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Overview
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1. Motivation

I Goldwasser and Micali (1984):

requirement: given 2 ciphertexts, adversary cannot even detect
when the same plaintext has been encrypted twice

consequence: encryption stateful or probabilitistic (or both)

I Rogaway (FSE 2004): formalizes state/randomness by nonces

Plaintext Header

Key Nonce
01 02 03 ...

Ciphertext Authentication Tag
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Authenticated Encryption

I first studied by Katz and Young (FSE 2000)
and Bellare and Namprempre (Asiacrypt 2000)

I since then many proposed schemes,

I nonce based,
Plaintext Header

Key Nonce
01 02 03 ...

Ciphertext Authentication Tag

I and proven secure assuming a “nonce-respecting adversary”

I any implementation allowing a nonce reuse is not our problem
. . . but maybe it should
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Nonce Reuse in Practice

I IEEE 802.11 [Borisov, Goldberg, Wagner 2001]

I PS3 [Hotz 2010]

I WinZip Encryption [Kohno 2004]

I RC4 in MS Word and Excel [Wu 2005]

I . . .

application programmer
mistakes:

other issues:

I restoring a file from a
backup

I cloning the virtual machine
the application runs on

I . . .

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –5–



Nonce Reuse – what to Expect?
our reasonable (?) expectations

I some plaintext
information leaks:

I identical plaintexts
I common prefixes
I ect.

I but not too much
damage:

1. authentication not
affected

2. no immediate
plaintext recovery
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Nonce Reuse – what Really Happens!
a double-disaster for almost all current AE schemes

1. forgeries

2. plaintext
recoveries
(often like
“one-time-pad
used twice”)
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Systems with Protection from Nonce Reuse
SIV (Rogaway, Shrimpton, Eurocrypt 06) and similar schemes

Sequentially execute the following two steps:

1. generate authentication tag (from nonce, header, plaintext)

2. encrypt plaintext, using tag as “syntetic” nonce

Header

Nonce
01 02 03 ...

Key

Ciphertext

Plaintext

Tag
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Properties of SIV and its Fellows?

security under nonce reuse meets our “reasonable expectations”:

authenticity: not affected!

privacy: leaks whether two
plaintexts are equal,
but not more

but inherently off-line (user must read entire plaintext twice):

I high latency (first bit of ciphertext can only be sent after last bit
of plaintext has been read)

I storage issues (enjoy encrypting your harddisk backup . . . )
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2. The McOE Approach

on-line permutations
(Bellare et al., Crypto 01):

1P 4 5 62 3P P P P

1P 4 5 62 3P P P P P

2nd plaintext

1st plaintext

P’

ciphertexts

common prefix

security under nonce reuse still meets “reasonable expectations”:

authenticity: not affected!

privacy: leaks whether two
plaintexts are equal
the length of
common plaintext
prefixes, but not more
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Our Main Tool: Chaining Blockciphers
for the moment, assume we actually have such primitives

input cv output cv

plaintext

ciphertext

I like a block cipher

I two additional parameters:
I “input chaining value”
I “output chaining value”

I for fixed input cv good block cipher (PRP)

I regarding the output cv good keyed hash function:
I weak collision resistance

(hard to find two input pairs with colliding output cvs)
I weak preimage resistance

(hard to find an input pair with output cv = 000)
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McOE

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

1. Encrypt nonce, using 000, to generate H[1] and secret Z.

2. For i in 1, . . . , m:

encrypt P[i], using H[i], to generate H[i+1] and C[i].

3. Encrypt Z, using H[m+1], to generate the authentication tag.
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3. Why is this secure? (Some Intuition)

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

1. nonce-reuse: an Ind-CPA secure OPerm (→ next slide)
(common plaintext prefixes ↔ common ciphertext prefixes)

2. nonce-respecting: Ind-CPA secure
(different nonces make common plaintext prefixes disappear)

3. Int-CTXT secure: A forger would need to predict tag, the
encryption of Z using H[m+1]. But Z is secret.
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Nonce-Reuse: Ind-CPA-secure OPerm (1)

000

Z

H[1] H[2]

nonce

tag

H[3]

P[1] P[2] P[m] Z

C[1] C[2] C[m]

H[m]
H[m+1]

I Consider a query (nonce, P[1], . . . , P[m]).

I Let i ∈ {1, . . . ,m} be the smallest index, such that there is no
other query (nonce, P[1], . . . , P[i], . . . ) with the same nonce
and i blocks of prefix.

I H[i] is uniquely determined.
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Nonce-Reuse: Ind-CPA-secure OPerm (2)

000

Z

nonce

tag

P[i] Z

C[i]

H[i+1]H[i]

H[i] is given, P[i] is new. Exploit the properties of the chaining bc:

I Good block cipher: C[i] is like a random value.

I Good keyed hash function: H[i+1] has never been used
before as an input cv.

I Good block cipher: C[i+1] is like a random value.

I Good keyed hash function: H[i+2] has never been used
before as an input cv.

I . . .
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What if the last plaintext block P[m] is not
a full block?

I Ciphertext stealing does not work.

I New approach: “tag splitting”. See the paper.

Fleischmann, Forler, Lucks. FSE 2012. McOE: A Family . . . –16–



4. Implementation (Chaining Block Cipher)
Use a tweakable block cipher, instead:

plaintext

ciphertext

input cv
tweak =

output cv

1. Set tweak := input cv

2. Set output cv := plaintext ⊕ ciphertext.
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McOE-X - we don’t have a Tweakable BC!
. . . at least no n-bit bc with n-bit tweaks – so use an ordinary one:

plaintext

ciphertext

output cv
input cv

1. Xor the input cv into the key.

2. Set output cv := plaintext ⊕ ciphertext (as before).

I Exposes the underlying block cipher to related-key attacks.

I Performs poor if the key schedule is slow.
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Other Constuctions for a Chaining BC
McOE-G McOE-D

plaintext

ciphertext

output cvuniv. hashinput cv

plaintext

ciphertext

output cv

input cv

McOE-G: uses universal hash function H with Galois-Field
arithmetic

McOE-D: uses double encryption
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Throughput Values [cycles/byte]

AES−NI

Threefish (software)

AES (software)

McOE−X

6.7

21.5

10.3

AES (software)

McOE−G

8.8
AES−NI, GF−NI

22.8

AES (software)

AES−NI

McOE−D

6.2

25.9
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5. Final Remarks

I If you are searching for new challenges regarding the design of
symmetric primitives, we have one:

⇒ Design efficient tweakable n-bit block ciphers with n-bit tweaks
or highly key-agile ordinary block ciphers!

I “This is not our problem”: Crypto applications fail because a
cryptosystem is mistakenly used outside/against its specification.

I But when the same mistake is made again and again, then
maybe it is our problem – and we should accept the challenge
to design misuse resistant cryptosystems!

Note that there are other misuse cases, beyond nonce reuse.
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