Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 family

Dmitry Khovratovich¹ Christian Rechberger²

Alexandra Savelieva³

¹Microsoft Research Redmond, USA

 \ge

²DTU MAT, Denmark

³National Research University Higher School of Economics, Russia

19th International Workshop on Fast Software Encryption - FSE 2012 March 19-21, 2012

Recent Progress in Preimage Attacks – MD4, MD5, and Tiger 2010

2009 Guo, Ling, Rechberger, 2008 Sasaki, Aoki: Finding Preimages in Full MD5 Faster Than Exhaustive Sasaki and Aoki. Search. EUROCRYPT MD4 and SHA-2. Preimage attacks on 2009 ASIACRYPT'10 step-reduced MD5. ACISP'08.

and Wang. Advanced meet-in-the-middle preimage attacks: First results on full Tiger, and improved results on

Introduction of Initial Structure

Introduction of Splice-and-Cut Framework

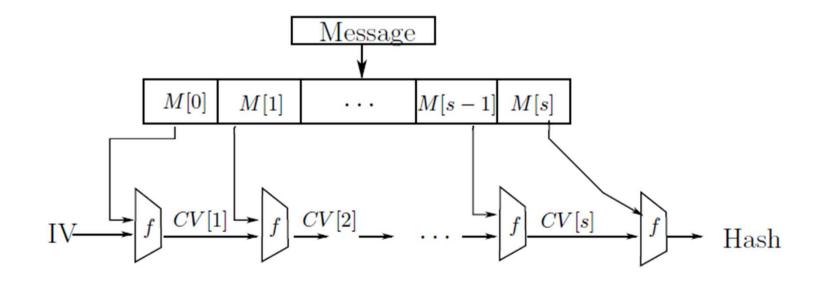
Recent Progress in Preimage Attacks – SHA-x Family

2010 2009 Guo, Ling, Rechberger, and Wang. Advanced meet-in-the-middle 2008 Aoki and Sasaki. Meetpreimage attacks: First in-the-middle preimage results on full Tiger, and attacks against reduced improved results on SHA-0 and SHA-1. MD4 and SHA-2. CRYPTO'09. ASIACRYPT'10. Introduction of Initial Structure Introduction of Splice-and-Cut Framework

Problem

- Concrete examples of the initial structure are extremely sophisticated and hard to generalize.
- Many ad-hoc / not formalized techniques are used to build initial structures
- While the other elements of splice-and-cut framework seem exhausted already, the concept behind initial structure has large potential and few boundaries.

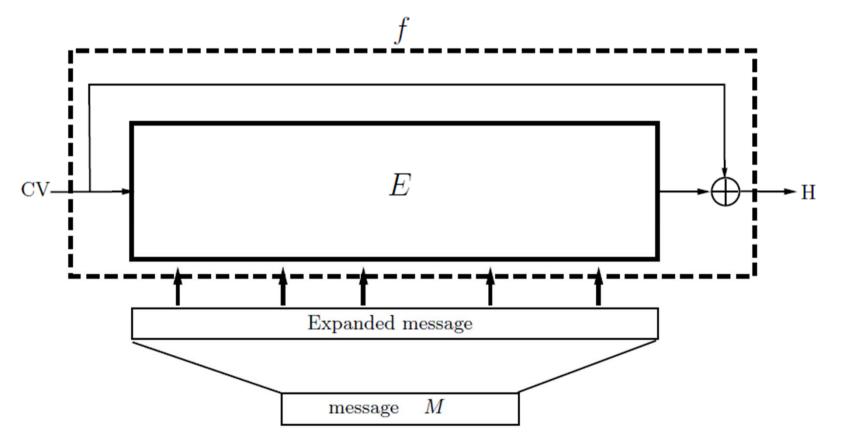
Purpose of our Research


- To replace the idea of the initial structure with a more formal and generic concept
- To design generic algorithms for constructing the initial structure
- To reduce manual efforts and time to build the initial structure

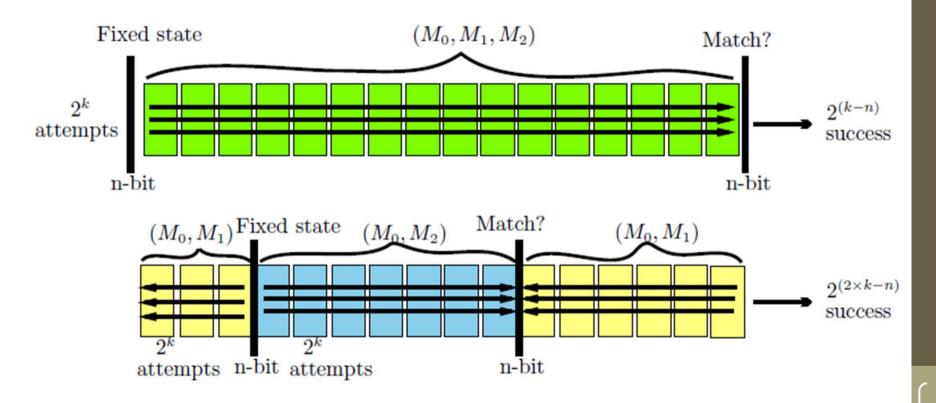
New attacks on Skein-512 and the SHA-2 family

Reference	Target	Steps	Complexity, 2 ^x			Memory
			Pseudo- preimage	Second preimage	Preimage	
Our results	Skein-512	22	508	511	-	2 ⁶
Our results	Skein-512	37	511.2	-	-	2 ⁶⁴
Our results	Skein-512	72	-	511.7	-	Negl.
Aoki et.al.'09	SHA-256	43	251.9	254.9	254.9	2 ⁶
Our results	SHA-256	45	253	255.5	255.5	2 ⁶
Our results	SHA-256	52	255	-	-	2 ⁶
Aoki et.al.'09	SHA-512	46	509	511.5	511.5	2 ⁶
Our results	SHA-512	50	509	511.5	511.5	2 ⁴
Our results	SHA-512	57	511	-	-	2 ⁶

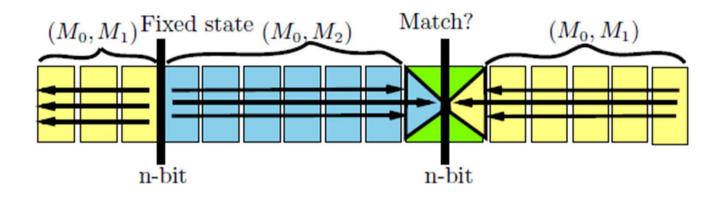
Hash Functions with Merkle-Damgård Structure

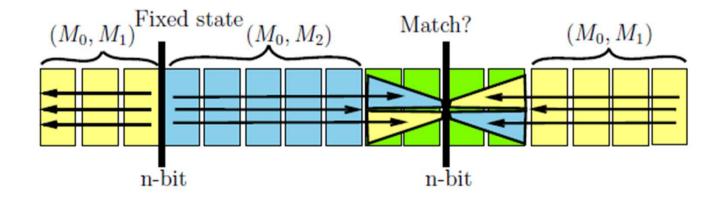

- *M* is arbitrarily long
- Iterative design
- H(M) = f(M[s]; CV[s])
- $CV[i_{+1}] = f(M[i]; CV[i])$

Compression Functions in Davies-Meier Mode

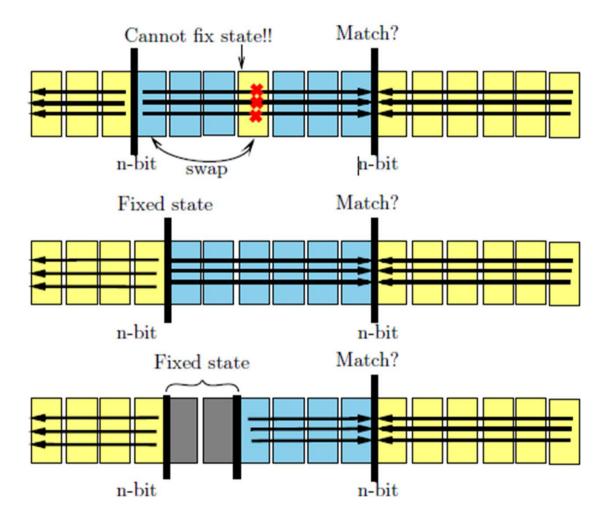

• Blockcipher-based compression function:

 $f(M; CV) = E_M(CV) \oplus CV;$




8

Splice-and-Cut Attacks: Basic Strategy


Partial Matching and ~ Fixing

(10)

Initial Structure

〔 11 〕

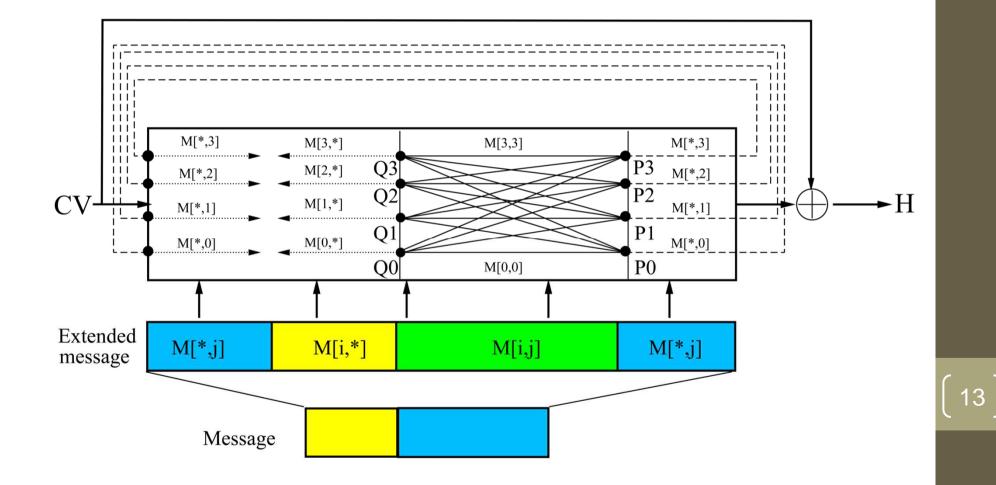
Biclique – Formal Definition

Let ϵ be a sub-cipher of E, and $\mathcal{M} = \{M[i, j]\}\)$ be a group of parameters for ϵ . Then a *biclique of dimension* d over ϵ for \mathcal{M} is a pair of sets $\{Q_i\}\)$ and $\{P_j\}\)$ of 2^d states each such that

$$Q_i \xrightarrow[\epsilon]{M[i,j]} P_j.$$

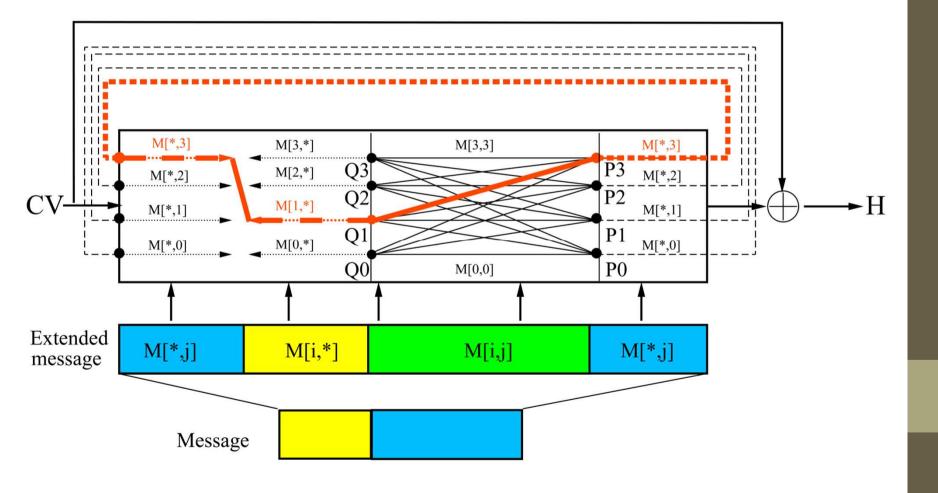
If M[i, j] is a preimage, then

$$E: \quad CV \xrightarrow{M[i,j]} Q_i \xrightarrow{M[i,j]} P_j \xrightarrow{M[i,j]} H.$$


An adversary selects a variable v outside of ϵ (w.l.o.g. between P_j and H) and checks, for appropriate choices of sub-ciphers g_1 and g_2 , if

$$\exists i,j: P_j \xrightarrow{M[i,j]}_{g_1} v \stackrel{?}{=} v \xleftarrow{M[i,j]}_{g_2} Q_i.$$

A positive answer yields a candidate preimage. To compute v from Q_i , the adversary computes CV and then derives the output of E as $CV \oplus H$.


[12]

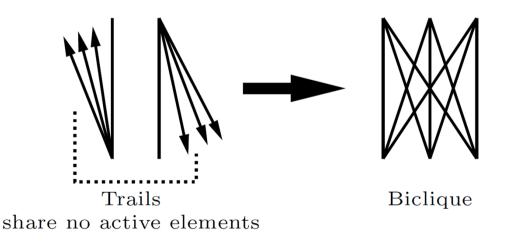
Biclique of dimension 2 in the MITM attack on a DM compression function

How it works

• Suppose message M[1,3] is a preimage

Advantage

 The complexity of testing 2^{2d} messages for preimages:


$$C = 2^{d}(C_{backward} + C_{forward}) + C_{bicl} [+ C_{recheck}]$$

One needs 2^{n-2d} bicliques of dimension d to test
2ⁿ preimage candidates.

Differential Perspective on Bicliques

- Vast pool of already existing tools when it comes to finding differential trails in hash functions
- Very precise and economic use of degrees of freedom in the resulting attacks

Biclique Construction Algorithms

#	Main idea	Application	Attacks
1	Fully specified or truncated differential trails	Bicliques of arbitrary dimension	Reduced Skein hash function
2	Modification of Algorithm 1 for hash functions in DM mode	For the case when we control internal state and message injections within the biclique	Reduced SHA-2 hash and compression functions
3	Use rebound approach to get more rounds	For bicliques of dimension 1	Reduced Skein compression function

Number of Attacked SHA-2 Hash Function Rounds - Our Improvements

Hash function	Chunks	Partial matching	Partial fixing	Initial structure	Total
SHA-256	29	7	3	4 +2	43 +2
SHA-512	29	7	8	2 +4	46 +4

• Compared to:

Aoki, Guo, Matusiewicz, Sasaki, and Wang. Preimages for step-reduced SHA-2. In ASIACRYPT'09.

18

Summary of Our Contributions

- Formalization of Initial Structure technique as a 'Biclique'
 - 3 generic and flexible algorithms for constructing bicliques
 - differential perspective that allows for application of differential trails, message modification techniques etc. in splice-and-cut framework
- SHA-2 family
 - attack on 45-round SHA-256 and 50-round SHA-512 in the hash mode
 - attack on 52-round SHA-256 and 57-round SHA-512 compression function
- SHA-3 finalist Skein
 - attack on 22 rounds of Skein-512 hash function
 - attack on 37 rounds of Skein-512 compression function
 - MITM speed-up of brute force attack on 72 rounds of Skein-512

Results in Perspective

- We targeted a main security property, not some artificial distinguishing property.
- We have results on the real hash, not some pseudo-attacks, or results that only work with full access to compression function, cipher or permutation

Follow-up Work

- Biclique Cryptanalysis of the Full AES by Bogdanov, Khovratovich, and Rechberger (2011) - First application to block ciphers
- A Meet-in-the-Middle Attack on the Full KASUMI by Jia, Yu, and Wang (2011) *Exploits a new property of the cipher*
- Narrow Bicliques: Cryptanalysis of Full IDEA by Khovratovich, Leurent, and Rechberger (2012) - Variants of attacks that are many million times faster than brute-force
- Even more results on: SQUARE (by Mala, 2011), IDEA (by Biham, Dunkelman, Keller, and Shamir, 2011), and ARIA (by Chen and Xu, 2012)

Future Work

- Application of the Biclique framework to other hash functions and block ciphers
- Generalization of the Biclique technique, e.g. identifying situations where a graph can be used that deviates from the Biclique definition.
- New design criteria for hash-functions based on their ability to resist meet-in-the-middle attacks

Questions?

Dmitry Khovratovich Christian Rechberger Alexandra Savelieva

