Reflection Cryptanalysis of PRINCE-like Ciphers

Hadi Soleimany¹, Céline Blondeau¹, Xiaoli Yu^{2,3}, Wenling Wu², Kaisa Nyberg¹, Huiling Zhang², Lei Zhang², Yanfeng Wang²

> ¹Department of Information and Computer Science, Aalto University School of Science, Finland

²Institute of Software, Chinese Academy of Sciences, P. R. China

³Graduate University of Chinese Academy of Sciences, P. R. China

FSE 2013

Outline

- Description of PRINCE-like Ciphers
- 2 Distinguishers
- 3 Key Recovery
- **4** Various Classes of α -reflection
- Conclusions

3 Key Recovery

4 Various Classes of α -reflection

 Low-latency SPN block cipher was proposed at ASIACRYPT2012.

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 || k_1$.

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 || k_1$.

•
$$k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n-1))$$

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 || k_1$.

- $k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n-1))$
- With a property called α -reflection:

$$D(k_0||k_0'||k_1)() = E(k_0'||k_0||k_1 \oplus \alpha)()$$

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 || k_1$.

- $k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n-1))$
- With a property called α -reflection:

$$D(k_0||k_0'||k_1)() = E(k_0'||k_0||k_1 \oplus \alpha)()$$

• Independently of the value of α , the designers showed that PRINCE is secure against known attacks.

The 2 midmost rounds

Total 12 rounds

The first rounds

The last rounds

Description of PRINCE-like Ciphers

Related constants:

$$RC_{2R-r+1} = RC_r \oplus \alpha$$
, for all $r = 1, \dots, 2R$

The whitening key

Description of PRINCE

- PRINCE-like cipher with n = 64.
- Constant is defined as $\alpha = 0xc0ac29b7c97c50dd$.
- The *S*-layer is a non-linear layer where each nibble is processed by the same Sbox.

Description of PRINCE

• M' is an involutory 64 × 64 block diagonal matrix $(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0)$.

• M' is an involutory 64×64 block diagonal matrix $(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0).$

$$\hat{M}_0 = \left(\begin{array}{ccccc} M_0 & M_1 & M_2 & M_3 \\ M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \end{array} \right), \quad \hat{M}_1 = \left(\begin{array}{ccccc} M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \\ M_0 & M_1 & M_2 & M_3 \end{array} \right).$$

Various Classes of α -reflection

Description of PRINCE-like Ciphers

• M' is an involutory 64×64 block diagonal matrix $(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0).$

$$\hat{M}_0 = \left(\begin{array}{ccccc} M_0 & M_1 & M_2 & M_3 \\ M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \\ \end{array} \right), \quad \hat{M}_1 = \left(\begin{array}{ccccc} M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \\ M_0 & M_1 & M_2 & M_3 \\ \end{array} \right).$$

• The second linear matrix M for PRINCE is obtained by composition of M' and a permutation SR of nibbles by setting $M = SR \circ M'$.

2 Distinguishers

3 Key Recovery

4 Various Classes of α -reflection

• It has been applied on some ciphers and hash functions with Feistel construction (Kara 2008, Bouillaguet et al. 2010).

This work

Using probabilistic reflection property instead of deterministic approach.

Fixed Points

Definition

Let $f: A \to A$ be a function on a set A. A point $x \in A$ is called a fixed point of the function f if and only if f(x) = x.

Fixed Points

Definition

Let $f: A \to A$ be a function on a set A. A point $x \in A$ is called a fixed point of the function f if and only if f(x) = x.

Lemma

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a linear involution. Then the number of fixed points of f is greater than or equal to $2^{n/2}$.

Fixed Points

Definition

Let $f: A \to A$ be a function on a set A. A point $x \in A$ is called a fixed point of the function f if and only if f(x) = x.

Lemma

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a linear involution. Then the number of fixed points of f is greater than or equal to $2^{n/2}$.

Idea

Take advantage of α -reflection property and the fact that always fixed points exist in midmost rounds of PRINCE-like ciphers.

$$\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}.$$

$$\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}.$$

$$\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}.$$

$$\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \left\{ x \in \mathbb{F}_2^n \mid S^{-1}(M'(S(x))) \oplus x = \alpha \right\}.$$

$$\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \left\{ x \in \mathbb{F}_2^n \mid S^{-1}(M'(S(x))) \oplus x = \alpha \right\}.$$

$$\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \left\{ x \in \mathbb{F}_2^n \mid S^{-1}(M'(S(x))) \oplus x = \alpha \right\}.$$

If $\mathcal{P}_{\mathcal{I}_2} = 0$ then we have impossible differential.

External Characteristic $\mathcal{P}_{\mathcal{C}_r}$

Key Recovery

4 Various Classes of α -reflection

Key Recovery Nibble by Nibble

Description of PRINCE-like Ciphers

Various Classes of α -reflection

Key Recovery for Passive Nibble

$$P(j) \oplus k_0(j) \oplus C(j) \oplus k'_0(j) \oplus \alpha(j) = 0,$$

- The difference after passing through the S-boxes is still zero.
- The value of $k_1(j)$ need not be known.

3 Key Recovery

4 Various Classes of α -reflection

Maximizing Probability $\mathcal{P}_{\mathcal{C}}$ of Characteristic

To maximize $\mathcal{P}_{\mathcal{C}}$ we can either use

- Cancellation idea.
- Branch and Bound algorithm.

Conclusions

Description of PRINCE-like Ciphers

Description of PRINCE-like Ciphers

With $\mathcal{P} = \Pr_{\mathbf{X}} \left[S(\mathbf{X}) \oplus S(\mathbf{X} \oplus \alpha) = M^{-1}(\alpha) \right]$

Description of PRINCE-like Ciphers

Description of PRINCE-like Ciphers

With $\mathcal{P} = \Pr_{\mathbf{X}} [S(\mathbf{X}) \oplus S(\mathbf{X} \oplus \alpha) = M^{-1}(\alpha)]$ there is an iterative characteristic over four rounds of a PRINCE-like cipher.

Best α with Cancellation Idea on 12 rounds

α	Δ*	$w(\Delta^*)$	$\mathcal{P}_{\mathcal{C}_{4}}$	Data Compl.	Time Compl.
0x8400400800000000	0x8800400400000000	4	2-22	2 ^{57.95}	2 ^{71.37}
0x8040000040800000	0x8080000040400000	4	2-22	2 ^{57.95}	2 ^{71.37}
0x0000408000008040	0x0000404000008080	4	2-22	2 ^{57.95}	2 ^{71.37}
0x0000000048008004	0x0000000044008008	4	2-22	2 ^{57.95}	2 ^{71.37}
0x0000440040040000	0x0000440040040000	4	2-24	2 ^{60.27}	2 ^{73.69}
0x8008000000008800	0x8008000000008800	4	2-24	2 ^{60.27}	2 ^{73.69}

Examples of α with Branch and Bound Algorithm on 12 Rounds

α	Δ*	$w(\Delta^*)$	$\mathcal{P}_{\mathcal{C}_{4}}$	Data Compl.	Time Compl.
0x0108088088010018	0x0000001008000495	5	2-26	262.78	280.2
0x0088188080018010	0x00000100c09d0008	5	2-26	262.78	280.2
0x0108088088010018	0x000000100800d8cc	6	2 ⁻²⁶	262.83	284.25
0x0001111011010011	0x1101100110000100	7	2-28	$2^{63.45}(a=32)$	288.87

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

Observation

Description of PRINCE-like Ciphers

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

$$\alpha = \left[\begin{array}{c} \text{0x7 0x1 0xc 0xb} \\ \text{0x9 0x5 0x9 0x3} \\ \text{0x9 0xa 0x5 0x9} \\ \text{0x3 0x6 0x8 0xd} \end{array} \right],$$

Observation

Description of PRINCE-like Ciphers

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

$$\alpha = \begin{bmatrix} 0x7 & 0x1 & 0xc & 0xb \\ 0x9 & 0x5 & 0x9 & 0x3 \\ 0x9 & 0xa & 0x5 & 0x9 \\ 0x3 & 0x6 & 0x8 & 0xd \end{bmatrix}$$

$$\alpha = \begin{bmatrix} 0x7 & 0x1 & 0xc & 0xb \\ 0x9 & 0x5 & 0x9 & 0x3 \\ 0x9 & 0xa & 0x5 & 0x9 \\ 0x3 & 0x6 & 0x8 & 0xd \end{bmatrix}, \qquad M^{-1}(\alpha) = \begin{bmatrix} 0x7 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0xb \\ 0 & 0 & 0xd & 0 \\ 0 & 0x9 & 0 & 0 \end{bmatrix}.$$

Truncated Attack

Description of PRINCE-like Ciphers

Assume α is such that $M^{-1}(\alpha)=\left| egin{array}{ccc} *&0&0&0\\0&0&0&*\\0&0&*&0\\0&*&0&0 \end{array} \right|$ where * can be any

arbitrary value. For six rounds $\mathfrak{R}_{R-2} \circ \cdots \circ \mathfrak{R}_{R+3}$, the following truncated characteristic:

$$Y_{R+3}^{O} \oplus X_{R-2}^{I} = \begin{bmatrix} * & 0 & 0 & 0 \\ * & 0 & 0 & * \\ * & 0 & * & 0 \\ * & * & 0 & 0 \end{bmatrix} \oplus \alpha,$$

holds with probability $\mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n} = 2^{-32}$.

Truncated Attack

Description of PRINCE-like Ciphers

Similar characteristics can be obtained for α such that:

$$M^{-1}(\alpha) = \begin{bmatrix} 0 * 0 & 0 \\ * 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & * \end{bmatrix} \text{ or } M^{-1}(\alpha) = \begin{bmatrix} 0 & 0 * & 0 \\ 0 * & 0 & 0 \\ * & 0 & 0 & 0 \\ 0 & 0 & 0 & * \end{bmatrix} \text{ or }$$

$$M^{-1}(\alpha) = \begin{bmatrix} 0 & 0 & 0 & * \\ 0 & 0 & * & 0 \\ 0 & * & 0 & 0 \\ * & 0 & 0 & 0 \end{bmatrix}.$$

- This truncated characteristic over six rounds exists for $4 \times (2^{16} - 1) \approx 2^{18}$ values of α .
- Key recovery attack on 8 rounds can be done by data complexity 2^{35.8} and time complexity of 2^{96.8} memory accesses in addition of 288 full encryption.

Description of PRINCE-like Ciphers

3 Key Recovery

4 Various Classes of α -reflection

Conclusions

Conclusions

- We introduced new generic distinguishers on PRINCE-like ciphers.
- The security of PRINCE-like ciphers depends strongly on the choice of the value of α .
- We identified special classes of α for which 4, 6, 8 or 10 rounds can be distinguished from random.
- The weakest class allows an efficient key-recovery attack on 12 rounds of the cipher.
- ullet Our best attack on PRINCE with original lpha breaks a reduced 6-round version.
- New design criteria for the selection of the value of α for PRINCE-like ciphers are obtained.

Thanks for your attention!