McOE:
A Family of Almost Foolproof
On-Line Authenticated Encryption
Schemes

Ewan Fleischmann Christian Forler Stefan Lucks

Bauhaus-Universitat Weimar

FSE 2012

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -1-

Overview

Fleischmann, Forler ks. FSE 2012. McOE: A F

1. Motivation

» Goldwasser and Micali (1984):
requirement: given 2 ciphertexts, adversary cannot even detect
when the same plaintext has been encrypted twice
consequence: encryption stateful or probabilitistic (or both)

» Rogaway (FSE 2004): formalizes state/randomness by nonces

Plaintext Header

Ciphertext Authentication Tag

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ...

Authenticated Encryption

» first studied by Katz and Young (FSE 2000)
and Bellare and Namprempre (Asiacrypt 2000)

» since then many proposed schemes,

» nonce based,
Plaintext Header

Key] j Nonce
O “ 010203 ...

Ciphertext Authentication Tag

» and proven secure assuming a “nonce-respecting adversary”

» any implementation allowing a nonce reuse is not our problem
. but maybe it should

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... —-4-

Nonce Reuse in Practice

v

IEEE 802.11 [Borisov, Goldberg, Wagner 2001]
PS3 [Hotz 2010]
WinZip Encryption [Kohno 2004]

v

v

» RC4 in MS Word and Excel [Wu 2005]
>
application programmer other issues:
mistakes: » restoring a file from a
int getRoandomNumber () backup
return 4, // chosen by fair dice rjh'- » cloning the virtual machine
; # quaranteed to be randon. the application runs on

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -5-

Nonce Reuse — what to Expect?

our reasonable (?) expectations

» some plaintext
information leaks:
» identical plaintexts
» common prefixes
» ect.

» but not too much
damage:
1. authentication not
affected
2. no immediate
plaintext recovery

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... —-6-

Nonce Reuse — what Really Happens!

a double-disaster for almost all current AE schemes

1. forgeries

2. plaintext
recoveries
(often like
“one-time-pad
used twice")

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ...

Systems with Protection from Nonce Reuse
SIV (Rogaway, Shrimpton, Eurocrypt 06) and similar schemes

Sequentially execute the following two steps:
1. generate authentication tag (from nonce, header, plaintext)

2. encrypt plaintext, using tag as “syntetic” nonce

Header Plaintext

Nonce
010203...

Tag Ciphertext

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -8-

Properties of SIV and its Fellows?

security under nonce reuse meets our reasonable expectatlons

authenticity: not affected!

privacy: leaks whether two

plaintexts are equal,
but not more

but inherently off-line (user must read entire plaintext twice)

» high latency (first bit of ciphertext can only be sent after last bit
of plaintext has been read)

» storage issues (enjoy encrypting your harddisk backup ...)

Fleischmann, Forler, Lucks.

FSE 2012. McOE: A Family ...

2. The McOE Approach

<. U
<0
<0

on-line permutations

[|
(Bellare et al., Crypto 01): ciphertexts ? ?
P P

2nd plaintext

O %D&(;u

common prefix

security under nonce reuse still meets “reasonable expectations”:

authenticity: not affected!
privacy: leaks whethertwe
plaintexts are equal
the length of
common plaintext
prefixes, but not more

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ...

Our Main Tool: Chaining Blockciphers

for the moment, assume we actually have such primitives

plaintext
» like a block cipher
input cv—= L= output cv » two additional parameters:
S » “input chaining value”
\ll » “output chaining value”
ciphertext

» for fixed input cv good block cipher (PRP)
» regarding the output cv good keyed hash function:
» weak collision resistance
(hard to find two input pairs with colliding output cvs)
» weak preimage resistance
(hard to find an input pair with output cv = 000)

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -11-

McOE

nonce P\lﬂ P\[LZ] P[\Ln] i
000—| = H[1]—> = H[2]— = H[3] e ¢ ¢ H[m]—>| im-n]% H
O—m O—m O—m O—m O—m
z C[1] C[2] C[m] tag

1. Encrypt nonce, using 000, to generate H[1] and secret Z.
2. Foriinl, ..., m:
encrypt P[i], using HI[i], to generate H[i+1] and Cfi].
3. Encrypt Z, using H[m+1], to generate the authentication tag.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -12-

3. Why is this secure? (Some Intuition)

nonce P\lﬂ P\[LZ] P[\Ln] i
000—| = H[1]—> = H[2]— = H[3] e ¢ ¢ H[m]—>| im-n]% H
O—m O—m O—m O—m O—m
z C[1] C[2] C[m] tag

1. nonce-reuse: an Ind-CPA secure OPerm (— next slide)
(common plaintext prefixes <+ common ciphertext prefixes)

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -13-

3. Why is this secure? (Some Intuition)

nonce P\lﬂ P\[LZ] P[\Ln] i
000—| = H[1]—> = H[2]— = H[3] e ¢ ¢ H[m]—>| im-n]% H
O—m O—m O—m O—m O—m
z C[1] C[2] C[m] tag

1. nonce-reuse: an Ind-CPA secure OPerm (— next slide)
(common plaintext prefixes <+ common ciphertext prefixes)
2. nonce-respecting: Ind-CPA secure
(different nonces make common plaintext prefixes disappear)

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -13-

3. Why is this secure? (Some Intuition)

nonce P\lﬂ P\[LZ] P[\Ln] i
000—| = H[1]—> = H[2]— = H[3] e ¢ ¢ H[m]—>| im{‘]% H
O—m O—m O—m O—m O—m
z C[1] C[2] C[m] tag

1. nonce-reuse: an Ind-CPA secure OPerm (— next slide)
(common plaintext prefixes <+ common ciphertext prefixes)
2. nonce-respecting: Ind-CPA secure
(different nonces make common plaintext prefixes disappear)

3. Int-CTXT secure: A forger would need to predict tag, the
encryption of Z using H[m+1]. But Z is secret.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -13-

Nonce-Reuse: Ind-CPA-secure OPerm (1)

nonce Pi:] PiZ] P[\lr/n] i
000—| O—m = H[1]—> O = H[2]— O = H[3] e ¢ ¢ H[m]—>| O imﬂ]éo_- H
z c] c[2] CIm] tag
» Consider a query (nonce, P[1], ..., P[m]).
» Leti € {1,..., m} be the smallest index, such that there is no
other query (nonce, P[1], ..., PJi], ...) with the same nonce

and i blocks of prefix.
» HIi] is uniquely determined.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -14-

Nonce-Reuse: Ind-CPA-secure OPerm (2)

P\I/i]
O—m

{

CIi]

Hli=_. = H[i+1]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -15-

Nonce-Reuse: Ind-CPA-secure OPerm (2)

P\I/i]
O—m

{

Cli]

Hli=_. = H[i+1]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:
» Good block cipher: CJi] is like a random value.
» Good keyed hash function: H[i+1] has never been used
before as an input cv.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -15-

Nonce-Reuse: Ind-CPA-secure OPerm (2)

P\I/i] Pli+1]
HI—>__ > HI+1=>| = H[i+1]
CIlil Cli+1]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:
» Good block cipher: CJi] is like a random value.
» Good keyed hash function: H[i+1] has never been used
before as an input cv.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -15-

Nonce-Reuse: Ind-CPA-secure OPerm (2)

P\[/i] P[i+1]

HI—>__ > HI+1=>| = H[i+1]
Cli] Cli+1]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:
» Good block cipher: CJi] is like a random value.
» Good keyed hash function: H[i+1] has never been used
before as an input cv.
» Good block cipher: C[i+1] is like a random value.
» Good keyed hash function: H[i+2] has never been used
before as an input cv.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -15-

What if the last plaintext block P[m] is not
a full block?

» Ciphertext stealing does not work.
» New approach: “tag splitting”. See the paper.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -16-

4. Implementation (Chaining Block Cipher)

Use a tweakable block cipher, instead:

plaintext

tweak =
input cv—" (P—=output cv

O—m

\L

ciphertext

1. Set tweak := input cv
2. Set output cv := plaintext @ ciphertext.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -17-

McOE-X - we don’t have a Tweakable BC!

. at least no n-bit bc with n-bit tweaks — so use an ordinary one:

plaintext —

input cv

D=0

ciphertext—

N

D—=output cv

1. Xor the input cv into the key.
2. Set output cv := plaintext @ ciphertext (as before).

» Exposes the underlying block cipher to related-key attacks.
» Performs poor if the key schedule is slow.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -18-

Other Constuctions for a Chaining BC

McOE-G McOE-D
plaintext — plaintext
4 input cv
|
input cv»ﬁ H €= output cv H 9 &= output cv
ciphertext— ciphertext-

McOE-G: uses universal hash function H with Galois-Field
arithmetic

McOE-D: uses double encryption

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -19-

Throughput Values [cycles/byte]

McOE-X

e o1 5
R —— 10 3
R R R ¢ 7

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -20-

Throughput Values [cycles/byte]

McOE-X

u 215
HW.S

SR SRR 6 7

McOE-G
u 22.8
e e & 5

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -20-

Throughput Values [cycles/byte]

McOE-X

u 215
HW.S
SR SRR 6 7

McOE-G

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ...

5. Final Remarks

» If you are searching for new challenges regarding the design of
symmetric primitives, we have one:
= Design efficient tweakable n-bit block ciphers with n-bit tweaks
or highly key-agile ordinary block ciphers!

» “This is not our problem”: Crypto applications fail because a
cryptosystem is mistakenly used outside/against its specification.

» But when the same mistake is made again and again, then
maybe it is our problem — and we should accept the challenge
to design misuse resistant cryptosystems!

Note that there are other misuse cases, beyond nonce reuse.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family ... -21-

