Tweakable Blockciphers with Asymptotically Optimal Security

Rodolphe Lampe¹ Yannick Seurin²

¹University of Versailles, France Financial support of DGA and ANR PRINCE

²ANSSI, Paris, France

11 March 2013

Introduction

Tweakable blockcipher: A family of blockcipher indexed with a tweak (a public parameter) : $\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \mathcal{D} \to \mathcal{D}$.

Introduced by Liskov-Rivest-Wagner at CRYPTO 2002

Introduction

Tweakable blockcipher: A family of blockcipher indexed with a tweak (a public parameter) : $\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \mathcal{D} \to \mathcal{D}$.

Introduced by Liskov-Rivest-Wagner at CRYPTO 2002

We consider constructions of tweakable blockciphers from an existing blockcipher.

One of the original construction of Liskov-Rivest-Wagner.

Figure: One of the original construction of Liskov-Rivest-Wagner.

 h_1 is randomly chosen in \mathcal{H} a family of $\varepsilon - AXU_2$ functions.

Secure up to $2^{n/2}$ queries against CCA attacks (*n* being the size of the blocks).

Definition of $\varepsilon - AXU_2$

Definition

Let S be an arbitrary set. A family of functions $\mathcal H$ from S to $\{0,1\}^n$ is said to be ε -almost-2-XOR-universal (ε -AXU₂) if for all distinct $x,x'\in S$ and all $y\in\{0,1\}^n$, one has

$$\Pr\left[h \leftarrow_{\$} \mathcal{H} : h(x) \oplus h(x') = y\right] \leq \varepsilon$$
.

The construction of Landecker-Shrimpton-Terashima (CRYPTO 2012).

Figure: The construction of Landecker-Shrimpton-Terashima (CRYPTO 2012).

Secure up to $2^{\frac{2n}{3}}$ queries against CCA attacks (*n* being the size of the blocks).

Definition of r-CLRW

What if we increase the number of rounds?

Definition of r-CLRW

What if we increase the number of rounds?

Figure: The $CLRW^{r,E,\mathcal{H}}$ tweakable blockcipher construction.

Theorem

Let K, T be sets, $E \in BC(K, n)$ be a blockcipher, and H be a ε -AXU₂ family of functions from T to $\{0,1\}^n$. Then one has:

$$\mathsf{Adv}_{\mathtt{CLRW}^{r,E,\mathcal{H}}}^{\widetilde{\mathrm{ncpa}}}(q,\tau) \leq r \cdot \mathsf{Adv}_{E}^{\mathrm{ncpa}}(q,\tau + rqT) + \frac{q^{r+1}}{r+1}(2\varepsilon)^{r}$$

and

$$\mathsf{Adv}^{\widetilde{\operatorname{cca}}}_{\mathtt{CLRW}^{r,E,\mathcal{H}}}(q,\tau) \leq r \cdot \mathsf{Adv}^{\operatorname{cca}}_E(q,\tau + rqT) + \frac{4\sqrt{2}}{\sqrt{r+2}} q^{(r+2)/4} (2\varepsilon)^{r/4}$$

where T is the time to compute E or E^{-1} .

Secure up to $2^{\frac{r}{r+1}n}$ queries for NCPA attacks. Secure up to $2^{\frac{r}{r+2}n}$ queries for CCA attacks.

Real World

Real World Ideal World

World q World 0

World $\ell+1$

World $\ell+1$

The last $q - \ell - 1$ outputs have the same distributions

World $\ell+1$

Coupling

A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that for all $x \in \Omega$, $\sum_{y \in \Omega} \lambda(x,y) = \mu(x)$ and for all $y \in \Omega$, $\sum_{x \in \Omega} \lambda(x,y) = \nu(y)$. In other words, λ is a joint distribution whose marginal distributions are resp. μ and ν .

Coupling

A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that for all $x \in \Omega$, $\sum_{y \in \Omega} \lambda(x,y) = \mu(x)$ and for all $y \in \Omega$, $\sum_{x \in \Omega} \lambda(x,y) = \nu(y)$. In other words, λ is a joint distribution whose marginal distributions are resp. μ and ν .

Lemma (Coupling Lemma)

Let μ and ν be probability distributions on a finite event space Ω , let λ be a coupling of μ and ν , and let $(X,Y) \sim \lambda$ (i.e. (X,Y) is a random variable sampled according to distribution λ). Then $\|\mu - \nu\| \leq \Pr[X \neq Y]$.

Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 .

Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 . What's the advantage to distinguish the two coins ?

Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 . What's the advantage to distinguish the two coins ? We can couple them:

p_1	C_1 and C_2 make head
$p_2 - p_1$	C_1 makes tail and C_2 makes head
$1 - p_2$	C_1 and C_2 make tail

Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 . What's the advantage to distinguish the two coins ? We can couple them:

p_1	C_1 and C_2 make head
$p_2 - p_1$	C_1 makes tail and C_2 makes head
$1 - p_2$	C_1 and C_2 make tail

The advantage is upperbounded by $p_2 - p_1$.

Application of the Coupling Technique

World $\ell+1$

- Pick h_1, \ldots, h_r in \mathcal{H} .
- Define $h'_1 = h_1, ..., h'_r = h_r$.

Application of the Coupling Technique

World $\ell+1$

- Pick h_1, \ldots, h_r in \mathcal{H} .
- Define $h'_1 = h_1, \dots, h'_r = h_r$.

- Pick h_1, \ldots, h_r in \mathcal{H} .
- Define $h'_1 = h_1, \dots, h'_r = h_r$.
- Pick π_1, \ldots, π_r uniformly random.

- Pick h_1, \ldots, h_r in \mathcal{H} .
- Define $h'_1 = h_1, \dots, h'_r = h_r$.
- Pick π_1, \ldots, π_r uniformly random.
- For every $i \leq \ell$, π'_1 acts like π_1 when computing x_i .

- Pick h_1, \ldots, h_r in \mathcal{H} .
- Define $h'_1 = h_1, ..., h'_r = h_r$.
- Pick π_1, \ldots, π_r uniformly random.
- For every $i \leq \ell$, π'_1 acts like π_1 when computing x_i .
- Same process for π'_2, \ldots, π'_r .

- Pick h_1, \ldots, h_r in \mathcal{H} .
- Define $h'_1 = h_1, ..., h'_r = h_r$.
- Pick π_1, \ldots, π_r uniformly random.
- For every $i \leq \ell$, π'_1 acts like π_1 when computing x_i .
- Same process for π'_2, \ldots, π'_r .

$$\Rightarrow \forall i \leq \ell, y'_i = y_i.$$

Application of the Coupling Technique

World $\ell+1$

World $\ell+1$

World ℓ

If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define:

If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define:

$$\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$

If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define:

$$\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$

If $\pi_1(x_{\ell+1}\oplus h_1(t_{\ell+1}))$ or $\pi_1'(u_{\ell+1}\oplus h_1(t_{\ell+1}))$ is already defined

If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define:

$$\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$

If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ or $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ is already defined (due to a collision of the form $x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$ or $u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$

If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define:

$$\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$

If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ or $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ is already defined (due to a collision of the form $x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$ or $u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$), we can't couple and we try to couple on the next round.

Probability of not coupling at round 1

The probability for not coupling on the first round is upperbounded by the sum over $i \le \ell$ of the events

$$x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i) \text{ or } u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$$

Probability of not coupling at round 1

The probability for not coupling on the first round is upperbounded by the sum over $i \leq \ell$ of the events

$$x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i) \text{ or } u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$$

which is equivalent to $h_1(t_{\ell+1}) \oplus h_1(t_i)$ equals $x_{\ell+1} \oplus x_i$ or $u_{\ell+1} \oplus x_i$.

Probability of not coupling at round 1

The probability for not coupling on the first round is upperbounded by the sum over $i \leq \ell$ of the events

$$x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i) \text{ or } u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$$

which is equivalent to $h_1(t_{\ell+1}) \oplus h_1(t_i)$ equals $x_{\ell+1} \oplus x_i$ or $u_{\ell+1} \oplus x_i$.

Since $\max_{x,x',y} \Pr[h \leftarrow_{\$} \mathcal{H} : h(x) \oplus h(x') = y] \leq \varepsilon$, the probability of not coupling at round 1 is upperbounded by $\ell \times 2\varepsilon$.

Probability of not coupling at the next rounds

Using the same reasoning, the probability of coupling at each round is upperbounded by $2\ell\varepsilon$ and since each round functions are independent, the probability of coupling nowhere is upperbounded by $(2\ell\varepsilon)^r$.

Probability of not coupling at the next rounds

Using the same reasoning, the probability of coupling at each round is upperbounded by $2\ell\varepsilon$ and since each round functions are independent, the probability of coupling nowhere is upperbounded by $(2\ell\varepsilon)^r$.

$$\sum_{\ell=0}^{q-1} (2\ell\varepsilon)^r \le \frac{q^{r+1}}{r+1} (2\varepsilon)^r$$

Result

Theorem

Let K, T be sets, $E \in BC(K, n)$ be a blockcipher, and H be a ε -AXU₂ family of functions from T to $\{0,1\}^n$. Then one has:

$$\mathsf{Adv}^{\widetilde{ ext{ncpa}}}_{\mathtt{CLRW}^{r,E},\mathcal{H}}(q, au) \leq r \cdot \mathsf{Adv}^{ ext{ncpa}}_Eig(q, au + rqTig) + rac{q^{r+1}}{r+1}(2arepsilon)^r$$

where T is the time to compute E or E^{-1} .

From NCPA to CCA

To obtain CCA security, we show that composing two NCPA-secure tweakable blockciphers (with the same tweak) yields a CCA-secure tweakable blockcipher.

From NCPA to CCA

To obtain CCA security, we show that composing two NCPA-secure tweakable blockciphers (with the same tweak) yields a CCA-secure tweakable blockcipher.

Applying this result to the $CLRW^{r,E,\mathcal{H}}$ construction yield the following result.

Result

Theorem

Let K, T be sets, $E \in BC(K, n)$ be a blockcipher, and H be a ε -AXU₂ family of functions from T to $\{0,1\}^n$. Then one has:

$$\mathsf{Adv}^{\widetilde{\operatorname{cca}}}_{\mathtt{CLRW}^{r,E,\mathcal{H}}}(q,\tau) \leq r \cdot \mathsf{Adv}^{\operatorname{cca}}_E(q,\tau + rqT) + \frac{4\sqrt{2}}{\sqrt{r+2}} q^{(r+2)/4} (2\varepsilon)^{r/4}$$

where T is the time to compute E or E^{-1} .

Open question: Prove security up to $2^{\frac{r}{r+1}n}$ queries against CCA attacks.

Thank you

Any question ?