Cryptanalysis of Round-Reduced LED

Ivica Nikolić, Lei Wang and Shuang Wu

NANYANG TECHNOLOGICAL UNIVERSITY FSE 2013 Singapore March 11, 2013

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - Random-difference Distinguisher
- Conclusion

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - Random-difference Distinguisher
- Conclusion

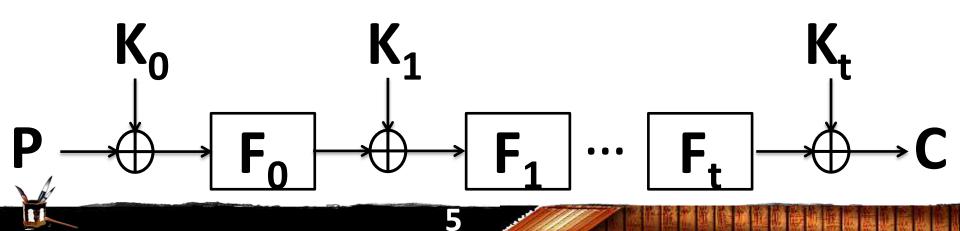
LED

- Designed by Guo et al. at CHES 2011
- Light Encryption Device
 - ➢ 64-bit block
 - ➢ 64- or 128-bit key (primarily)
- Conservative security, e.g. concerning
 - Related-key attack

Distinguishers in hash function setting

Specification (1/2)

- Extremely simple key schedule
 - ➢ Denote the secret key as K
 ➢ LED-64: K as each round key
 ➢ LED-128: K=K₀||K₁, then K₀ and K₁ as round keys alternatively



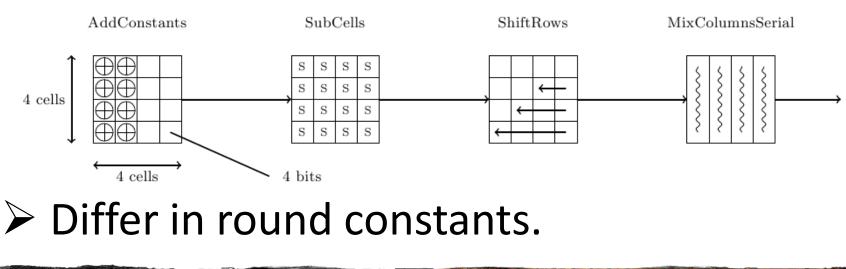
Specification (2/2)

- LED-64: 8 steps; LED-128: 12 steps
- Step functions

AES like

4 rounds and each round as below

6



Timeline of Previous Analysis

- Guo et al. at CHES 2011
 - Distinguishers on 3.75/6.75-step LED-64/-128
 - Super-Sbox cryptanalysis
- Isobe and Shibutani at ACISP 2012
 - ➢ Key recovery on 2/4-step LED-64/-128
 - Meet-in-the-middle cryptanalysis
- Mendel et al. at ASIACRYPT 2012
 - Key recovery on 4-step LED-128
 - Related-key key recovery on 4/6-step LED-64/-128
 - Guess-then-recover, local collision, characteristics and differentials of step functions

Security State of LED

• The number of attacked steps

	Key Recovery		Dictinguichor
	Single-key	Related-key	Distinguisher
LED-64 (8 steps)	2	4	3.75
LED-128 (12 steps)	4	6	6.75

8

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - Random-difference Distinguisher
- Conclusion

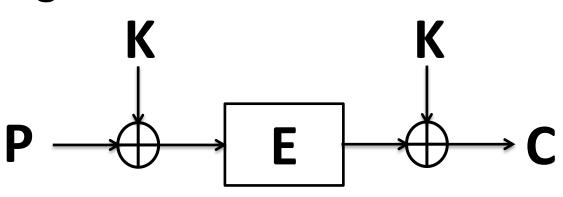
Security State of LED

• The number of attacked steps

	Key Recovery		Dictinguishor
	Single-key	Related-key	Distinguisher
LED-64 (8 steps)	2	4	3.75
LED-128 (12 steps)	4	6	6.75

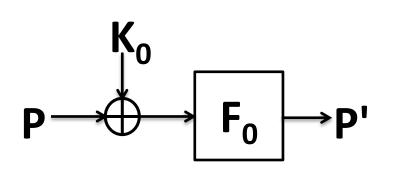
Slidex Attack

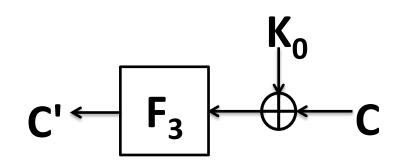
- Dunkelman et al. at EUROCRYPT 2012
- Known-plaintext attack
- Wok for any public permutation E
- Time*Data=2ⁿ
 - K is n bits long



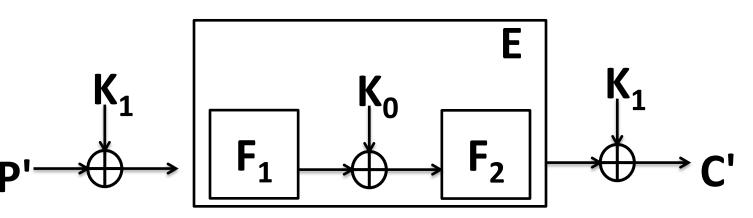
Application to 4-Step LED-128

• Guess K₀





• Recover K₁



Comparison

- Model
 - Ours: known-plaintext
 - Previous: chosen-plaintext
- Complexity

	Data	Time
IS12	2 ¹⁶	2 ¹¹²
MRT+12	2 ⁶⁴	2 ⁹⁶
Ours	2 ³²	2 ⁹⁶

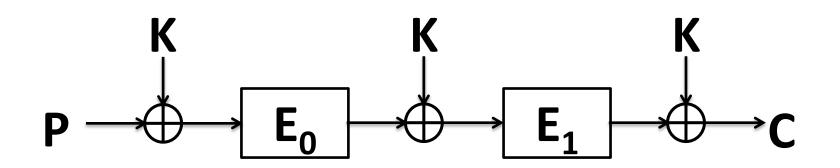
2

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - Random-difference Distinguisher
- Conclusion

A 2-Step Even-Mansour

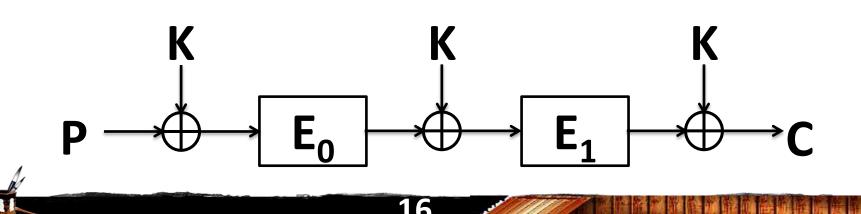
- K is n bits long
- E₀ and E₁ are public permutations



A 2-Step Even-Mansour

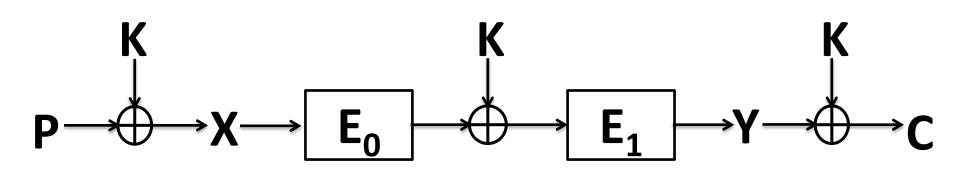
- K is n bits long
- E₀ and E₁ are public permutations

Can we recover K with a complexity less than 2ⁿ?



An Observation (1/7)

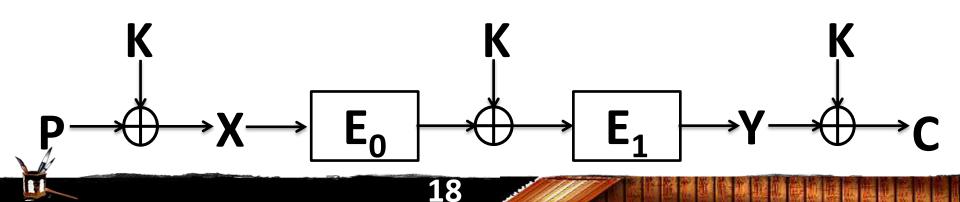
- K = P ⊕ X
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- K = Y ⊕ C



An Observation (2/7)

- K = P ⊕ X
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- K = Y ⊕ C

We recover X for some P, which gives us K immediately.



An Observation (3/7)

- K = P ⊕ X
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- $K = Y \oplus C$

$P = X \bigoplus E_0(X) \bigoplus E_1^{-1}(P \bigoplus C \bigoplus X)$

9

An Observation (4/7)

- K = P ⊕ X
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- $K = Y \oplus C$

 $P = X \bigoplus E_0(X) \bigoplus E_1^{-1} \square \square \square \square X)$

An Observation (5/7)

• For a t-multicollision on $P \oplus C$, namely

$$P_1 \oplus C_1 = \dots = P_t \oplus C_t = const$$

we get

 $\mathsf{P}_{\mathsf{i}} = \mathsf{X}_{\mathsf{i}} \bigoplus \mathsf{E}_{\mathsf{0}}(\mathsf{X}_{\mathsf{i}}) \bigoplus \mathsf{E}_{\mathsf{1}}^{-1}(\mathsf{const} \bigoplus \mathsf{X}_{\mathsf{i}})$

An Observation (6/7)

• For a t-multicollision on $P \oplus C$, namely

$$P_1 \oplus C_1 = \cdots = P_t \oplus C_t = const$$

we get

 $P_i = X_i \bigoplus E_0(X_i) \bigoplus E_1^{-1}(\text{const} \bigoplus X_i)$

denoted as

 $P_i = G(X_i)$

An Observation (7/7)

• For a t-multicollision on $P \oplus C$, namely

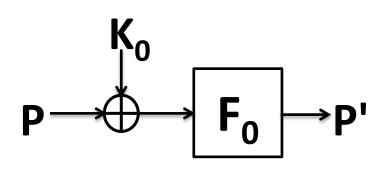
$$P_1 \oplus C_1 = \cdots = P_t \oplus C_t = const$$

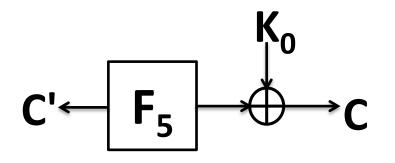
we recover a X_i with a complexity $2^n/t$

➢ try 2ⁿ/t random values as X, and match G(X) to {P₁, P₂, ..., P_t}.

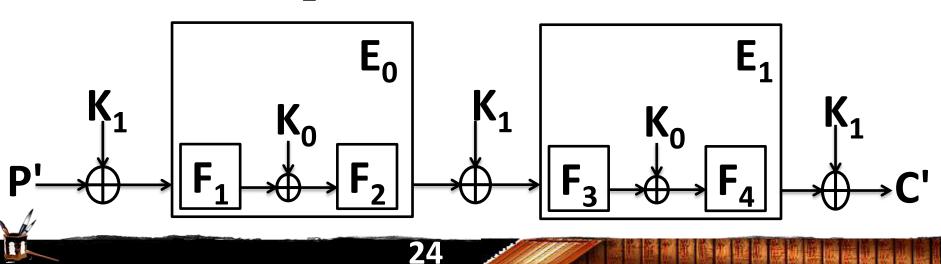
Application to 6-Step LED-128

• Guess K₀





• Recover K₁



Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - Random-difference Distinguisher
- Conclusion

Differential vs Characteristic

• Differential

$$\Delta_{\text{in}} \longrightarrow ? \longrightarrow ? \longrightarrow ? \longrightarrow \Delta_{\text{out}}$$

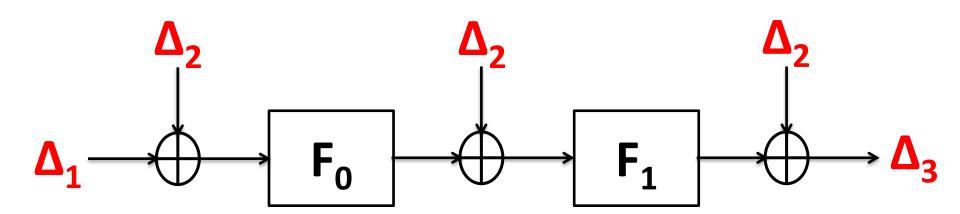
• Characteristic

$$\Delta_{\text{in}} \longrightarrow \Delta_{1} \longrightarrow \Delta_{2} \longrightarrow \Delta_{3} \longrightarrow \Delta_{0\text{ut}}$$

The characteristic probability on an active step function is upper bounded by 2⁻⁵⁰.

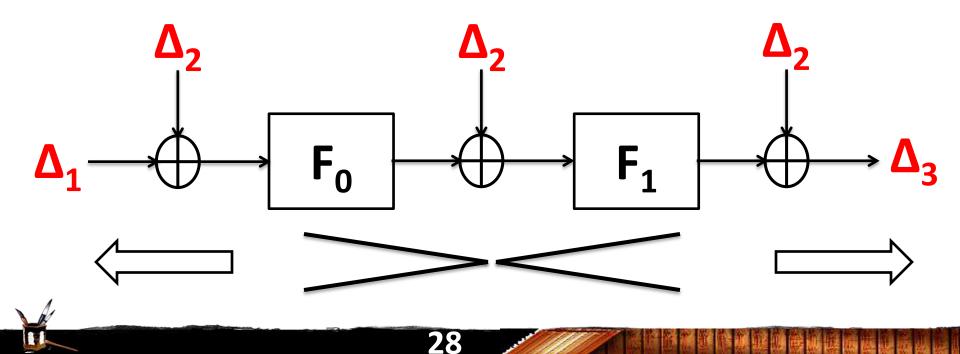
Differential on 2-step LED-64

- For a differential $(\Delta_1, \Delta_2) \rightarrow \Delta_3$
 - what is the complexity of finding a solution (P, K)?



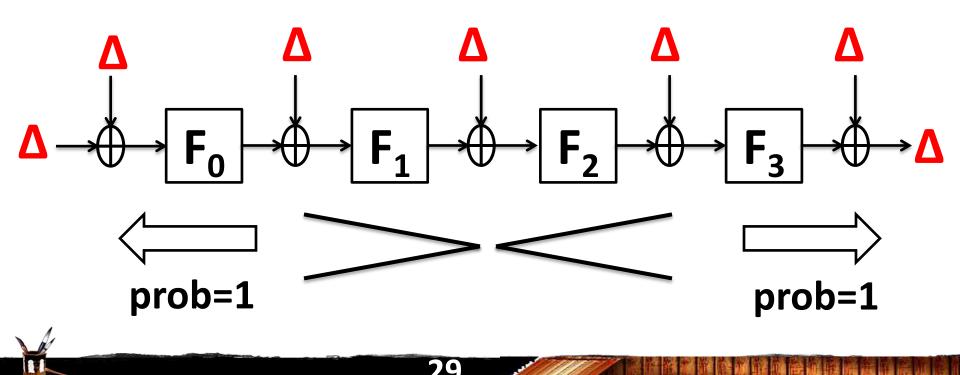
Differential on 2-step LED-64

- Meet-in-the-middle approach
 - One solution with a **birthday** complexity
- Differential multicollision distinguisher



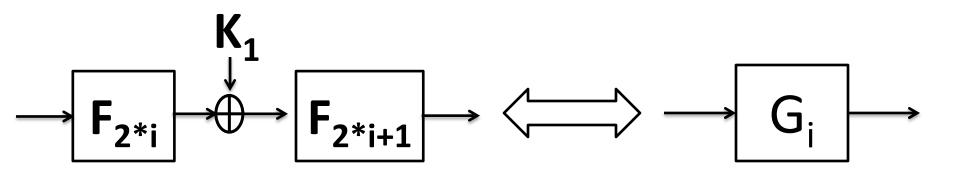
Extend to 4-Step LED-64

- **Chosen** differentials $(\Delta, \Delta) \rightarrow \Delta$
 - Complexity of birthday bound to find a solution (P, K).

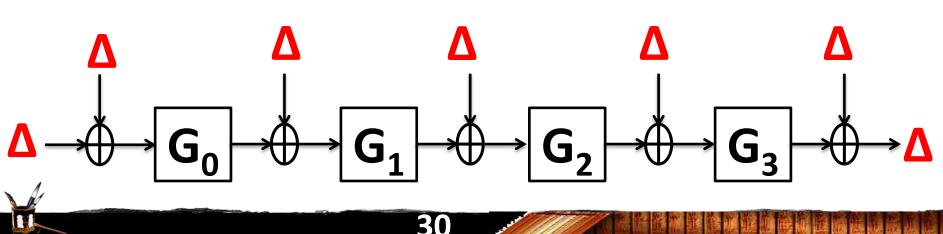


Application to 8-Step LED-128

• Set a random value to K_1 and $\Delta K_1 = 0$



• Set $\Delta P = \Delta K_0 = \Delta$, and find a solution (P, K_0)

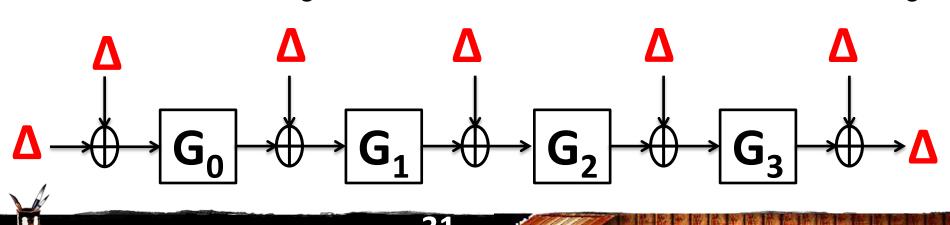


Application to 8-Step LED-128

• Set a random value to K_1 and $\Delta K_1=0$

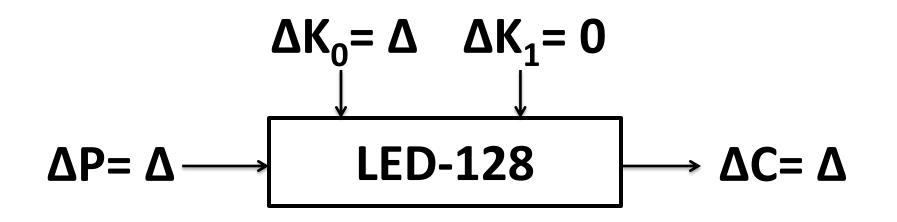
Exploit the freedom of both K₀ and K₁

• Set $\Delta P = \Delta K_0 = \Delta$, and find a solution (P, K_0)



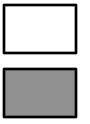
Random-Difference Distinguisher

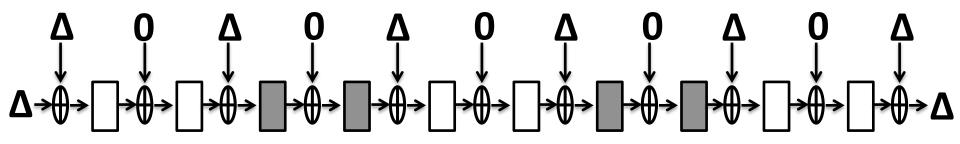
- On a **random** difference Δ
 - \succ Set $\Delta K_0 = \Delta$, $\Delta K_1 = 0$, $\Delta P = \Delta$ and $\Delta C = \Delta$
 - The complexity of finding a solution?
 - Ideal case: 2ⁿ (n=64)



Distinguisher on 10 Steps

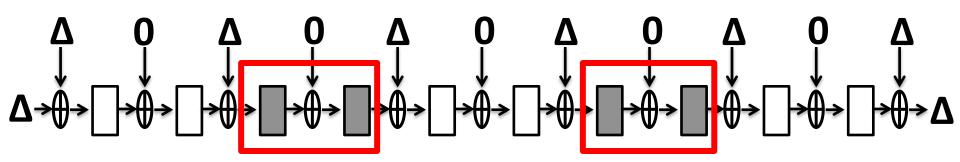
- Difference propagation
 - Passive step function
 - Active step function





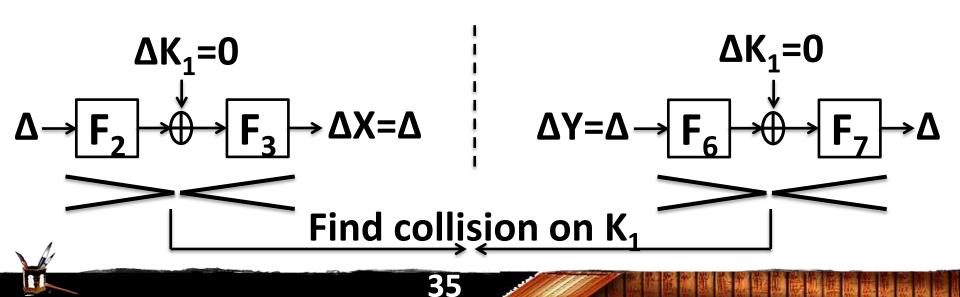
Attack Procedure (1/3)

- Phase 1: find solutions for differentials on F₂ and F₃, and on F₆ and F₇.
 - Exploit the freedom of K₁
 At Phase 1, the value of K₁ is chosen.



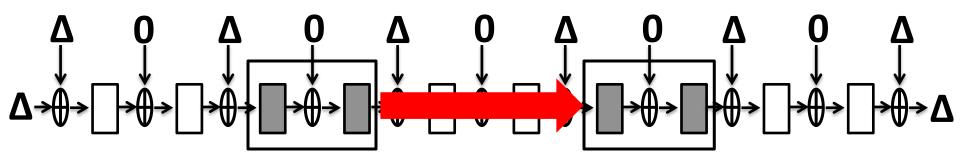
Phase 1

- Find a set of (K₁, X_i, Y_i)s such that
 - \succ all K₁s are equal
 - \succ (K₁, X_i)s follows differential on F₂ and F₃
 - \succ (K₁, Y_i)s follows differential on F₆ and F₇



Attack Procedure (2/3)

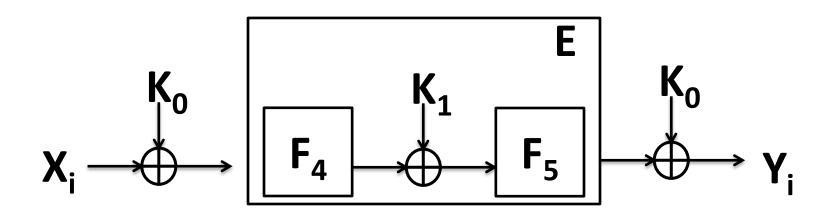
- **Phase 2**: match a solution on F_2 and F_3 to a solution on F_6 and F_7
 - \succ Exploit the freedom of K₀
 - \succ At Phase 2, the value of K₀ is chosen.



Phase 2

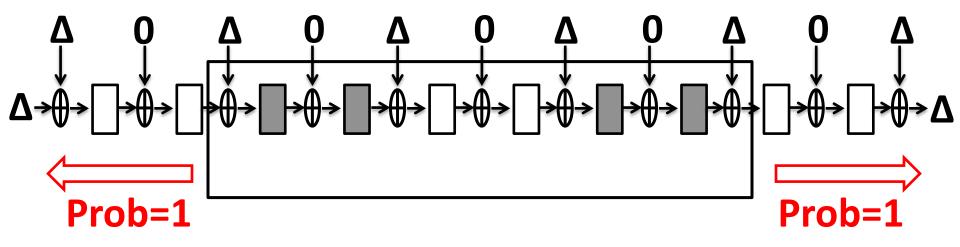
• Similar with the key-recovery attack on single-key 1-step Even-Mansour

 \succ Utilize the set {(K₁, X_i, Y_i)} from Phase 1.



Attack Procedure (3/3)

Phase 3: compute P to obtain a solution (P, K₀, K₁).



Distinguisher

 The complexity of our attack is 2^{60.3}, which is smaller than 2⁶⁴

> 10-step LED-128 is "non-ideal"

• Irrespective to the specification of step function.

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - Random-difference Distinguisher

4()

Conclusion

Updated State of LED

• The number of attacked steps

	Key Recovery		Dictinguishor
	Single-key	Related-key	Distinguisher
LED-64 (8 steps)	2	4	3.75 → 5
LED-128 (12 steps)	4 → 6	6	6.75 → 10

Thank you for your attention!