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I Randomness is essential, not only in cryptography

I Perfect random bits not always available

⇒ characterize randomness necessary/sufficient for concrete tasks



Imperfect Sources

I Random source: a set of distributions over some set X



Imperfect Sources

I Random source: a set of distributions over some set X

I d -weak sources: distributions with min-entropy ≥ d

⇒ no value appears with prob. greater than 1/2d



Imperfect Sources

I Random source: a set of distributions over some set X

I d -weak sources: distributions with min-entropy ≥ d

⇒ no value appears with prob. greater than 1/2d

I Cryptographic sources:

⇒ sufficient for specific cryptographic application



Imperfect Sources

I Random source: a set of distributions over some set X

I d -weak sources: distributions with min-entropy ≥ d

⇒ no value appears with prob. greater than 1/2d

I Cryptographic sources:

⇒ sufficient for specific cryptographic application

I extremely weak sources are sufficient for BPP [ACRT’99]



Imperfect Sources

I Random source: a set of distributions over some set X

I d -weak sources: distributions with min-entropy ≥ d

⇒ no value appears with prob. greater than 1/2d

I Cryptographic sources:

⇒ sufficient for specific cryptographic application

I extremely weak sources are sufficient for BPP [ACRT’99]

I (n/2 + τ )-weak sources over {0, 1}n are sufficient for

authentication [MW’97]
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Separating sources

I (n/2 − ε)-weak sources over {0, 1}n are not sufficient for
authentication [DS’02]

I (n − 1)-weak sources over {0, 1}n are not sufficient for
encryption [MP’90] or extraction

I there exist sources allowing perfect encryption but not
extraction [DS’02]

⇒ Entropy not enough for 1-bit encryption, but perfect

randomness not necessary as well!

This work: compare sources for secret sharing and encryption of 1 bit

Extraction Encryption 2-2 Secret Sharing

[DS’02]

/ /



Outline

I More formal statement of the results

I Encryption → 2-2 Secret Sharing

I 2-2 Secret Sharing 6→ Encryption

I 2-2 Secret Sharing→ (1/2)-Encryption

I Computational aspects of separation

I Open problems

I Conclusions
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⇒ 0-encryption ≡ perfect encryption

⇒ 1-encryption ≡ identity (no encryption)
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2-2 Secret Sharing with source S

Share: K×M→ X 2, Rec : X 2 →M,M = {0, 1}, such that

∀ k ∈ K, m ∈ M : Rec(Sharek(m)) = m

perfect secrecy: ∀ Ω ∈ S , K ∈Ω K, (S1, S2)← ShareK (M )

H(M |Si) = H(M)



Encryption→ 2-2 Secret Sharing

Given

Enc : K ×M→ C Dec : K × C →M

define

Sharek (m) → (k, Enck (m))

Rec(s1, s2) → Decs1
(s2 )
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2-2 Secret Sharing 6→ Encryption

Theorem

1. There exist sources which allow for perfect 2-2 secret sharing,
but do not allow for δ-encryption for any δ < 1/3.

2. Any source which allows for perfect 2-2 secret sharing
allows for (1/2)-encryption.
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I nodes ≡ ciphertexts, edges ≡ keys

I for a key k ∈ K: Enck(0) = u, Enck(1) = v

u

v

k
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I nodes ≡ ciphertexts, edges ≡ keys

I perfect encryption under distribution Ω:

∀v : weighted in-flow(v ) = weighted out-flow(v )

p1 + p2 = p3 + p4
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Graph Representation: 1-bit encryption [DS’02]

I nodes ≡ ciphertexts, edges ≡ keys

I perfect encryption under distribution Ω:

∀v : weighted in-flow(v ) = weighted out-flow(v )

⇒ Ω forms a circulation
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Graph Representation: 2-2 secret sharing

I nodes ≡ shares, edge-pairs ≡ randomness

a1

a2

a3
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I perfect secret sharing under distribution Ω:

∀v : weighted in-flow(v ) = weighted out-flow(v )

in a1: p1 = p2

p1

p2



Graph Representation: 2-2 secret sharing

I nodes ≡ shares, edge-pairs ≡ randomness

a1

a2

a3

a4

b1

b2

b3

b4

I perfect secret sharing under distribution Ω:

∀v : weighted in-flow(v ) = weighted out-flow(v )

⇒ Ω forms a circulation
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2-2 Secret Sharing 6→ Encryption (proof)

a source S = {Ω1, . . . , Ω4} good for sharing:

⇒ 6 keys, K = {k1, . . ., k6}:

k1 k2 k3 k4 k5 k6

⇒ 4 distributions (Ωi uniform on Si):

S1={k1, k2} S2 ={k3, k4} S3={k1, k3, k5} S4 ={k1, k4, k6}
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2-2 Secret Sharing 6→ Encryption (cont.)

S is good for sharing ... but bad for encryption!

I G = (V , E ) — hypothetical encryption graph
E labeled with elements of K = {k1, . . . , k6}

I perfect encryption:
∀i = 1..4, Ωi forms a cycle in G

I will show:
for at least one Si edges E (Si ) do not form a cycle



2-2 Secret Sharing 6→ Encryption (cont.)

S1:{k1, k2}, S2:{k3, k4}, S3:{k1, k3, k5}, S4:{k1, k4, k6}

I assume for each Si edges E (Si ) forms a cycle



2-2 Secret Sharing 6→ Encryption (cont.)

S1:{k1, k2}, S2:{k3, k4}, S3:{k1, k3, k5}, S4:{k1, k4, k6}

I assume for each Si edges E (Si ) forms a cycle

c1

c2 c3

c4



2-2 Secret Sharing 6→ Encryption (cont.)

S1:{k1, k2}, S2:{k3, k4}, S3:{k1, k3, k5}, S4:{k1, k4, k6}

I assume for each Si edges E (Si ) forms a cycle

c1

c2 c3

c4

⇒

c3c2

c1 = c4



2-2 Secret Sharing 6→ Encryption (cont.)

S1:{k1, k2}, S2:{k3, k4}, S3:{k1, k3, k5}, S4:{k1, k4, k6}

I assume for each Si edges E (Si ) forms a cycle

c1

c2 c3

c4

⇒

c3c2

c1 = c4

⊕

c1 c4

c2 = c3

(c1 = c4 ⊕ c2 = c3)



2-2 Secret Sharing 6→ Encryption (cont.)

S1:{k1, k2}, S2:{k3, k4}, S3:{k1, k3, k5}, S4:{k1, k4, k6}

I assume for each Si edges E (Si ) forms a cycle

c1

c2

c3

c4

⇒

c4c2

c1 = c3

⊕

c1 c3

c2 = c4

(c1 = c4 ⊕ c2 = c3)



2-2 Secret Sharing 6→ Encryption (cont.)

S1:{k1, k2}, S2:{k3, k4}, S3:{k1, k3, k5}, S4:{k1, k4, k6}

I assume for each Si edges E (Si ) forms a cycle

c1

c2

c3

c4

⇒

c4c2

c1 = c3

⊕

c1 c3

c2 = c4

(c1 = c4 ⊕ c2 = c3) and (c1 = c3 ⊕ c2 = c4)



2-2 Secret Sharing 6→ Encryption (cont.)

S1:{k1, k2}, S2:{k3, k4}, S3:{k1, k3, k5}, S4:{k1, k4, k6}

I assume for each Si edges E (Si ) forms a cycle

c1

c2

c3

c4

⇒

c4c2

c1 = c3

⊕

c1 c3

c2 = c4

(c1 = c4 ⊕ c2 = c3) and (c1 = c3 ⊕ c2 = c4)

⇒ Contradiction!
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2-2 Secret Sharing 6→ Encryption (cont.)

I take Ωi such that E (Si ) don’t form a cycle

I since |Si | ≤ 3 we get
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I there is no δ-encryption for S with δ < 1/3. 2

⇒ Theorem holds also for high min-entropy sources.



2-2 Secret Sharing→ (1/2)-Encryption

Given
Share : K ×M→ X 2, Rec : X 2 →M

let
(am,k , bm,k )← Sharek(m) .



2-2 Secret Sharing→ (1/2)-Encryption

Given
Share : K ×M→ X 2, Rec : X 2 →M

let
(am,k , bm,k )← Sharek(m) .

Define

Enck (m) =

{

am,k if a0,k 6= a1,k

bm,k otherwise

a1

a2

a3

a4

b1

b2

b3

b4
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Computational aspects of separation

Some efficiency requirements:

(i) the secret sharing is efficient

(ii) for every δ-encryption scheme the source contains an
efficiently samplable distribution breaking the encryption

(iii) there exists an efficient algorithm breaking the encryption

under distribution from (ii)

(iv) distribution from (ii) can be found efficiently

⇒ Can extend our separation to satisfy (i)-(iv) simultaneously!
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Open problems

I Separations for larger domains

⇒ open even forM = {0, 1, 2}!

I Sources for other cryptographic primitives

⇒ position authentication wrt. encryption or sharing
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I Separation between 2-2 secret sharing and encryption . . .

I . . . but not as strong as between encryption and extraction.

I Many interesting open problems.


	Introduction
	Main result
	Conclusions

