m]).

I Let i ∈ {1, . . . ,m} be the smallest index, such that there is no
other query (nonce, P[1], . . . , P[i], . . . ) with the same nonce
and i blocks of prefix.

I H[i] is uniquely determined.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –14–



Nonce-Reuse: Ind-CPA-secure OPerm (2)

000

Z

nonce

tag

P[i] Z

C[i]

H[i+1]H[i]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:

I Good block cipher: C[i] is like a random value.

I Good keyed hash function: H[i+1] has never been used
before as an input cv.

I Good block cipher: C[i+1] is like a random value.

I Good keyed hash function: H[i+2] has never been used
before as an input cv.

I . . .

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –15–



Nonce-Reuse: Ind-CPA-secure OPerm (2)

000

Z

nonce

tag

P[i] Z

C[i]

H[i+1]H[i]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:
I Good block cipher: C[i] is like a random value.

I Good keyed hash function: H[i+1] has never been used
before as an input cv.

I Good block cipher: C[i+1] is like a random value.

I Good keyed hash function: H[i+2] has never been used
before as an input cv.

I . . .

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –15–



Nonce-Reuse: Ind-CPA-secure OPerm (2)

000

Z

nonce

tag

Z

H[i+1]H[i]

P[i]

C[i]

P[i+1]

C[i+1]

H[i+1]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:
I Good block cipher: C[i] is like a random value.

I Good keyed hash function: H[i+1] has never been used
before as an input cv.

I Good block cipher: C[i+1] is like a random value.

I Good keyed hash function: H[i+2] has never been used
before as an input cv.

I . . .

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –15–



Nonce-Reuse: Ind-CPA-secure OPerm (2)

000

Z

nonce

tag

Z

H[i+1]H[i]

P[i]

C[i]

P[i+1]

C[i+1]

H[i+1]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:
I Good block cipher: C[i] is like a random value.

I Good keyed hash function: H[i+1] has never been used
before as an input cv.

I Good block cipher: C[i+1] is like a random value.

I Good keyed hash function: H[i+2] has never been used
before as an input cv.

I . . .

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –15–



What if the last plaintext block P[m] is not
a full block?

I Ciphertext stealing does not work.

I New approach: “tag splitting”. See the paper.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –16–



4. Implementation (Chaining Block Cipher)
Use a tweakable block cipher, instead:

plaintext

ciphertext

input cv
tweak =

output cv

1. Set tweak := input cv

2. Set output cv := plaintext ⊕ ciphertext.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –17–



McOE-X - we don’t have a Tweakable BC!
. . . at least no n-bit bc with n-bit tweaks – so use an ordinary one:

plaintext

ciphertext

output cv
input cv

1. Xor the input cv into the key.

2. Set output cv := plaintext ⊕ ciphertext (as before).

I Exposes the underlying block cipher to related-key attacks.

I Performs poor if the key schedule is slow.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –18–



Other Constuctions for a Chaining BC
McOE-G McOE-D

plaintext

ciphertext

output cvuniv. hashinput cv

plaintext

ciphertext

output cv

input cv

McOE-G: uses universal hash function H with Galois-Field
arithmetic

McOE-D: uses double encryption

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –19–



Throughput Values [cycles/byte]

AES−NI

Threefish (software)

AES (software)

McOE−X

6.7

21.5

10.3

AES (software)

McOE−G

8.8
AES−NI, GF−NI

22.8

AES (software)

AES−NI

McOE−D

6.2

25.9

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –20–



Throughput Values [cycles/byte]

AES−NI

Threefish (software)

AES (software)

McOE−X

6.7

21.5

10.3

AES (software)

McOE−G

8.8
AES−NI, GF−NI

22.8

AES (software)

AES−NI

McOE−D

6.2

25.9

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –20–



Throughput Values [cycles/byte]

AES−NI

Threefish (software)

AES (software)

McOE−X

6.7

21.5

10.3

AES (software)

McOE−G

8.8
AES−NI, GF−NI

22.8

AES (software)

AES−NI

McOE−D

6.2

25.9

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –20–



5. Final Remarks

I If you are searching for new challenges regarding the design of
symmetric primitives, we have one:

⇒ Design efficient tweakable n-bit block ciphers with n-bit tweaks
or highly key-agile ordinary block ciphers!

I “This is not our problem”: Crypto applications fail because a
cryptosystem is mistakenly used outside/against its specification.

I But when the same mistake is made again and again, then
maybe it is our problem – and we should accept the challenge
to design misuse resistant cryptosystems!

Note that there are other misuse cases, beyond nonce reuse.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –21–


