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Abstract. A metering scheme allows a correct counting on the number
of hits that a Web site received during a certain period. In this paper,
we first derive tight lower bounds on the communication complexity |Vi|
(i = 1, . . . , n) and the size of server’s secrets |Es| for robust and perfect
(k, n)-metering schemes. We next show an almost equivalence between
(k, n)-metering schemes and k-multiple-use A2-codes. Finally, by using
this equivalence, we derive lower bounds on |Vi| and |Es| for robust (but
not necessarily perfect) (k, n)-metering schemes.

1 Introduction

A (k, n)-metering scheme allows a correct counting on the number of hits that a
Web site received during a certain period. That is, a Web server S can compute a
proof if and only if k or more clients visited S during a certain period. Naor and
Pinkas proposed the first cryptographically secure (k, n)-metering scheme [1].
Ogata and Kurosawa showed that their scheme is not as secure as they claimed
and presented a more secure scheme [2].

More specifically, there exist four kinds of participants, a Web server S, n
clients C1, . . . , Cn, an audit agency A and an outside enemy E in this model.
(We consider that n clients are monitors and the outside enemy is not.) We then
require the following three kinds of security.

Security against servers A malicious Web server S tries to forge a proof from
only k− 1 or less shares (authenticators) of clients and to cheat A. Hence S
should not be able to inflate her hit counts. (There appears to be no way to
detect whether S is deflating her hit counts.)

Security against clients Malicious clients try to forge an illegal share which
would be accepted by S, but would not allow S to compute the correct proof .
Hence S must be able to detect illegal shares forged by clients.

Security against outside enemy An outside enemy E tries to forge a (legal
or illegal) share which would be accepted by S. If it is legal, it causes a
counting error because he is not a monitor. If it is illegal, it does not allow S
to compute the correct proof . Hence S must be able to detect a share forged
by E .



Bounds for Robust Metering Schemes and Their Relationship with A2-code 65

We say that a (k, n)-metering scheme is

– robust if it satisfies all the three security requirements.
– non-robust if it satisfies only the security against servers.

We further say that a (k, n)-metering scheme is perfect if S gains no information
on proof from any k−1 or less shares. (It is interesting that the metering schemes
proposed so far are all perfect.)

For non-robust and perfect metering schemes, a lower bound on the commu-
nication complexity |Vi| (i = 1, . . . , n) was shown by De Bonis, B. Masucci [4]
and by Masucci and Stinson [3], where Vi is a set of possible values vi which is
sent by client Ci to S when Ci has access to S. (They considered a more general
model than ours such that there are multiple Web servers and there exists a
ramp structure among clients.)

However, non-robust metering schemes are not practical. We cannot assume
that clients are all honest. We cannot assume that there is no outside enemy,
either.

In this paper, we derive lower bounds on the communication complexity |Vi|
(i = 1, . . . , n) and the size of server’s secrets |Es| for robust (k, n)-metering
schemes.

We first derive lower bounds on |Vi| and |Es| for ”perfect and robust” (k, n)-
metering schemes by using counting arguments. We also present a slightly mod-
ified version of the Ogata-Kurosawa scheme [2] and prove that it satisfies all the
equalities of our bounds. This means that our bounds are all tight.

We next show an almost equivalence between robust (k, n)-metering schemes
and k-multiple-use A2-codes such that we can always construct a k-multiple-
use A2-code from a (k, n)-metering scheme, and in some cases, we can do the
reverse. By using this equivalence, we derive lower bounds on |Vi| and |Es| for
robust (but not necessarily perfect) (k, n)-metering schemes. This equivalence is
of independent interest because no relationship has been known between them
so far.

Lower bound on |Vi| Lower bound on |Es|
Non-robust and perfect [4, 3] Meaningless∗

Robust and perfect This paper This paper
Robust This paper This paper
(For ∗, see the last paragraph of Sec.2.5.)

2 Preliminaries

2.1 Model of Metering Schemes

A (k, n)-metering scheme consists of three phases.

Initialization Phase: An audit agency A first generates a proof , a secret key
es of the Web server S and a share vi of client Ci for i = 1, . . . , n. A then
gives es to S and vi to Ci for i = 1, . . . , n secretly.
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Communication Phase: If Ci wants to see the Web page of S, he sends vi to
S. S accepts (i, vi) iff es(i, vi) = 1.

Proof Computing Phase: If k or more clients visited S during a certain pe-
riod, then S can compute the proof from the k shares she received.

Let Proof , Es and Vi be sets of possible values of the proof, server’s key and

Ci’s share. It is desirable that |Es| and |Vi| are small. Let P̂roof , Ês and V̂i be
the random variables distributed on Proof , Es and Vi.

(k, n)-metering schemes must satisfy the security against malicious servers,
the security against malicious clients and the security against outside enemies.
These security are defined in the following subsections.

2.2 Security against Malicious Servers

A (k, n)-metering scheme must be secure at least against malicious servers. A
malicious server tries to forge a proof from only k − 1 shares of clients. Hence
S should not be able to inflate her hit counts. (There appears to be no way to
detect whether S is deflating her hit counts.)

Formally, a malicious S corrupts some k − 1 clients Ci1 , . . . , Cik−1
adaptively

and then obtains their k−1 shares. S next forges a proof ′, hoping that proof ′ =
proof . The cheating probability of this attack is defined by

PS
4
= max

i1,...,ik−1

max
proof ′

Pr(P̂roof = proof ′).

It is required that PS is negligible in any metering scheme.

2.3 Perfect Metering Scheme

We say that a metering scheme is perfect if S gains no information on proof
from any k − 1 shares. Note that this is a stronger notion of security against
server’s attack than saying only that PS is negligible.

Definition 1. We say that a (k, n)-metering scheme is perfect if

Pr(P̂roof = proof | Ês = es, V̂i1 = vi1 , . . . , V̂ik−1
= vik−1

) = Pr(P̂roof = proof )
(1)

for any es, vi1 , . . . , vik−1
and proof .

It is interesting that the metering schemes proposed so far are all perfect.

2.4 Robust Metering Scheme

We say that a metering scheme is robust if it is secure against malicious clients
and outside enemies as well as malicious servers.

Malicious clients try to forge an illegal share which would be accepted by S,
but would not allow S to compute the correct proof . An outside enemy tries to
forge a (legal or illegal) share which would be accepted by S. If it is legal, it
causes a counting error because he is not a monitor. If it is illegal, it does not
allow S to compute the correct proof .
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Clients’ attack: Some (even all) clients collude and make a forged share v′i 6= vi

for some client Ci. This attack will prevent S from computing the proof even
if k or more clients visited S. (For example, one illegal share and k−1 honest
shares yield an illegal proof that is rejected by A.) The cheating probability
is defined by

PC
4
= max

v1,...,vn

max
i

max
v′ 6=vi

Pr(S accepts (i, v′) | v1, . . . , vn are given).

Outside enemy’s attack: An outside enemy is interested in his attack before
S computes a proof. Therefore, it must send the forged share to S before
S receives k shares. In other words, the outside enemy can observe at most
k− 1 shares sent by clients before computing a forged share. To summarize,
the outside enemy makes a forged share v′i for some client Ci by observing
l < k shares of the other clients. The cheating probability of this attack is
defined by

PE
4
= max

0≤l<k
max

i1,...,il

max
vi1

,...,vil

max
i6∈{i1,...,il},v′

Pr(S accepts (i, v′) | E observes vi1 , . . . , vil
).

A metering scheme is called robust if PC and PE are negligible.

2.5 Bounds for Non-robust Metering Scheme

A lower bound on the size of |Vi| for non-robust and perfect metering schemes
was shown by De Bonis, B. Masucci [4] and by Masucci and Stinson [3]. They
considered a more general model than ours such that there are multiple servers.

Proposition 1. [3, Corollary 3.9] In a non-robust and perfect (k, n)-metering
scheme for multi servers,

log2 |Vi| ≥ H(V̂i) ≥ sH(P̂roof )

where s is the number of corrupted servers.

They also generalized their bound to ramp structures among clients.
In non-robust metering schemes, S does not need to have any es ∈ Es to

check the shares of clients because there exist no malicious clients and outside
enemies. Therefore, a lower bound on |Es| is meaningless in this case.

3 Bounds for ”Perfect and Robust” Metering Scheme

Non-robust metering schemes are not practical. We cannot assume that clients
are all honest. We cannot assume that there is no outside enemy, either.

In this section, we derive a lower bound on |Vi| and a lower bound on |Es| for
perfect and robust (k, n)-metering schemes. We also present a slightly modified
version of the Ogata-Kurosawa scheme [2] and prove that it satisfies all the
equalities of our bounds. This means that our bounds are all tight.
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3.1 Lower bound on |Vi|

Fix i1, . . . , ik arbitrarily. For each 1 ≤ l ≤ k, define

Vil
(es, vi1 , . . . , vil−1

)
4
= {vil

| Pr(Ês = es, V̂i1 = vi1 , . . . , V̂il−1
= vil−1

, V̂il
= vil

) > 0},

Vil
(vi1 , . . . , vil−1

)
4
= {vil

| Pr(V̂i1 = vi1 , . . . , V̂il−1
= vil−1

, V̂il
= vil

) > 0},

Es(vi1 , . . . , vil
)
4
= {es | Pr(Ês = es, V̂i1 = vi1 , . . . , V̂il

= vil
) > 0}.

Note that Vik
⊇ Vik

(es) ⊇ · · · ⊇ Vik
(es, vi1 , . . . , vik−1

).

Lemma 1. For any possible es, vi1 , . . . , vik−1
,

|Vik
(es, vi1 , . . . , vik−1

)| ≥ |Proof |.

Proof. Fix any possible es, vi1 , . . . , vik−1
arbitrarily. Then any proof ∈ Proof

can happen with positive probability in a perfect (k, n)-metering scheme. On
the other hand, each vik

∈ Vik
(es, vi1 , . . . , vik−1

) must determine proof ∈ Proof
uniquely. This means that there exists an onto mapping from Vik

(es, vi1 , . . . , vik−1
)

to Proof . Therefore,

|Vik
(es, vi1 , . . . , vik−1

)| ≥ |Proof |.

ut

Corollary 1. |Vi(es)| ≥ |Proof | for any i.

Theorem 1. In a perfect and robust (k, n)-metering scheme,

|Vi| ≥ |Proof |(PE)
−1

for any i.

Proof. We will derive a lower bound on PE . Define

φ(es, vi)
4
=

{
1 if vi ∈ Vi(es)
0 otherwise.

Note that S accepts (i, vi) iff vi ∈ Vi(es). Therefore,
∑

vi∈Vi

Pr(S accepts (i, vi)) =
∑

vi∈Vi

∑

es∈Es

Pr(es)φ(es, vi)

=
∑

es∈Es

Pr(es)
∑

vi∈Vi

φ(es, vi)

=
∑

es∈Es

Pr(es)|Vi(es)|

≥ |Proof |
∑

es∈Es

Pr(es) (from Corollary 1)

= |Proof |.

Therefore,
PE ≥ max

vi∈Vi

Pr(S accepts (i, vi)) ≥ |Proof |/|Vi|.

ut
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3.2 Lower bound on |Es|

Define

ALL
4
= {(v1, . . . , vk) | Pr(V̂1 = v1, . . . , V̂k = vk) > 0},

ALL(es)
4
= {(v1, . . . , vk) | Pr(Ês = es, V̂1 = v1, . . . , V̂k = vk) > 0}.

Lemma 2. If the equality of corollary 1 holds for all i, then

|ALL(es)| = |Proof |
k.

Proof. From the equality of Corollary 1 and Lemma 1,

|Proof | = |V2(es)| ≥ |V2(es, v1)| ≥ |Proof |.

Therefore, |V2(es, v1)| = |Proof | for any v1 ∈ V1(es). Hence,

|{(v1, v2) | Pr(Ês = es, V̂1 = v1, V̂2 = v2) > 0}| = |V1(es)|×|V2(es, v1)| = |Proof |
2.

By repeating this process, we have |ALL(es)| = |Proof |
k. ut

Lemma 3. |Vil+1
(vi1 , . . . , vil

)| ≥ |Proof |(PE)
−1 for 1 ≤ l ≤ k − 1.

Proof. Similar to the proof of Theorem 1. Suppose that an outside enemy E ob-
serves l shares sent by clients, say Ci1 , . . . , Cil

. Let their shares be ~v = (vi1 , . . . , vil
).

Define

φ(es, vil+1
)
4
=

{
1 if vil+1

∈ Vil+1
(es)

0 otherwise.

Note that S accepts (il+1, vil+1
) iff vil+1

∈ Vil+1
(es). Therefore,

∑

vil+1
∈Vil+1

(~v)

Pr(S accepts (il+1, vil+1
) | E observes ~v)

=
∑

vil+1
∈Vil+1

(~v)

∑

es∈Es(~v)

Pr(es | ~v)φ(es, vil+1
)

=
∑

es∈Es(~v)

Pr(es | ~v)
∑

vil+1
∈Vil+1

(~v)

φ(es, vil+1
)

=
∑

es∈Es(~v)

Pr(es | ~v)|Vil+1
(~v) ∩ Vil+1

(es)|

=
∑

es∈Es(~v)

Pr(es | ~v)|Vil+1
(es, ~v)|

≥ |Proof |
∑

es∈Es(~v)

Pr(es | ~v) (from Lemma 1)

= |Proof |.

Therefore,
PE ≥ |Proof |/|Vil+1

(~v)|.

ut
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Lemma 4. |Es(v1, . . . , vk)| ≥ P−1
C .

Proof. Consider the following attack of k clients C1, . . . , Ck. Let their shares be
~v = (v1, . . . , vk). First, they choose e′s ∈ Es(~v) such that

Pr(e′s | ~v) = max
es∈Es(~v)

Pr(es | ~v).

Next they choose v′1 randomly from V1(e
′
s, v2, . . . , vk) \ {v1}. Finally C1 sends v

′
1

to S. Clearly, this attack succeeds if S has e′s. Therefore,

PC ≥ Pr(S has e′s | ~v) = max
es∈Es(~v)

Pr(es | ~v) ≥ 1/|Es(~v)|.

ut

Lemma 5. |ALL| ≥ |Proof |k(P k
E)
−1.

Proof. First from Theorem 1,

|V1| ≥ |Proof |(PE)
−1.

Next from Lemma 3,
|V2(v1)| ≥ |Proof |(PE)

−1

for each v1 ∈ V1. Therefore,

|{(v1, v2) | Pr(V̂1 = v1, V̂2 = v2) > 0}| ≥ |Proof |2(P 2
E)
−1.

By repeating this process, we obtain that |ALL| ≥ |Proof |k(P k
E)
−1. ut

Theorem 2. Suppose that the equality of Corollary 1 holds for all i and es.
Then in a perfect and robust (k, n)-metering scheme,

|Es| ≥ (PCP
k
E)
−1.

Proof. First from Lemma 2,
∑

es∈Es

|ALL(es)| = |Es||Proof |
k.

Next
∑

(v1,...,vk)

|Es(v1, . . . , vk)| ≥ |ALL|P
−1
C (Lemma 4)

≥ |Proof |k(P k
E)
−1(PC)

−1 (Lemma 5).

On the other hand, it is easy to see that
∑

es∈Es

|ALL(es)| =
∑

(v1,...,vk)

|Es(v1, . . . , vk)|.

Therefore,

|Es| ≥
|Proof |k(P k

E)
−1(PC)

−1

|Proof |k
= (P k

EPC)
−1.

ut
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3.3 Modified Ogata-Kurosawa scheme

We next present a slightly modified version of the Ogata-Kurosawa scheme [2]
and prove that it satisfies all the equalities of our bounds. This means that our
bounds are all tight.

The modified Ogata-Kurosawa scheme is described as follows. Let p > n be
a large prime number.

Initialization Phase: 1. An audit agencyA chooses a random number r ∈ Zp

and two random polynomials f0(y) and f1(y) with degree at most k− 1
over GF (p).

2. Let proof = f1(0).
3. A gives es = (r, g(y)) to the Web server S, where

g(y) = f0(y) + rf1(y).

4. A gives vi = (f0(i), f1(i)) to client Ci for 1 ≤ i ≤ n.
Communication Phase: If Ci wants to see the Web page of S, he sends vi =

(a, b) to S. S accepts (i, (a, b)) iff

g(i) = a+ rb. (2)

Proof Computing Phase: If k or more clients visited S, then S can compute
proof = f1(0) by using Lagrange formula.

In the above scheme, it is clear that

|Proof | = p, |Es| = pk+1, |Vi| = p2

for each i. We then prove the following theorem.

Theorem 3. The modified Ogata-Kurosawa scheme is perfect and

PC = PE = 1/p. (3)

Proof. Note that the secret key of A is K = (r, f0(y), f1(y)).

1. For simplicity, let i1 = 1, . . . , ik−1 = k − 1. Fix

es = (r, g(y)), v1 = (a1, b1), . . . , vk−1 = (ak−1, bk−1)

arbitrarily. We will show that there exists a unique (f0(y), f1(y)) for each
value of proof . Fix proof arbitrarily. First there exists a unique f1(y) such
that

f1(0) = proof , f1(1) = b1, . . . , f1(k − 1) = bk−1

because deg(f1) is at most k − 1. Next f0(y) is uniquely determined as

f0(y) = g(y)− rf1(y)

because es = (r, g(y)) is fixed. Therefore, each value of proof is equally likely
to happen for any fixed es, v1, . . . , vk−1. This means that

Pr(P̂roof = proof | es, v1, . . . , vk−1) = 1/p = Pr(P̂roof = proof ).

Hence the scheme is perfect.
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2. Fix
v1 = (a1, b1), . . . , vn = (an, bn) (4)

and i ∈ {1, . . . , n} arbitrarily. Let B0 be the set of K = (r, f0(y), f1(y)) such
that eq.(4) holds. For v′ = (a′, b′) such that (a′, b′) 6= (ai, bi), let B1 be a
subset of B0 such that S accepts (i, v′). Then

PC = maxPr(S accepts (i, v′) | v1, . . . , vn) = max |B1|/|B0|.

We will compute |B0| and |B1|. First since f0(y) and f1(y) are uniquely
determined from eq.(4), we have

|B0| = |{r}| = p.

Next since S accepts (i, v′), g(i) = a′ + rb′. On the other hand, from eq.(2),
g(i) = ai + rbi. Therefore,

ai + rbi = a′ + rb′,

r(bi − b′) = a′ − ai.

The above equation has at most one solution on r because (a′, b′) 6= (ai, bi).
Therefore, max |B1| = 1. Hence

PC = max |B1|/|B0| = 1/p.

3. For simplicity, let l = k − 1 and i1 = 1, . . . , ik−1 = k − 1. Fix

v1 = (a1, b1), . . . , vk−1 = (ak−1, bk−1) (5)

and i(≥ k) arbitrarily. Let B0 be the set of K = (r, f0(y), f1(y)) such that
eq.(5) holds. For v′ = (a′, b′) let B1 be a subset of B0 such that S accepts
(i, v′). Then

PE = maxPr(S accepts (i, v′) | v1, . . . , vk−1) = max |B1|/|B0|.

We will compute |B0| and |B1|. First since f0(y) and f1(y) are uniquely
determined from the values of f0(0) and f1(0), we have

|B0| = |{r, f0(0), f1(0)}| = p3.

Next g(i) = a′ + rb′ if S accepts (i, v′). On the other hand, g(i) = f0(i) +
rf1(i). Therefore,

f0(i) + rf1(i) = a′ + rb′.

In the above equation, f0(i) is uniquely determined from each values of
(r, f1(i)). (Note that f0(y) and f1(y) are uniquely determined from each
values of f0(i) and f1(i).) Therefore,

|B1| = |{r, f1(i)}| = p2.

Hence
PE = max |B1|/|B0| = 1/p.
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ut

It is now easy to see that all the equalities of our bounds are satisfied by the
above scheme.

(Remark) In the original Ogata-Kurosawa scheme, proof = f0(0) and r is ran-
domly chosen from Zp \ {0}. Therefore, PC = 1/(p− 1) and |Es| = (p− 1)pk.

4 Lower Bounds for Multiple-use A2-code

For multiple-use A2-codes, Wang. et.al. derived a lower bound on the cheating
probabilities and a lower bound on the size of keys [8]. (See Appendix A.) How-
ever, their bound on the size of keys holds under the condition that the cheating
probabilities satisfy their lower bound (see Proposition 3). We can not derive a
lower bound on the size of authenticators from their result, either.

In this section, we first define the cheating probabilities in a different way
from [8]. We then derive a lower bound on the size of keys which holds for any
values of the cheating probabilities. We derive a lower bound on the size of
authenticators, also.

The result of this section will be used in the following sections.

4.1 Multiple-use A2-code

In the model for unconditionally secure authentication codes (A-codes), the
transmitter T and the receiver R use the same encoding rule to protect their
communication from deception of an outside enemy O.

An authentication code with arbitration (A2-code) enables to authenticate a
message sent by T to R even if T and R do not trust each other [6, 7]. A2-code
includes the fourth person called an arbiter A′, who solves disputes between T
and R.

In this paper, we consider A2-codes which are used to send multiple messages.
If T can use an A2-code to send k − 1 messages to R which are authenticated,
then we call the code a k-multiple-use A2-code.

A k-multiple-use A2-code consists of three phases.

Initialization Phase: An arbiter A′ first generates a secret key et of T and a
secret key er of R. A′ then gives et to T and er to R secretly.

Communication Phase: For a source state s, T computes an authenticator
a = et(s). T then sends m = (s, a) to R, where m is called a message. R
accepts m = (s, a) as authentic iff er(s, a) = 1.

Dispute Phase: On dispute between T and R, A′ accepts m = (s, a) as au-
thentic iff a = et(s).

Define Et
4
= {et}, Er

4
= {er},M

4
= {m}, S

4
= {s} andA

4
= {a}. Let Êt, Êr, M̂ , Ŝ, Â

be the random variables distributed over Et, Er,M, S,A, respectively.
In the model of k-multiple-use A2-codes, there are three kinds of attacks.
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Transmitter’s attack: T sends a message m = (s, a) to the receiver R and
denies having sent it. T successes if m is accepted by R as authentic and
a 6= et(s).

Receiver’s attack: R receives less than k messages and claims to have received
a new message m′ = (s′, a′). R successes if a′ = et(s

′).

Outside enemy’s attack: An outside enemy O observes i < k messages sent
by T , and then substitutes the last one with a forged one m′ = (s′, a′). O
successes if er(s

′, a′) = 1.

We define the cheating probabilities of k-multiple-use A2-code as follows,
where PT , PRi

and POi
denote the cheating probabilities by T , R and O, re-

spectively.

PT
4
= E

(
max

m=(s,a),a6=et(s)
Pr(er(s, a) = 1)

)

PRi

4
= E

(
max

(s′,a′)6∈{m1,...,mi}
Pr(a′ = et(s

′) | T sent m1, . . . ,mi)

)

POi

4
= E

(
max

m′ 6∈{m1,...,mi}
Pr(R accepts m′ | T sent m1, . . . ,mi)

)
,

where 0 ≤ i ≤ k − 1. Let

PO
4
= max

0≤i<k
POi

, PR
4
= max

0≤i<k
PRi

.

4.2 Lower Bounds

In this subsection, we present a lower bound on the cheating probabilities defined
as above. It is a generalization of a lower bound for usual A2-codes given by
Johansson [10].

Theorem 4.

PT ≥ 2−H(Êr|Êt)

PRi
≥ 2−H(Êt|M̂1···M̂i,Êr)+H(Êt|M̂1···M̂i+1,Êr)

POi
≥ 2−I(Êr;Êt|M̂1···M̂i)+I(Êr;Êt|M̂1···M̂i+1)

The proof will be given in the final paper. We then obtain a lower bound on the
size of keys as follows.

Theorem 5. If Ŝ is uniformly distributed, then

|Et| ≥ (PRPO)
−k, |Er| ≥ (PTP

k
O)
−1, |A| ≥ (PRPO)

−1.
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Proof. From Theorem 4,

(PR)
k ≥ (PR0

· · ·PRk−1
) ≥ 2−H(Êt|Êr)+H(Êt|M̂1···M̂k,Êr)

(PO)
k ≥ (PO0

· · ·POk−1
) ≥ 2−I(Êt;Êr)+I(Êt;Êr|M̂1···M̂k)

(POPR)
k ≥ 2−H(Êt)+H(Êt|M̂1···M̂k)

≥ 2−H(Êt),

|Et| ≥ 2H(Êt) ≥ (POPR)
−k.

The second bound can be derived similarly.
The bound on |A| is derived as follows.

|M | ≥ 2H(M̂ |Êr)+I(M̂ ;Êr)

= 2H(M̂ |Êr)2I(M̂ ;Êr;Êt)2I(M̂ ;Êt|Êr)

≥ 2H(Ŝ)2I(Êr;Êt)−I(Êr;Êt|M̂)2H(Êt|Êr)−H(Êt|M̂,Êr)

From Theorem 4, it holds that

2I(Êr;Êt)−I(Êr;Êt|M̂) ≥ 1/PO0
,

2H(Êt|Êr)−H(Êt|M̂,Êr) ≥ 1/PR0
.

Therefore,

|M | ≥ 2H(Ŝ)/PO0
PR0

= |S|/PO0
PR0

,

|A| = |M |/|S| ≥ (POPR)
−1.

ut

We can see that the above bounds are tight because there exists an A2-code
which satisfies all the equalities of them (see appendix B).

5 Almost Equivalence

In this section, we show an almost equivalence between robust (k, n)-metering
schemes and k-multiple-use A2-codes such that we can always construct a k-
multiple-use A2-code from a (k, n)-metering scheme, and in some cases, we can
do the reverse.

In what follows, we define the cheating probability of clients and the cheating
probability of outside enemies as follows.

P̃C
4
= E

(
max

i
max
v′

i
6=vi

Pr(S accepts (i, v′i) | v1, . . . , vn are given)

)
,

where E is taken over v1, . . . , vn.

P̃E
4
= max

0≤l<k
E

(
max

i6∈{i1,...,il},v′i

Pr(S accepts (i, v′i) | E observes vi1 , . . . , vil
)

)
,

where E is taken over i1, . . . , il and vi1 , . . . , vil
.

The cheating probabilities of k-multiple-use A2-codes are defined in the pre-
vious section.
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5.1 Metering Scheme Implies a Multiple-use A2-code

First, we show that a (k, n)-metering scheme implies a k-multiple-use A2-code.
Wlog, suppose that Vi ⊆ V , where |V | = maxi |Vi|.

Theorem 6. If there exists a (k, n)-metering scheme with (Proof , Es, {Vi}) and
(P̃C , PS , P̃E), then there exists a k-multiple-use A2-code with (Et, Er, S,A) and
(PT , PR, PO) such that

PT = P̃C , PR ≤ PS , PO = P̃E ,

Et = V1 × · · · × Vn, Er = Es, S = {1, 2, . . . , n}, A = V.

Proof. Suppose that there exists a (k, n)-metering scheme with (Proof , Es, {Vi})
and (P̃C , PS , P̃E). We then construct a k-multiple-use A2-code as follows.

Initialization Phase: The arbiter A′ first runs the audit agency A of the
(k, n)-metering scheme to generate proof , es and (v1, . . . , vn). A

′ then gives

et
4
= (v1, . . . , vn) to T and er

4
= es to R secretly as their secret keys.

Communication Phase: For a source state i ∈ {1, . . . , n}, T sends a message
m = (i, vi) to R, where vi is the authenticator for i.

Dispute Phase: On dispute between T and R, A′ accepts m = (i, a) as au-
thentic iff a = vi.

It is clear that Et = V1 × · · · × Vn, Er = Es, S = {1, 2, . . . , n}, A = V .
Next it is easy to see that an outside enemy’s attack on the (k, n)-metering

scheme can be directly used as an outside enemy’s attack on the k-multiple-use
A2-code and vice versa. Therefore, PO = P̃E .

A clients’ attack on the (k, n)-metering scheme is that all clients collude and
make a forged share v′s 6= vs. In other words, from given (1, v1), . . . , (n, vn), they
make v′s 6= vs for some s, hoping that it is accepted by S with her secret key
es. Then it is easy to see that this attack can be directly used as a transmitter’s
attack on the k-multiple-use A2-code. Therefore, PT ≥ P̃C . It is easy to see that
the converse part is also true. Hence P̃C ≥ PT . Therefore, PT = P̃C .

Suppose that there exists a receiver’s attack Rattack on the k-multiple-use
A2-code with success probability PR. Then we consider a server’s attack on the
(k, n)-metering scheme as follows. Suppose that l < k clients Ci1 , . . . , Cil

visited
S. S runs Rattack on input er and l messages (i1, vi1), . . . , (il, vil

). Rattack outputs
a new message m = (s, vs) for some s 6∈ {i1, . . . , il}. S next corrupts k − l − 1
clients Cil+1

, . . . , Cik−1
other than {i1, . . . , il, s} and obtains their shares. Then

S obtains k shares vi1 , . . . , vik−1
and vs in total. Therefore, S can compute

the proof from the k shares. This attack succeeds with probability PR. Hence,
PS ≥ PR. ut

5.2 Weak converse

Next, we show a weak converse of Theorem 6.



Bounds for Robust Metering Schemes and Their Relationship with A2-code 77

Lemma 6. In a k-multiple-use A2-code in which |Et| satisfies the equality of
the bound in Theorem 5, the transmitter’s key is determined uniquely from k or
more valid messages.

Proof. From the proof of Theorem 5, We obtain

(POPR)
k ≥ 2−H(Êt)+H(Êt|M̂1···M̂k).

The equality of the bound holds only if H(Êt | M̂1 · · · M̂k) = 0. This means that
et is determined by k messages. ut

Theorem 7. If there exists a k-multiple-use A2-code with (Et, Er, S,A) and
(PT , PR, PO) such that |Et| satisfies the equality of the bound in Theorem 5, then
there exists a (k, n)-metering scheme with (Proof , Es, {Vi}) and (P̃C , PS , P̃E),
such that

P̃C = PT , PS ≤ PR, P̃E = PO

Es = Er, n = |S| − 1, Proof = V1 = · · · = Vn = A.

Proof. (Sketch) Using a k-multiple-use A2-code, construct a metering scheme
described as follows. A chooses s0 ∈ S and sets proof = et(s0). Each client Ci

receives vi = et(si) where S = {s0, . . . , sn}.
If |Et| satisfies the equality of the bound, et is determined uniquely from k or

more valid messages (from Lemma 6). Then the server can obtain proof = et(s0)
if he has been visited by k or more clients. The rest of the proof is similar to
Theorem 6. ut

6 Lower Bounds for Robust Metering Scheme

In this section, we derive a lower bound on |Vi| and a lower bound on |Es|
for robust (but not necessarily perfect) (k, n)-metering schemes by using our
relationship between metering schemes and multiple A2-codes (and our lower
bounds for k-multiple-use A2-codes of Sec.4).

6.1 Bounds for Robust Metering Schemes

From Theorem 5 and Theorem 6, we immediately obtain a lower bound on the
size of keys for (k, n)-metering schemes as follows.

Corollary 2. In a (k, n)-metering scheme, if each client visits the Web sever S
with equal probability, then

max
i
|Vi| ≥ (PSP̃E)

−1, |Es| ≥ (P̃C P̃
k
E)
−1.

Corollary 2 is tight because the Ogata-Kurosawa metering scheme satisfies
all the equalities of the bound (see Sec.3.3).
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6.2 Bound on P̃E

We can remove P̃E from the above bound by using Theorem 8.

Theorem 8. In a (k, n)-metering scheme,

P̃E ≤ P̃C + PS .

Proof. (Sketch) From the definition of P̃E ,

P̃E ≤ max
l

E

(
max
i,v′

i

Pr(S accepts (i, v′i) ∧ Ci has v
′
i | S observes vi1 , . . . , vil

)

)

+max
l

E

(
max
i,v′

i

Pr(S accepts (i, v′i) ∧ ¬(Ci has v
′
i) | S observes vi1 , . . . , vil

)

)
.

The first term of the right hand is equal or less than PS , while the second term
is equal or less than P̃C . ut

Corollary 3. In a (k, n)-metering scheme, if each client visits the Web sever S
with equal probability, then

max
i
|Vi| ≥ (PS(PS + P̃C))

−1, |Es| ≥ (P̃C(PS + P̃C)
k)−1.

7 Conclusion

In this paper, We first derived lower bounds on |Vi| and |Es| for ”perfect and
robust” (k, n)-metering schemes by using counting arguments, where |Vi| (i =
1, . . . , n) is the communication complexity and and |Es| is the size of server’s
secrets. We also presented a slightly modified version of the Ogata-Kurosawa
scheme [2] and proved that it satisfies all the equalities of our bounds. This
means that our bounds are all tight.

We next showed an almost equivalence between robust (k, n)-metering schemes
and k-multiple-use A2-codes such that we can always construct a k-multiple-use
A2-code from a (k, n)-metering scheme, and in some cases, we can do the re-
verse. By using this equivalence, we derived lower bounds on |Vi| and |Es| for
robust (but not necessarily perfect) (k, n)-metering schemes. This equivalence is
of independent interest because no relationship has been known between them
so far.
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A Bounds for Multiple-use A2-code by Wang et al.

Wang, Safavi-Naini and Pei defined the cheating probabilities of k-multiple-use
A2-codes as follows, where P̃t, P̃ri

and P̃oi
denote the cheating probabilities by

T , R and O, respectively.

P̃t
4
= max

et

(
max

m=(s,a),a6=et(s)
Pr(er(s, a) = 1)

)

P̃ri

4
= max

er

max
m1,...,mi

(
max

(s′,a′)6∈{m1,...,mi}
Pr(a′ = et(s

′) | T sent m1, . . . ,mi)

)

P̃oi

4
= max

m1,...,mi

(
max

m′ 6∈{m1,...,mi}
Pr(R accepts m′ | T sent m1, . . . ,mi)

)
.

They then showed a lower bound on the cheating probabilities and the size
of keys as follows.

Proposition 2. [8, Theorem 3.1, 3.2, 3.3]

P̃t ≥ 2H(Êr|M̂,Êt)−H(Êr|Êt)

P̃ri
≥ 2−H(Êt|M̂1···M̂i,Êr)+H(Êt|M̂1···M̂i+1,Êr)

P̃oi
≥ 2−H(Êr|M̂1···M̂i)+H(Êr|M̂1···M̂i+1)

Proposition 3. [8, Theorem 4.1, 4.2] If P̃oi
and P̃ri

achieve their lower bounds,
then

|Et| ≥ 1/
∏k−1

i=0 (P̃oi
P̃ri

). (6)

If P̃oi
, P̃ri

, 0 ≤ i < k, and P̃t achieve their lower bounds, and the equality of
eq.(6) holds, then

|Er| ≥ 1/P̃t

∏k−1
i=0 P̃oi

.
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B Construction of Multiple-use A2-codes

Wang et al. showed that there exists a k-multiple-use A2-code if there exists a
certain combinatorial design [8]. However, they did not show an explicit con-
struction of that design. Therefore, no explicit construction of k-multiple-use
A2-code is known.

By substituting the modified Ogata-Kurosawa metering scheme into the proof
of Theorem 6, we immediately obtain an explicit construction of a k-multiple-use
A2-code as follows.

Let p be a large prime number.

Initialization Phase: An arbiter A′ chooses a random number r ∈ Zp and two
random polynomials f0(y) and f1(y) with degree at most k− 1 over GF (p).
Let et = (f0(y), f1(y)) and er = (r, g(y)), where g(y) = f0(y)+ rf1(y). Then
A′ gives et to T and er to R secretly as their secret keys.

Communication Phase: For a source state s ∈ Zp, T sendsm = (s, f0(s), f1(s))
to R. R accepts m = (s, a, b) as authentic iff g(s) = a+ rb.

Dispute Phase: On dispute between T and R, A′ accepts m = (s, a, b) as
authentic iff f0(s) = a and f1(s) = b.

It is clear that |Et| = p2k, |Er| = pk+1, |A| = p2. From eq.(3) and Theorem
6, it holds that PT = 1/p, PR ≤ 1/p, PO = 1/p. More than that, we can show
the following lemma.

Lemma 7. In the above k-multiple-use A2-code, PR = 1/p.

Proof. R has a secret key er = (r, g(y)), where g(y) = f0(y) + rf1(y) for some
f0(y) and f1(y) with degree at most k − 1. Suppose that R received m1 =
(s1, a1), . . . ,ml = (sl, al). Let

F0
4
= {(f0(y), f1(y)) | g(y) = f0(y) + rf1(y),

where deg f0(y) ≤ k − 1,deg f1(y) ≤ k − 1},

F1
4
= {(f0(y), f1(y)) | a1 = (f0(s1), f1(s1)), . . . , al = (f0(sl), f1(sl))}.

Then R knows that et ∈ F0 ∩ F1.
Next suppose thatR claims that she received (s′, a′) such that s′ 6∈ {s1, . . . , sl}.

If m′ could be made by T , then a′ = (f0(s
′), f1(s

′)). Let

F2
4
= {(f0(y), f1(y)) | a

′ = (f0(s
′), f1(s

′))}.

Then,

Pr(a′ = et(s
′)) = |F0 ∩ F1 ∩ F2|/|F0 ∩ F1|

= pk−l−1/pk−l

= 1/p.

ut

Then we see that our multiple-use A2-code is optimum and Theorem 5 is
tight because our multiple-use A2-code satisfies all the equalities of Theorem 5.


