Tweakable Blockciphers with Asymptotically Optimal Security Rodolphe Lampe¹ Yannick Seurin² ¹University of Versailles, France Financial support of DGA and ANR PRINCE ²ANSSI, Paris, France 11 March 2013 ### Introduction Tweakable blockcipher: A family of blockcipher indexed with a tweak (a public parameter) : $\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \mathcal{D} \to \mathcal{D}$. Introduced by Liskov-Rivest-Wagner at CRYPTO 2002 #### Introduction Tweakable blockcipher: A family of blockcipher indexed with a tweak (a public parameter) : $\widetilde{E}: \mathcal{K} \times \mathcal{T} \times \mathcal{D} \to \mathcal{D}$. Introduced by Liskov-Rivest-Wagner at CRYPTO 2002 We consider constructions of tweakable blockciphers from an existing blockcipher. # One of the original construction of Liskov-Rivest-Wagner. Figure: One of the original construction of Liskov-Rivest-Wagner. h_1 is randomly chosen in \mathcal{H} a family of $\varepsilon - AXU_2$ functions. Secure up to $2^{n/2}$ queries against CCA attacks (*n* being the size of the blocks). # Definition of $\varepsilon - AXU_2$ #### Definition Let S be an arbitrary set. A family of functions $\mathcal H$ from S to $\{0,1\}^n$ is said to be ε -almost-2-XOR-universal (ε -AXU₂) if for all distinct $x,x'\in S$ and all $y\in\{0,1\}^n$, one has $$\Pr\left[h \leftarrow_{\$} \mathcal{H} : h(x) \oplus h(x') = y\right] \leq \varepsilon$$. # The construction of Landecker-Shrimpton-Terashima (CRYPTO 2012). Figure: The construction of Landecker-Shrimpton-Terashima (CRYPTO 2012). Secure up to $2^{\frac{2n}{3}}$ queries against CCA attacks (*n* being the size of the blocks). ### Definition of r-CLRW What if we increase the number of rounds? ## Definition of r-CLRW What if we increase the number of rounds? Figure: The $CLRW^{r,E,\mathcal{H}}$ tweakable blockcipher construction. #### Theorem Let K, T be sets, $E \in BC(K, n)$ be a blockcipher, and H be a ε -AXU₂ family of functions from T to $\{0,1\}^n$. Then one has: $$\mathsf{Adv}_{\mathtt{CLRW}^{r,E,\mathcal{H}}}^{\widetilde{\mathrm{ncpa}}}(q,\tau) \leq r \cdot \mathsf{Adv}_{E}^{\mathrm{ncpa}}(q,\tau + rqT) + \frac{q^{r+1}}{r+1}(2\varepsilon)^{r}$$ and $$\mathsf{Adv}^{\widetilde{\operatorname{cca}}}_{\mathtt{CLRW}^{r,E,\mathcal{H}}}(q,\tau) \leq r \cdot \mathsf{Adv}^{\operatorname{cca}}_E(q,\tau + rqT) + \frac{4\sqrt{2}}{\sqrt{r+2}} q^{(r+2)/4} (2\varepsilon)^{r/4}$$ where T is the time to compute E or E^{-1} . Secure up to $2^{\frac{r}{r+1}n}$ queries for NCPA attacks. Secure up to $2^{\frac{r}{r+2}n}$ queries for CCA attacks. Real World Real World Ideal World World q World 0 World $\ell+1$ World $\ell+1$ ## The last $q - \ell - 1$ outputs have the same distributions World $\ell+1$ # Coupling A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that for all $x \in \Omega$, $\sum_{y \in \Omega} \lambda(x,y) = \mu(x)$ and for all $y \in \Omega$, $\sum_{x \in \Omega} \lambda(x,y) = \nu(y)$. In other words, λ is a joint distribution whose marginal distributions are resp. μ and ν . # Coupling A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that for all $x \in \Omega$, $\sum_{y \in \Omega} \lambda(x,y) = \mu(x)$ and for all $y \in \Omega$, $\sum_{x \in \Omega} \lambda(x,y) = \nu(y)$. In other words, λ is a joint distribution whose marginal distributions are resp. μ and ν . ### Lemma (Coupling Lemma) Let μ and ν be probability distributions on a finite event space Ω , let λ be a coupling of μ and ν , and let $(X,Y) \sim \lambda$ (i.e. (X,Y) is a random variable sampled according to distribution λ). Then $\|\mu - \nu\| \leq \Pr[X \neq Y]$. Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 . Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 . What's the advantage to distinguish the two coins ? Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 . What's the advantage to distinguish the two coins ? We can couple them: | p_1 | C_1 and C_2 make head | |-------------|---------------------------------------| | $p_2 - p_1$ | C_1 makes tail and C_2 makes head | | $1 - p_2$ | C_1 and C_2 make tail | Let $0 \le p_1 \le p_2 \le 1$ and C_1 , C_2 be two coins such that C_1 makes a head with probability p_1 and C_2 makes a head with probability p_2 . What's the advantage to distinguish the two coins ? We can couple them: | p_1 | C_1 and C_2 make head | |-------------|---------------------------------------| | $p_2 - p_1$ | C_1 makes tail and C_2 makes head | | $1 - p_2$ | C_1 and C_2 make tail | The advantage is upperbounded by $p_2 - p_1$. # Application of the Coupling Technique World $\ell+1$ - Pick h_1, \ldots, h_r in \mathcal{H} . - Define $h'_1 = h_1, ..., h'_r = h_r$. # Application of the Coupling Technique World $\ell+1$ - Pick h_1, \ldots, h_r in \mathcal{H} . - Define $h'_1 = h_1, \dots, h'_r = h_r$. - Pick h_1, \ldots, h_r in \mathcal{H} . - Define $h'_1 = h_1, \dots, h'_r = h_r$. - Pick π_1, \ldots, π_r uniformly random. - Pick h_1, \ldots, h_r in \mathcal{H} . - Define $h'_1 = h_1, \dots, h'_r = h_r$. - Pick π_1, \ldots, π_r uniformly random. - For every $i \leq \ell$, π'_1 acts like π_1 when computing x_i . - Pick h_1, \ldots, h_r in \mathcal{H} . - Define $h'_1 = h_1, ..., h'_r = h_r$. - Pick π_1, \ldots, π_r uniformly random. - For every $i \leq \ell$, π'_1 acts like π_1 when computing x_i . - Same process for π'_2, \ldots, π'_r . - Pick h_1, \ldots, h_r in \mathcal{H} . - Define $h'_1 = h_1, ..., h'_r = h_r$. - Pick π_1, \ldots, π_r uniformly random. - For every $i \leq \ell$, π'_1 acts like π_1 when computing x_i . - Same process for π'_2, \ldots, π'_r . $$\Rightarrow \forall i \leq \ell, y'_i = y_i.$$ # Application of the Coupling Technique World $\ell+1$ World $\ell+1$ World ℓ If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define: If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define: $$\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$ If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define: $$\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$ If $\pi_1(x_{\ell+1}\oplus h_1(t_{\ell+1}))$ or $\pi_1'(u_{\ell+1}\oplus h_1(t_{\ell+1}))$ is already defined If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define: $$\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$ If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ or $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ is already defined (due to a collision of the form $x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$ or $u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$ If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ and $\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ are not already defined, we can couple them by choosing the same randomness for both, we define: $$\pi'_1(u_{\ell+1} \oplus h_1(t_{\ell+1})) := \pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1})).$$ If $\pi_1(x_{\ell+1} \oplus h_1(t_{\ell+1}))$ or $\pi_1'(u_{\ell+1} \oplus h_1(t_{\ell+1}))$ is already defined (due to a collision of the form $x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$ or $u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$), we can't couple and we try to couple on the next round. ## Probability of not coupling at round 1 The probability for not coupling on the first round is upperbounded by the sum over $i \le \ell$ of the events $$x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i) \text{ or } u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$$ ## Probability of not coupling at round 1 The probability for not coupling on the first round is upperbounded by the sum over $i \leq \ell$ of the events $$x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i) \text{ or } u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$$ which is equivalent to $h_1(t_{\ell+1}) \oplus h_1(t_i)$ equals $x_{\ell+1} \oplus x_i$ or $u_{\ell+1} \oplus x_i$. ## Probability of not coupling at round 1 The probability for not coupling on the first round is upperbounded by the sum over $i \leq \ell$ of the events $$x_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i) \text{ or } u_{\ell+1} \oplus h_1(t_{\ell+1}) = x_i \oplus h_1(t_i)$$ which is equivalent to $h_1(t_{\ell+1}) \oplus h_1(t_i)$ equals $x_{\ell+1} \oplus x_i$ or $u_{\ell+1} \oplus x_i$. Since $\max_{x,x',y} \Pr[h \leftarrow_{\$} \mathcal{H} : h(x) \oplus h(x') = y] \leq \varepsilon$, the probability of not coupling at round 1 is upperbounded by $\ell \times 2\varepsilon$. ## Probability of not coupling at the next rounds Using the same reasoning, the probability of coupling at each round is upperbounded by $2\ell\varepsilon$ and since each round functions are independent, the probability of coupling nowhere is upperbounded by $(2\ell\varepsilon)^r$. ## Probability of not coupling at the next rounds Using the same reasoning, the probability of coupling at each round is upperbounded by $2\ell\varepsilon$ and since each round functions are independent, the probability of coupling nowhere is upperbounded by $(2\ell\varepsilon)^r$. $$\sum_{\ell=0}^{q-1} (2\ell\varepsilon)^r \le \frac{q^{r+1}}{r+1} (2\varepsilon)^r$$ #### Result #### Theorem Let K, T be sets, $E \in BC(K, n)$ be a blockcipher, and H be a ε -AXU₂ family of functions from T to $\{0,1\}^n$. Then one has: $$\mathsf{Adv}^{\widetilde{ ext{ncpa}}}_{\mathtt{CLRW}^{r,E},\mathcal{H}}(q, au) \leq r \cdot \mathsf{Adv}^{ ext{ncpa}}_Eig(q, au + rqTig) + rac{q^{r+1}}{r+1}(2arepsilon)^r$$ where T is the time to compute E or E^{-1} . #### From NCPA to CCA To obtain CCA security, we show that composing two NCPA-secure tweakable blockciphers (with the same tweak) yields a CCA-secure tweakable blockcipher. #### From NCPA to CCA To obtain CCA security, we show that composing two NCPA-secure tweakable blockciphers (with the same tweak) yields a CCA-secure tweakable blockcipher. Applying this result to the $CLRW^{r,E,\mathcal{H}}$ construction yield the following result. ### Result #### Theorem Let K, T be sets, $E \in BC(K, n)$ be a blockcipher, and H be a ε -AXU₂ family of functions from T to $\{0,1\}^n$. Then one has: $$\mathsf{Adv}^{\widetilde{\operatorname{cca}}}_{\mathtt{CLRW}^{r,E,\mathcal{H}}}(q,\tau) \leq r \cdot \mathsf{Adv}^{\operatorname{cca}}_E(q,\tau + rqT) + \frac{4\sqrt{2}}{\sqrt{r+2}} q^{(r+2)/4} (2\varepsilon)^{r/4}$$ where T is the time to compute E or E^{-1} . Open question: Prove security up to $2^{\frac{r}{r+1}n}$ queries against CCA attacks. Thank you Any question ?