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Abstract. This paper provides a new method for construction of the
generating (or basis) matrices of the (t, n)-threshold visual secret sharing
scheme ((t, n)-VSSS) for any n ≥ 2 and 2 ≤ t ≤ n. We show that
there exists a bijection between a set of generating matrices of the (t, n)-
VSSS and a set of homogeneous polynomials of degree n satisfying a
certain property. We also show that the set of homogeneous polynomials
is identified with a set of lattice points in a linear space of dimension
n − t + 1 with explicitly expressed bases. These results yields a general
formula of the generating matrices of the (t, n)-VSSS. The formula is
not only theoretically of interest but also enables us to obtain efficient
generating matrices that have been unknown.

1 Introduction

The visual secret sharing scheme (VSSS) is a new paradigm of the secret sharing
proposed by Naor and Shamir [14]. Letting P = {1, 2, . . . , n} be a set of par-
ticipants, in the VSSS a black-white secret image is encrypted to n black-white
images called shares. The VSSS has a property that, while a qualified set of
participants can reproduce a secret image only by stacking all of their shares, a
forbidden subset of participants can obtain no information on the secret image
from their shares. If every S ⊆ P with |S| ≥ t is qualified and every S ⊂ P with
|S| ≤ t−1 is forbidden for some 2 ≤ t ≤ n, we call such a VSSS the (t, n)-VSSS,
where |S| denotes the cardinality of S.
In this paper we focus on the (t, n)-VSSS. Literatures on the (t, n)-VSSS for

black-white images can be classified into the following categories:

1. Construction of the optimal (n.n)-VSSS: [14].
2. Construction of the optimal (t, n)-VSSS in a certain class: [2] (for t = 2), [3]
(for t = 3, 4, 5, n− 1).

3. Developing algorithms to find a non-optimal (t, n)-VSSS without optimal-
ity: [6],[9].

4. Giving examples of (t, n)-VSSS: [4], [5],[12],[13],[14].
5. Introducing another notion of optimality: [1], [7],[15].
6. Formulating the problem of finding the optimal (t, n)-VSSS as a linear pro-
gramming problem: [3], [8],[11].
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Here, the optimality of the (t, n)-VSSS is usually defined in terms of the clearness
of the reproduced secret image obtained by stacking arbitrary t shares. In the
literature above, however, the most important and fascinating problem of finding
the optimal (t, n)-VSSS for arbitrary n ≥ 2 and 2 ≤ t ≤ n still remains unsolved.
The (t, n)-VSSS is realized by using a pair of matrices (X0, X1) called gen-

erating matrices (though (X0, X1) is sometimes called basis matrices, we use a
different terminology in order to avoid confusion). In this paper we propose a
simple method for obtaining pairs of generating matrices of the (t, n)-VSSS that
is valid for all n ≥ 2 and 2 ≤ t ≤ n. The polynomial representation of generating
matrices, which was first proposed by [10] and was extended by [12, 13], gives a
key to the method. We show that a pair of generating matrices in a certain class
can be identified with a lattice point in a linear space of homogeneous polynomi-

als of dimension n− t+ 1. More precisely, letting e
(i)
t,n, i = 0, 1, . . . , n− t, be the

bases of the linear space, for each (β0, β1, . . . , βn−t) ∈ Bn−t+1, where Bn−t+1 is
the collection of all (β0, β1, . . . , βn−t) satisfying βi ∈ Z for all i = 0, 1, . . . , n− t

and
∑n−t

i=0 βi > 0, we can identify f =
∑n−t

i=0 e
(i)
t,n as a pair of generating matri-

ces. In addition, if we apply a simple operation to such f , we can obtain more
efficient pair of generating matrices each of which belongs to a class of matrices
that is often treated.
We can use the proposed method for obtaining suboptimal pairs of gener-

ating matrices. The optimality can be defined in arbitrary sense, that is, we
can maximize the relative difference [14] or minimize the number of subpixels.
We have only to consider a finite subset B′n−t+1 ⊂ Bn−t+1 and exhaustively
search for a pair of generating matrices in B′n−t+1 that is the most desirable. We
checked that this search is realistic if n ≤ 9 and found interesting examples of
the (t, n)-VSSS that have been unknown.
This paper is organized as follows. In Section 2 we first define the (t, n)-VSSS

mathematically. Then, we introduce important classes of matrices called column-
permuting matrices (CPMs) [10] and different permuting matrices (DPMs) [12].
We explain several properties on concatenations of CPMs or DPMs. Section 3
is devoted to description of main results of this paper. We first show that there
exists a bijection from the pairs of matrices realizing the (t, n)-VSSS to the set
of homogeneous polynomials of degree n satisfying a certain property. We next
show that for any n ≥ 2 and 2 ≤ t ≤ n such homogeneous polynomials are
regarded as lattice points of a linear space of dimension n− t+ 1. These results
mean that, surprisingly, any one of such lattice points yields a pair of generating
matrices of the (t, n)-VSSS. We also give suboptimal pairs of generating matrices
of the (t, n)-VSSS obtained for all n ≤ 9 that was found by computer search.

2 Visual Secret Sharing Scheme

2.1 Definition of the Visual Secret Sharing Scheme

Let P = {1, 2, . . . , n} be a set of participants, where n ≥ 2. Denote the set
composed by all the subsets of P by 2P . Given an n × m Boolean matrix X
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and an S ∈ 2P , we define X[S] as the |S| × m matrix that is the restriction
of X to the rows specified by S. The “or” of all the rows in X[S] is denoted
by OR(X[S]). In addition, the Hamming weight of OR(X[S]) is denoted by
h(OR(X[S])). Letting t be an arbitrary integer satisfying 2 ≤ t ≤ n, we define
the (t, n)-threshold visual secret sharing scheme ((t, n)-VSSS for short) in the
following way:

Definition 1 (Naor and Shamir [14]). Let C0 and C1 be collections of n×m
matrices. We say that a pair (C0, C1) forms the (t, n)-VSSS if (C0, C1) satisfies
both of the following two conditions:

1. There exist constants d > 0 and α > 0 satisfying:

(a) For any S ∈ 2P with |S| = t, h(OR(X[S])) ≤ d− αm for all X ∈ C0.
(b) For any S ∈ 2P with |S| = t, h(OR(X[S])) ≥ d for all X ∈ C1.

2. For an S ∈ 2P and i = 0, 1 define Di[S] as the collection of X[S], X ∈ Ci.
Then, for any S ∈ 2P with |S| < t D0[S] and D1[S] are indistinguishable in
the sense that they contain the same matrices with the same frequencies.

A secret image, which is assumed to be a black-white image, is encrypted
into n images called shares in the following way. In fact, every pixel in a secret
image is encrypted as m pixels called subpixels in each share. We first choose
an element X ∈ C0 (X ∈ C1) randomly with uniform distribution if a pixel to
be encrypted is white (black). Then, for i = 1, 2, . . . , n we encrypt the pixel as
the m subpixels specified by the i-th row of X. This encryption is repeated until
all the pixels in a secret image are encrypted. We assume that the i-th share is
distributed to the participant i for i = 1, 2, . . . , n.

Condition 1-(a) in Definition 1 guarantees that for any S ∈ 2P with |S| = t a
black-white secret image is reproduced only by stacking all of the shares specified
by S. When we stack arbitrary t shares in an arbitrary order, we can perceive a
gap of the Hamming weights more than αm consisting in stacked m subpixels.
That is, the m stacked subpixels corresponding to a white pixel in the secret
image look brighter than the m stacked subpixels corresponding to a black pixel.
Here, the parameter α is called the relative difference [14]. In general, the greater
α becomes, the clearer we can perceive the secret image. On the other hand,
condition 2 in Definition 1 means that no information on the secret image is
revealed from the shares specified by S for any S ∈ 2P with |S| ≤ t− 1. In fact,
if |S| ≤ t− 1, the participants in S can obtain no information on the color of a
pixel because both D0[S] and D1[S] contain X[S] with the same frequencies.

It is often that C0 and C1 are constructed from all the permutations of rows
of two matrices X0 and X1. We call such matrices the generating matrices.
Though such matrices are sometimes called the basis matrices rather than the
generating matrices [2, 3], we call (X0, X1) a pair of generating matrices in this
paper because we use the term “basis” for expressing a different, but an ordinary,
notion. Throughout this paper we consider construction of the (t, n)-VSSS using
a pair of generating matrices. See [14] for examples of generating matrices.
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2.2 Polynomial Representation of Generator Matrices

Hereafter, we consider the generating matrices that belong to a certain class.
We define two classes of matrices called the column-permuting matrices (CPMs)
[10] and the different permuting matrices (DPMs) [12].
Consider a Boolean vector V = [v1, v2, . . . , vn]

T with n components, where
the superscript T denotes the transpose. We can obtain n! vectors from all the
permutations (permitting multiplicity) of components of V . The n × n! matrix
Mn(v1, v2, . . . , vn) containing all of such n! vectors as rows is called a column-
permuting matrix (CPM) of order n [10]. For the case of n = 3 and V = [0, 0, 1]T ,
M3(0, 0, 1) can be expressed as

M3(0, 0, 1) =





0 0 1 0 1 0
0 0 0 1 0 1
1 1 0 0 0 0



 . (1)

(In order to avoid confusion, readers may consider M3(v1, v2, v3) with distinct
v1, v2 and v3 and set v1 = 0, v2 = 0 and v3 = 1.) We regard two CPMs as
identical if an adequate permutation of rows of one equals to the other. We
represent the CPM obtained from a vector with k 1’s and n − k 0’s as the
monomial an−kzk, where a and z are the symbols corresponding to 0 and 1,
respectively. For example, M3(0, 0, 1) in (1) is represented as a

2z.
Next, we consider concatenations of CPMs. Letting Mn(u1, u2, . . . , un) and

Mn(v1, v2, . . . , vn) be two CPMs with vi, ui ∈ {0, 1} for all i = 1, 2, . . . , n,
we denote the concatenation of Mn(u1, u2, . . . , un) and Mn(v1, v2, . . . , vn) by
Mn(u1, u2, . . . , un) ¯Mn(v1, v2, . . . , vn). Here, we regard Mn(u1, u2, . . . , un) ¯
Mn(v1, v2, . . . , vn) as the n× (2n!) matrix containing all the permutations (per-
mitting multiplicity) of two Boolean vectors [u1, u2, . . . , un]

T and [v1, v2, . . . , vn]
T .

We regard two concatenations of CPMs as identical if an adequate permuta-
tion of rows of one equals the other. Letting [u1, u2, . . . , un]

T be a Boolean
vector with k 1’s and n − k 0’s and [v1, v2, . . . , vn]

T a Boolean vector with l
1’s and n − l 0’s, we represent Mn(u1, u2, . . . , un) ¯Mn(v1, v2, . . . , vn) as the
polynomial an−kzk + an−lzl. That is, the concatenation of matrices is repre-
sented by using + in the polynomial representation. In particular, for the case
of k = l we express an−kzk + an−kzk as 2an−kzk for short. Obviously, any
concatenation of CPMs of order n is represented as a homogeneous polynomial
of a and z of degree n. In addition, it is important to notice that two con-
catenations of CPMs are identical if and only if the polynomial representation
of one is equal to the other in the ordinary sense. For example, a concatena-
tion of CPMs M3(0, 0, 0) ¯M3(0, 1, 1) ¯M3(0, 1, 1) ¯M3(1, 1, 1), which is rep-
resented as a3 + 2az2 + z3, is identical with another concatenation of CPMs
M3(0, 1, 1)¯M3(1, 1, 1)¯M3(0, 1, 1)¯M3(0, 0, 0) that also has the polynomial
representation az2 + z3 + az2 + a3 = a3 + 2az2 + z3.
It is important to notice that we can represent the operation in which we

eliminate an arbitrary row from a CPM Mn(v1, v2, . . . , vn) as application of the

partial differential operator ψ
def
= ∂

∂a +
∂
∂z to the polynomial representation of
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Mn(v1, v2, . . . , vn). For example, if we eliminate the the third row of M3(0, 0, 1)
in (1), we have M2(0, 0)¯M2(0, 1)¯M2(0, 1). This operation is represented as
ψ(a2z) = a2 + 2az in the polynomial representation. The definition of the CPM
guarantees that we can obtain the same matrix if we eliminate either the first
row or the second row instead of the third row. In the same way, the operation
eliminating j arbitrary rows from a CPM is represented as application of ψ to
its polynomial representation repeatedly for j times. The repeated application
of ψ for j times is denoted by ψj . It is obvious that the same property on the
elimination of rows also holds for concatenations of CPMs.
Next, we define the different permuting matrix (DPM). While [3, 6, 9] use

different terminology for the same class of matrices, we follow the terminology
given in [12]. Consider a Boolean vector V = [v1, v2, . . . , vn]

T . Suppose that
V contains k 1’s and n − k 0’s as its components. Then, we can obtain

(

n
k

)

different vectors from all the permutations of components of V . The n ×
(

n
k

)

matrix containing all of such
(

n
k

)

vectors as rows is called a different permuting
matrix (DPM) of order n and is denoted by Nn(v1, v2, . . . , vn). For the case of
n = 3, N3(0, 0, 0) and N3(0, 0, 1) are written as

N3(0, 0, 0) =





0
0
0



 and N3(0, 0, 1) =





1 0 0
0 1 0
0 0 1



 . (2)

It is important to notice thatM3(0, 0, 1) in (1) satisfiesM3(0, 0, 1) = N3(0, 0, 1)¯
N3(0, 0, 1) (recall that rows of M3(0, 0, 1) can be permuted adequately). More
generally, for [v1, v2, . . . , vn]

T containing k 1’s and n− k 0’s, it is easy to verify
that Mn(v1, v2, . . . , vn) is the concatenation of (n − k)!k! Nn(v1, v2, . . . , vn)’s.

This motivates us to represent Nn(v1, v2, . . . , vn) as the monomial
an−kzk

(n−k)!k! [12].

In particular, for the cases of k = 0 and k = n we use the representations an

n! and
zn

n! , respectively. We also use + for denoting concatenation of DPMs. Then, it
obviously follows that eliminating an arbitrary row from a DPM is represented
as application of ψ = ∂

∂a +
∂
∂z to the monomial representation of the DPM.

In fact, if we eliminate the third row from N3(0, 0, 1), which is represented as
a2z
2!1! , we have the concatenation of DPMs represented as ψ(

a2z
2!1! ) = az + a2

2! . In
addition, eliminating j arbitrary rows from a DPM is represented as application
of ψj to its monomial representation. It is obvious that the same property on
the elimination of rows holds for concatenations of DPMs.
Now, we introduce the following four sets of homogeneous polynomials:

Hn =

{ n
∑

i=0

γia
n−izi : γi ∈ Z for all i = 0, 1, . . . n

}

, (3)

H+
n =

{ n
∑

i=0

γia
n−izi : γi ∈ Z and γi > 0 for all i = 0, 1, . . . n

}

, (4)

Kn =

{ n
∑

i=0

γi
an−izi

(n− i)!i!
: γi ∈ Z for all i = 0, 1, . . . n

}

, (5)
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K+
n =

{ n
∑

i=0

γi
an−izi

(n− i)!i!
: γi ∈ Z and γi > 0 for all i = 0, 1, . . . n

}

, (6)

where Z denotes the set of all integers. Then, as summary, we have the following
proposition.

Proposition 1. (a) Any concatenation of CPMs (DPMs) of order n is ex-
pressed as an element in H+

n (K+
n ). Conversely, any element in H

+
n (K+

n ) is
interpreted as a concatenation of CPMs (DPMs) of order n.

(b) Let X be any concatenation of CPMs (DPMs) with the polynomial repre-
sentation f ∈ H+

n (f ∈ K+
n ). Then, for any 1 ≤ j ≤ n − 1 the polynomial

representation of the matrix obtained by eliminating arbitrary j rows from
X is given by ψjf .

Then, we have the following theorem. While the primary version of Theo-
rem 1-(a) was given by Koga, Iwamoto and Yamamoto [10] for the (t, n)-VSSS of
color images, Kuwakado and Tanaka [12] pointed out that Theorem 1-(b) holds
for the case of (t, n)-VSSS of black-white images. Proof of Theorem 1 is given in
Appendix A for readers’ convenience.

Theorem 1. (a) Suppose that f0 ∈ H+
n and f1 ∈ H+

n satisfy

ψn−t+1f0 = ψn−t+1f1 (7)

and
ψn−tf0|z=0 = C0a

t, ψn−tf1|z=0 = C1a
t (8)

for some nonnegative integers C0 and C1 with C0 > C1. Define X0 and X1

as the concatenations of CPMs with the polynomial expressions f0 and f1,
respectively. Then, (X0, X1) becomes a pair of generating matrices of the
(t, n)-VSSS.

(b) Suppose that g0 ∈ K
+
n and g1 ∈ K

+
n satisfy

ψn−t+1g0 = ψn−t+1g1 (9)

and

ψn−tg0|z=0 = C0
at

t!
, ψn−tg1|z=0 = C1

at

t!
(10)

for some nonnegative integers C0 and C1 with C0 > C1. Define X0 and X1

as the concatenations of DPMs with the polynomial expressions g0 and g1,
respectively. Then, (X0, X1) becomes a pair of generating matrices of the
(t, n)-VSSS.

We conclude this section with introducing two more notions. First, we define
the decomposition of an element in Hn or Kn. If an f ∈ Hn is written as
f = f+ − f−, where f+ and f− belong to H+

n ∪ {0} and f
+ and f− contain

no term in common, we call f = f+ − f− the decomposition of f . For example,
if f = a2z − az2 + z3 ∈ H3, we have f

+ = a2z + z3 and f− = az2. Note that
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the decomposition is unique and f+ (f−) equals zero if all the terms in f have
negative (positive) coefficients. The decomposition of g ∈ Kn is defined in the

same way. That is, if g = a3

3! −
a2z
2!1! + 2

z3

3! ∈ K3, we have g
+ = a3

3! + 2
z3

3! and

g− = a2z
2!1! . Next, we define the norm of f ∈ Hn. Suppose that f is expressed

as f =
∑n

i=0 γia
n−izi. Then, the norm ||f || of f is defined by ||f || =

∑n
i=0 |γi|,

where |γi| denotes the absolute value of γi. Clearly, ||f || ≥ 0 for all f ∈ Hn and
||f || = 0 if and only if f = 0. It is clear that for the matrix X with a polynomial
expression f ∈ H+

n , ||f || means the number of CPMs contained in X.

3 Main Results

3.1 Characterization of the (t, n)-VSSS as a Vector Space

Theorem 1-(a) guarantees that, if we can find f0 ∈ H
+
n and f1 ∈ H

+
n satisfying

(7) and (8), we obtain a pair of generating matrices (X0, X1) of the (t, n)-VSSS,
where X0 and X1 are the concatenations of CPMs corresponding to f0 and f1,
respectively. However, Theorem 1 does not tell us at all how we can find such f0

and f1. Since ψ
n−t+1 and ψn−t are linear, the homogeneous polynomial f ∈ Hn

defined by f = f0 − f1 satisfies ψ
n−t+1f = 0 and ψn−tf |z=0 = Cat for some

integer C > 0. This motivates us to define the following subsets of Hn and Kn:

Ft,n = {f ∈ Hn : ψ
n−t+1f = 0 and ψn−tf |z=0 = Cat for some integer C > 0},

Gt,n = {g ∈ Kn : ψ
n−t+1g = 0 and ψn−tg|z=0 = C at

t! for some integer C > 0}.

We also define the sets of pairs of matrices by

Mt,n = {(X0, X1) : X0 and X1 satisfy all of (A1), (B1), (C1), (D1)} ,

Nt,n = {(X0, X1) : X0 and X1 satisfy all of (A2), (B2), (C1), (D1)} ,

where conditions (A1), (A2), (B1), (B2), (C1) and (D1) are given as follows:

(A1) both X0 and X1 are concatenations of CPMs,
(A2) both X0 and X1 are concatenations of DPMs,
(B1) X0 and X1 contain no CPM in common,
(B2) X0 and X1 contain no DPM in common,
(C1) X0[S] = X1[S] for any S ∈ 2P with |S| = t − 1, where the equality

X0[S] = X1[S] is interpreted in the sense that X1[S] coincides X0[S] by
an adequate permutation of rows,

(D1) h(OR(X0[S])) < h(OR(X1[S])) for any S ∈ 2
P with |S| = t, where h(·)

denotes the Hamming weight.

That is,Mt,n (Nt,n) is the set of all the pairs of generating matrices obtained by
concatenations of CPMs (DPMs) containing no CPM (DPM) in common. Then,
we have the following theorem that is a stronger version of Theorem 1.

Theorem 2. For any n ≥ 2 and 2 ≤ t ≤ n, there exist bijections ϕ :Mt,n →
Ft,n and σ : Nt,n → Gt,n.
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Proof. We only prove the existence of a bijection ϕ :Mt,n → Ft,n below because
the existence of σ : Nt,n → Gt,n can be proved in the same way.
Suppose that (X0, X1) ∈Mt,n. Since X0 and X1 are assumed to be concate-

nations of CPMs, Proposition 1 guarantees that there exist unique f0 ∈ H
+
n and

f1 ∈ H
+
n corresponding to X0 and X1, respectively. In addition, we note that

the converse of Theorem 1 is also true. That is, such f0 and f1 satisfy (7) and
(8). We define f by f = f0 − f1. Clearly, f belongs to Hn and satisfies

ψn−t+1f = 0 and ψn−tf |z=0 = (C1 − C2)a
t (11)

due to the linearity of ψn−t+1 and ψn−t. Since C1 > C2 from Definition 1 and
the definitions of f0, f1 and f , (11) guarantees that f ∈ Ft,n. We define ϕ as the
mapping that maps a pair (X0, X1) ∈Mt,n to f = f0− f1 ∈ Ft,n, where f0 and
f1 are the polynomial representations of X0 and X1, respectively.
First, we prove that ϕ is one-to-one. Assume that (X0, X1) ∈ Mt,n and

(X̃0, X̃1) ∈ Mt,n satisfy ϕ(X0, X1) = ϕ(X̃0, X̃1). Let f0, f1, f̃0 and f̃1 be the

polynomial expressions of X0, X1, X̃0 and X̃1, respectively. Note that, since
(X0, X1) ∈Mt,n, f0 and f1 contain no term in common due to the definition of

Mt,n. Similarly, f̃0 and f̃1 contain no term in common as well. It is important

to notice that ϕ(X0, X1) = ϕ(X̃0, X̃1) means that f0 − f1 = f̃0 − f̃1, i.e.,

f0 − f̃0 = f1 − f̃1. (12)

Now, define h by h = f0 − f̃0. Clearly, h ∈ Hn because both f0 and f̃0 belong
to Hn. Denoting the decomposition of h by h = h+ − h−, (12) leads to

{

f0 + h
− = f̃0 + h

+,

f1 + h
− = f̃1 + h

+.
(13)

Since h+ and h− contain no term in common due to the definition of the decom-
position, (13) means that both f0 and f1 contain h

+ in common. This implies
that h+ = 0 because f0 and f1 contain no term in common by assumption.
Similarly, we obtain h− = 0, and therefore, we have h = 0. By combining h = 0
with (12), we have f0−f1 = f̃0− f̃1, i.e., (X0, X1) = (X̃0, X̃1), which shows that
ϕ is one-to-one.
Next, we prove that ϕ is onto. To this end, fix an f ∈ Ft,n arbitrarily. Then,

it holds that ψn−t+1f = 0 and ψn−tf |z=0 = Cat for some integer C > 0. Letting
f = f+ − f− be the decomposition of f , it follows that ψn−t+1f+ = ψn−t+1f−

and

ψn−tf |z=0 = ψn−tf+|z=0 − ψ
n−tf−|z=0 = Cat (14)

owing to the linearity of ψn−t+1 and ψn−t. In addition, since f+ and f− belong
to H+

n ∪ {0}, there exist integers C0 ≥ 0 and C1 ≥ 0 such that ψ
n−tf+|z=0 =

C0a
t and ψn−tf−|z=0 = C1a

t. In view of (14), C0 and C1 satisfy C0 = C1 +
C > C1. Therefore, by virtue of Theorem 1-(a), the pair of matrices (X0, X1)
corresponding to (f+, f−) satisfies (X0, X1) ∈Mt,n. ut
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Since Theorem 2 guarantees the existence of a bijection ϕ : Mt,n → Ft,n,
we can know more aboutMt,n by developing properties of Ft,n. The following
lemma characterizes a key property of a set including Ft,n.

Lemma 1. Define

Et,n =
{

f ∈ Rn : ψ
n−t+1f = 0

}

, (15)

where

Rn =

{ n
∑

i=0

γia
n−izi : γi ∈ R

}

and R denotes the set of all real numbers. Then, Et,n is a linear space of dimen-
sion n− t+ 1 with bases

e
(i)
t,n = an−t−izi(a− z)t, i = 0, 1, . . . , n− t. (16)

Proof. Clearly, the linearity of ψn−t+1 implies that Et,n is a linear space. We
prove both dim Et,n ≥ n− t+1 and dim Et,n ≤ n− t+1, where dim Et,n denotes

the dimension of Et,n. We can see that e
(i)
t,n, 0 ≤ i ≤ n − t, form bases of Et,n

from the proof below.
First, we prove dim Et,n ≥ n−t+1. We use the formula similar to the Leibniz

formula

ψk(fg) =
k
∑

j=0

(

k

j

)

(ψk−jf)(ψjg) (17)

for all k ≥ 1 and infinitely differentiable f and g, which can be easily proved by
induction on k. Letting i an arbitrary integer with 0 ≤ i ≤ n− t, it follows from
(17) that

ψn−t+1e
(i)
t,n = ψn−t+1

(

an−t−izi(a− z)t
)

=

n−t+1
∑

j=0

(

n− t+ 1

j

)

(

ψn−t+1−j(an−t−izi)
) (

ψj(a− z)t
)

. (18)

By noticing that ψj(a− z)t = 0 for all j ≥ 1, (18) leads to

ψn−t+1e
(i)
t,n =

[

ψn−t+1
(

an−t−izi
)

]

(a− z)t = 0 (19)

where the last equality in (19) follows because ψn−t+1f = 0 for any f ∈ Rk with

k < n− t+ 1. Hence, we have ψn−t+1e
(i)
t,n = 0 for all i = 0, 1, . . . , n− t.

We can verify that e
(i)
t,n, 0 ≤ i ≤ n−t, are linearly independent in the following

way. Assume that there exist real numbers β0, β1, . . . , βn−t satisfying

n−t
∑

i=0

βie
(i)
t,n = 0. (20)
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We notice that the greatest degree with respect to a on the left-hand side of

(20) is at most n and a term including an appears only in e
(0)
t,n. This means that

β0 = 0. By repeating this argument, we have β0 = β1 = · · · = βn−t = 0. Hence,

it turns out that e
(i)
t,n, 0 ≤ i ≤ n− t, are linearly independent. Consequently, we

have established that dim Et,n ≥ n− t+ 1.
Next, we prove dim Et,n ≤ n − t + 1. We prove that any f ∈ Et,n can be

expressed as a linear combination of e
(i)
t,n, 0 ≤ i ≤ n− t. To this end, fix

f =
n
∑

i=0

γia
n−izi ∈ Et,n (21)

arbitrarily, where γi ∈ R for all i = 0, 1, . . . , n− t. Then, since among the bases

e
(i)
t,n, 0 ≤ i ≤ n − t, the term including an is contained only in e

(0)
t,n and the

coefficient of such a term in e
(0)
t,n is equal to 1, f can be written as

f = γ0e
(0)
t,n +

(

n
∑

i=1

γia
n−izi − γ0e

(0)
t,n

)

. (22)

Notice that the greatest degree with respect to a of the second term in (22) is
at most n− 1. That is, we can rewrite (22) in the following form:

f = γ0e
(0)
t,n +

n
∑

i=1

γ′ia
n−izi, (23)

where γi, 1 ≤ i ≤ n, are constants determined from γi, 1 ≤ i ≤ n − t, and e
(0)
t,n.

By repeating this argument, we next have

f = γ0e
(0)
t,n + γ

′
1e

(1)
t,n +

n
∑

i=2

γ′′i a
n−izi, (24)

and finally have

f =

n−t
∑

i=0

γ̃ie
(i)
t,n + g, (25)

where γ̃i, 0 ≤ i ≤ n− t, are constants, g = zn−t+1h and h ∈ Rt−1. Here, we use
the following lemma that is proved in Appendix B.

Lemma 2. Let l be an arbitrary integer satisfying 0 ≤ l ≤ n. If g ∈ Rn can be
written as g = zlh for some h ∈ Rn−l and satisfies ψlg = 0, then g = 0.

Since it holds that ψn−t+1f = 0 and ψn−t+1e
(i)
t,n = 0 for all i = 0, 1, . . . , n − t,

(25) implies that ψn−t+1g = 0. By applying Lemma 2 to g in (25), we have
g = 0. This completes the proof of dim Et,n ≤ n− t+ 1. ut

Now, we are ready to give the following theorem that characterizes Ft,n as
lattice points.
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Theorem 3. For any n ≥ 2 and 2 ≤ t ≤ n, it holds that

Ft,n =

{n−t
∑

i=0

βie
(i)
t,n : βi ∈ Z for all i = 0, 1, . . . , n− t and

n−t
∑

i=0

βi > 0

}

. (26)

Proof. We use the fact that e
(i)
t,n, 0 ≤ i ≤ n− t, satisfy ψn−te

(i)
t,n = (n− t)!(a−z)

t

and therefore

ψn−te
(i)
t,n|z=0 = (n− t)! a

t for all i = 0, 1, . . . , n− t, (27)

which can be easily verified similarly to the method that develops ψn−t+1e
(i)
t,n = 0

in (18) and (19). Let Lt,n denote the set on the right-hand side of (26). We prove
Theorem 3 by developing both Ft,n ⊆ Lt,n and Lt,n ⊆ Ft,n. Since Ft,n ⊂ Et,n,
an arbitrary f ∈ Ft,n can be expressed as

f =

n−t
∑

i=0

βie
(i)
t,n + g (28)

by using the same method that yields (25), where g = zn−t+1h and h ∈ Rt−1.
If we apply Lemma 2 to g in (28), we have g = 0. In addition, it is important
to notice that βi ∈ Z for all i = 0, 1, . . . , n− t because no division is included in
the method. By applying ψn−t to both sides of (28) and set z = 0, we have

ψn−tf |z=0 = (n− t)!

(

n−t
∑

i=0

βi

)

at (29)

from (27). Since f ∈ Ft,n satisfies ψ
n−tf |z=0 = Cat for some integer C > 0, (29)

implies that
∑n−t

i=0 βi > 0. This establishes Ft,n ⊆ Lt,n.
Proof of Lt,n ⊆ Ft,n is easy. Fix an f ∈ Lt,n arbitrarily. Since f ∈ Lt,n,

f is expressed as f =
∑n−t

i=0 βie
(i)
t,n, where βi ∈ Z for all i = 0, 1, . . . , n − t and

∑n−t
i=0 βi > 0. Then, it immediately follows from Lemma 1, (27) and the linearity

of ψn−t+1 and ψn−t that

ψn−t+1f =

n−t
∑

i=0

βi(ψ
n−t+1e

(i)
t,n) =

n−t
∑

i=0

βi · 0 = 0, (30)

ψn−tf |z=0 =

n−t
∑

i=0

βi(ψ
n−te

(i)
t,n)|z=0 = (n− t)!

(

n−t
∑

i=0

βi

)

at, (31)

which shows that f ∈ Ft,n because
∑n−t

i=0 βi > 0 by assumption. ut

Now, define

Bk =

{

(β0, β1, . . . , βk−1) ∈ Z
k :

k−1
∑

i=0

βi > 0

}

. (32)
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for k ≥ 1. Then, Theorem 3 tells us that each (β0, β1, . . . , βn−t) ∈ Bn−t+1

gives an element of f ∈ Ft,n. Since Theorem 2 guarantees that there exists a
bijection ϕ :Mt,n → Ft,n, such that f ∈ Ft,n yields a pair of generating matrices
ϕ−1(f) = (X0, X1) ∈Mt,n. The following corollary describes properties of such
a pair of generating matrices.

Corollary 1. Let (β0, β1, . . . , βn−t) ∈ Bn−t+1 be arbitrarily given. Let (X0, X1) ∈

Mt,n be the pair of generating matrices corresponding to f =
∑n−t

i=0 βie
(i)
t,n ∈ Ft,n.

Then, the relative difference α of (X0, X1) is given by

α = 2

n−t
∑

i=0

βi

/ [(

n

t

)

||f ||

]

, (33)

where ||f || denotes the norm of f . In addition, the number of rows in X0 (or
X1) is equal to ||f || · n!/2.

Proof. Recall that ψn−tf |z=0 is given by (31) for any f =
∑n−t

i=0 βie
(i)
t,n ∈ Ft,n.

Equation (31) means that the relative difference of the pair of generating matrices

ϕ−1(f) = (X0, X1) is caused by (n − t)!
(

∑n−t
i=0 βi

)

CPMs each of which is

represented as at. Since the CPM represented as at contains t! 0’s, the number
of subpixels yielding relative difference is equal to W = (n− t)!t!

∑n−t
i=0 βi.

Next, we evaluate the number of rows contained in X0 or X1. Recall that,
letting f = f+− f− be the decomposition of f , X0 and X1 have the polynomial
representations f+ and f−, respectively. Clearly, we have ||f || = ||f+||+ ||f−||.

In addition, since f =
∑n−t

i=0 βie
(i)
t,n and e

(i)
t,n|a=z=1 = 0 for all i = 0, 1, . . . , n− t,

setting a = z = 1 in f = f+ − f− leads to ||f+|| = ||f−||. Hence, it holds
that ||f+|| = ||f−|| = ||f ||/2. Since both X0 and X1 are concatenations of
||f+|| = ||f−|| CPMs each of which has n! rows, the number of rows M of X0

and X1 turns out to satisfy M = ||f || · n!/2. Then, the claim of the corollary is
immediate because α =W/M . ut

We have developed a method which enables us to construct a pair of generat-
ing matrix (X0, X1) ∈Mt,n from an f ∈ Ft,n. In fact, letting f be an arbitrary
element of Ft,n and f = f+−f− the decomposition of f , X0 and X1 are concate-
nations of CPMs with the polynomial representations f+ and f−, respectively.
However, Corollary 1 tells us that the number of rows of such X0 and X1 can
be large because they have ||f || · n!/2 rows.
However, we can also develop a method for finding a pair of generating ma-

trices with less number of rows. We make use of the fact that any CPM can be
written as a concatenation of DPMs. To this end, we define

G∗t,n =

{ n
∑

i=0

γi
an−izi

(n− i)!i!
∈ Gt,n : gcd{γi : i = 0, 1, . . . , n− t} = 1

}

, (34)

where gcd{γi : i = 0, 1, . . . , n− t} denotes the greatest common divisor ≥ 1. In
order to reduce the number of rows, we use the mapping π : Ft,n → G∗t,n given
in the following proposition.
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Proposition 2. For any n ≥ 2 and 2 ≤ t ≤ n there exists a surjection π :
Ft,n → G∗t,n.

Proof. We define π in the following way. Let f =
∑n

i=0 γia
n−izi be an arbitrary

element in Ft,n. Since for each i = 0, 1, . . . , n the CPM with the monomial
representation an−izi is concatenation of (n − i)!i! DPMs with the monomial

representation an−izi

(n−i)!i! , f can be written as

f =

n
∑

i=0

γi(n− i)!i!
an−izi

(n− i)!i!
. (35)

Define G by G = gcd{γi(n − i)!i! : i = 0, 1, . . . , n − t}. Then, we can define

π : Ft,n → G∗t,n as π : f 7→
∑n

i=0
γi(n−i)!i!

G
an−izi

(n−i)!i! . It is easy that this π is
surjective. ut

We call the operation converting f ∈ Ft,n into π(f) ∈ G∗t,n the contraction.

Notice that Theorem 2-(b) guarantees that (Y0, Y1)
def
= σ−1(π(f)) becomes a pair

of generating matrices of the (t, n)-VSSS. Obviously, while the relative difference
caused by (Y0, Y1) is the same as that of (X0, X1), the number of rows of Yi
becomes 1/G times as Xi for i = 0, 1. Summarizing, we have the following
theorem giving a general formula of the (t, n)-VSSS:

Theorem 4. Let n ≥ 2 and 2 ≤ t ≤ n be arbitrary integers. Then, for each

(β0, β1, . . . , βn−t) ∈ Bn−t+1, f =
∑n−t

i=0 βie
(i)
t,n leads to a pair of the generating

matrices (Y0, Y1) = σ−1(π(f)) ∈ Nt,n. The relative difference α and the number
of rowsM of such a (Y0, Y1) is given by (33) andM = ||f ||·n!/(2G), respectively,
where, letting f =

∑n
i=0 γia

n−izi denote the expansion of f , G is defined by
G = gcd{γi(n− i)!i! : i = 0, 1, . . . , n}.

Example 1. We construct a pair of generating matrices (Y0, Y1) for the (3, 4)-
VSSS by using Theorem 4. Theorem 4 tells us that for each (β0, β1) ∈ B2 f =
β0a(a − z)3 + β1z(a − z)3 yields (Y0, Y1) ∈ N3,4 . If we set (β0, β1) = (1, 1), it
easily follows that

f = a(a− z)3 + z(a− z)3

= a4 − 2a3z + 2az3 − z4

= 4!
a4

4!
− 2 · 3!

a3z

3!1!
+ 2 · 3!

az3

1!3!
− 4!

z4

4!

= 2 · 3!

[

2
a4

4!
−
a3z

3!1!
+
az3

1!3!
− 2

z4

4!

]

, (36)

which means that g
def
= π(f) = 2a

4

4! −
a3z
3!1! +

az3

1!3! − 2
z4

4! . Since the decomposition

of g is given by g+ = 2a
4

4! +
az3

1!3! and g
− = a3z

3!1! + 2
z4

4! , the concatenations of
DPMs corresponding to g+ and g− become Y0 and Y1 respectively. By using



340 H. Koga

Proposition 1-(a) we obtain

Y0 =









0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0









and Y1 =









1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1









.

This pair of generating matrices, which yields α = 1/6, coincides with the pair
of generating matrices of the (3, n)-VSSS given by Naor and Shamir [14] with
n = 4. Recall that (Y0, Y1) is heuristically constructed in [14]. ut

Notice that the converse of Theorem 4 is also true. That is, we can show that
for any (Y0, Y1) ∈ Nt,n there exists an f ∈ Ft,n satisfying (Y0, Y1) = σ−1(π(f)).
This property is due to the fact that π : Ft,n → G∗t,n is surjective and there exists
a surjection π̃ : Gt,n → G∗t,n which is defined similarly to π in Proposition 2.

3.2 Construction of Suboptimal (t, n)-VSSS Using the Formula

In this subsection we consider construction of an optimal (t, n)-VSSS by using
Theorem 4. We consider the following two kinds of criteria for optimization: (A)
maximization of the relative difference α, and (B) minimization of the number of
rowsM . If there exist more than one pair of generating matrices with maximum
α under (A), we choose the pair with the smallest M . On the other hand, if
there exist more than one pair of generating matrices with minimum M under
(B), we choose the pair of with the greatest α.
How can we find the optimal (Y0, Y1) ∈ Nt,n by using Theorem 4 un-

der criteria (A) or (B)? Unfortunately, it is quite difficult to find the optimal
(Y0, Y1) theoretically because the formulas of α and M given in Theorem 4
include ||f || or G. However, we can use Theorem 4 in the following way for
finding a suboptimal pair of generating matrices of (t, n)-VSSS. We first choose
a subset B′n−t+1 ⊂ Bn−t+1 with a finite number of elements adequately. Next,

for each (β0, β1, . . . , βn−t) ∈ B
′
n−t+1 we expand f =

∑n−t
i=0 βie

(i)
t,n to the form

f =
∑n

i=0 γia
n−izi and compute G = gcd{γi(n − i)!i! : i = 0, 1, . . . , n}. Since

Theorem 4 tells us that both M and α are determined from f and G, recall-
ing that |B′n−t+1| < ∞, we can find (β0, β1, . . . , βn−t) ∈ B

′
n−t+1 that leads to

(Y0, Y1) ∈ Nt,n optimal in B
′
n−t+1. Though we mention only (A) and (B) as cri-

teria of optimization here, such a search is possible under another criterion given
in [7, 15]. In addition, notice that, since Bn−t+1 is a countably infinite set, we
can choose B′n−t+1 such that the suboptimal (Y0, Y1) becomes globally optimal
as |B′n−t+1| → ∞.
In our computer search, we defined B′n−t+1 as the collection of all (β0, β1, . . . ,

βn−t) ∈ Z
n−t+1 satisfying βi ≥ 0 for all i = 0, 1, . . . , n−t, gcd{β0, β1, . . . , βn−t} =

1 and
∑n−t

i=0 βi ≤ 120. For each n ≤ 9 and 2 ≤ t ≤ n−1 we exhaustively searched
for (β0, β1, . . . , βn−t) ∈ B′n−t+1 that yields (Y0, Y1) ∈ Nt,n with the optimality in
B′n−t+1 under the two respective criteria. Clearly, time required for this search
becomes long as n − t + 1 increases. However, for small n such as 9 this search
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Table 1. Suboptimal (t, n)-VSSS in B′n−t+1 for 3 ≤ n ≤ 9 under (A)

(t, n) M α {βi}
n−t

i=0

(2,3) 3 1

3
{1, 2}, {2, 1}

(2,4) 6 1

3
{1, 2, 1}

(3,4) 6 1

6
{1, 1}

(2,5) 10 3

10
{2, 4, 6, 3},

{3, 6, 4, 2}

(3,5) 8 1

8
{3, 4, 3}

(4,5) 15 1

15
{2, 3}, {3, 2}

(2,6) 20 3

10
{1, 2, 3, 2, 1}

(3,6) 10 1

10
{2, 3, 3, 2}

(4,6) 36 1

18
{4, 7, 4}

(5,6) 30 1

30
{1, 1}

(2,7) 35 2

7
{3, 6, 9, 12, 8, 4},

{4, 8, 12, 9, 6, 3}

(3,7) 30 1

10
{3, 9, 11, 9, 3}

(4,7) 70 3

70
{15, 32, 38, 20},

{20, 38, 32, 15}

(t, n) M α {βi}
n−t

i=0

(5,7) 48 1

48
{2, 3, 2}

(6,7) 70 1

70
{3, 4}, {4, 3}

(2,8) 70 2

7
{1, 2, 3, 4, 3, 2, 1}

(3,8) 42 2

21
{1, 3, 4, 4, 3, 1}

(4,8) 160 3

80
{9, 20, 26, 20, 9}

(5,8) 112 1

56
{2, 5, 5, 2}

(6,8) 198 1

99
{15, 26, 15}

(7,8) 140 1

140
{1, 1}

(2,9) 126 5

18
{4, 8, 12, 16, 20, 15, 10, 5},

{5, 10, 15, 20, 16, 12, 8, 4}

(3,9) 56 5

56
{5, 15, 21, 23, 21, 15, 5}

(4,9) 630 2

63
{3, 7, 10, 10, 7, 3}

(5,9) 8064 13

896
{11, 29, 37, 29, 11}

(6,9) 1764 1

147
{19, 39, 37, 17}

(7,9) 252 1

252
{1, 2, 1}

(8,9) 315 1

315
{4, 5}, {5, 4}

was completed in realistic time (at most several days) when we used a personal
computer with a Pentium III 1.0GHz processor.

Table 1 shows M and α of generation matrices of (t, n)-VSSS that is optimal
in B′n−t+1 under criterion (A). While [3] discusses the optimality on α for t =
3, 4, 5, n−1 from a combinatoric viewpoint under (A), their approach cannot be
applied to the cases of 6 ≤ t ≤ n − 2. We found pairs of generating matrices
of (6, 8)-, (6, 9)- and (7, 9)-VSSSs with the optimality (A) in B′

n−t+1. For each
2 ≤ n ≤ 9 and 2 ≤ t ≤ 4, α in Table 1 attains the theoretical upper bound given
in [8] from linear programming approach (for t ≥ 5 no upper bound is given
in [8]). In addition, for each 2 ≤ n ≤ 9 and 2 ≤ t ≤ 5 α in Table 1 is greater
than or equal to α in [5] except for the case of (5, 7)-VSSS (for t ≥ 6 α is not
written in [5]). The pair of generating matrices of the (5, 7)-VSSS in [5], yielding
α = 4/147, may not belong to Nt,n because we cannot find such a pair even
from a larger set {(β0, β1, β2) ∈ Z

3 : β0 + β1 + β2 > 0, |βi| ≤ 1000 for i=0,1,2}.
Furthermore, a pair of generating matrices of the (4, 7)-VSSS, which is written

as g = 15a
7

7! − 4
a6z
6!1! +

a3z4

3!4! − 6
az6

1!6! + 20
z7

7! in the polynomial expression and was
first reported in [12], was turned out to be optimal in B′

n−t+1 (the method for
finding such g is not written in [12]). Clearly, this pair of generating matrices,
yielding α = 3/70 andM = 70, is better than the pair given by [3] with α = 3/80
and M = 160.
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On the other hand, if n ≤ 9, under (B) we found pairs of generating matrices
(Y0, Y1) with the same number of rows as the pairs given by Droste [6] except
for the case of (6, 8)-VSSS. While Droste [6] mentions the existence of (Y0, Y1)
with M = 128 and α = 1/128, we found (Y0, Y1) with M = 126 and α = 1/126
(choose (β0, β1, β2) = (5, 14, 9) or (9, 14, 5)). In addition, for the case of n = 10,
we found a pair of generating matrices of the (8, 10)-VSSS with M = 590 and
α = 1/590 (choose (β0, β1, β2) = (14, 22, 9)), though Droste [6] just mentions the
existence of (Y0, Y1) with M = 640 and α = 1/640.
It is also interesting to find a (β0, β1, . . . , βn−t) ∈ Bn−t+1 that lead to a simple

pair of generating matrices (Y0, Y1) ∈ Nt,n. We conclude the paper by giving such
a (Y0, Y1) expressed in the polynomial representation for t = n, n− 1, 2

(i) (n, n)-VSSS
Theorem 3 tells us that elements of Fn,n can be written as f = β0(a − z)n,

where β0 is a positive integer. Then, it easily follows that

f = β0

n
∑

i=0

(−1)i
(

n

i

)

an−izi

= β0n!

[ n
∑

i=0

(−1)i
an−izi

(n− i)!i!

]

Hence, we have π(f) =
∑n

i=0(−1)
i an−izi

(n−i)!i! that is independent of β0. This is a

pair of generating matrices with α = 1/2n given by Naor and Shamir [14].

(ii) (n− 1, n)-VSSS
Theorem 3 guarantees that f ∈ Fn−1,n can be expressed as f = β0a(a −

z)n−1 + β1z(a− z)n−1, where (β0, β1) ∈ B2. We set β0 = β1 = 1 for even n and
β0 = b

n
2 c and β1 = d

n
2 e for odd n. Then, π(f) can be expressed as

π(f) =



















n
∑

i=0

(−1)i
(n

2
− i
) an−izi

(n− i)!i!
, if n is even,

n
∑

i=0

(−1)i
(

n+ 1

2
− i

)

an−izi

(n− i)!i!
, if n is odd,

which leads to the pair of generating matrices with M = n
2

(

n−1
n/2−1

)

and α =

1/[n2
(

n−1
n/2−1

)

] for even n and M = n
(

n−1
(n−1)/2

)

and α = 4/[n
(

n−1
(n−1)/2

)

] for odd n.

These pairs of generating matrices are given by Blundo et al [3].

(iii) (2, n)-VSSS

By Theorem 3, f ∈ F2,n can be written as f =
∑n−2

i=0 βia
n−2−izi(a − z)2,

where (β0, β1, . . . , βn−2) ∈ Bn−1. If we set βi = n−1−i for all i = 0, 1, . . . , n−2,
we have

π(f) = (n− 1)
an

n!
−

an−1z

(n− 1)!1!
+
zn

n!
,
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which leads to the pair of generating matrices given by Naor and Shamir [14]
with M = n and α = 1/n. On the other hand, for the case of even n if we set
βi = i+ 1 for i = 0, 1, . . . , n2 − 1 and βi = n− i− 1 for i = n

2 ,
n
2 + 1, . . . , n− 2,

we have

π(f) =
1

2

(

n

n/2

)

an

n!
−

an/2zn/2

(n/2)!(n/2)!
+
1

2

(

n

n/2

)

zn

n!
,

The pair of generating matrices corresponding to f above satisfies M =
(

n
n/2

)

and α = n
4(n−1) .

Appendix:

A Proof of Theorem 1

We prove Theorem 1-(a) here because Theorem 1-(b) can be developed similarly.
Let X0 and X1 be concatenations of CPMs with the polynomial representations
f0 and f1, respectively. By the assumption of the theorem, f0 and f1 satisfy (7)
and (8). In view of Definition 1 and the definition of the generating matrices, it
is sufficient to prove that (i) X0[S] = X1[S] for any S ∈ 2P with |S| = t−1, and
(ii) h(OR(X0[S])) < h(OR(X1[S])) for any S ∈ 2

P with |S| = t.
The proof of property (i) is simple. Since Proposition 1 tells us that for

i = 0, 1 application of ψn−t+1 to fi means elimination of arbitrary n− t+1 rows
from Xi, (7) implies that X0[S] = X1[S] for any S ∈ 2

P with |S| = t − 1. This
establishes property (i). On the other hand, we notice that ψn−tfi|z=0 means the
number of the CPMs represented as at in OR(Xi[S]) for any S ∈ 2P with |S| = t.
Then, (8) implies that OR(X0[S]) contains the CPMs represented as a

t more
than OR(X1[S]), which immediately leads to h(OR(X0[S])) < h(OR(X1[S])).
This establishes property (ii).

B Proof of Lemma 2

We prove Lemma 2 by induction on l. The claim of the lemma is trivial if l = 0.
Let l ≥ 1 be an arbitrary integer and suppose that an arbitrary g ∈ Rn with
g = zlh for some h ∈ Rn−l satisfies ψ

lg = 0. Since

ψlg = ψl(zlh)

= ψl−1
(

{lh+ z · (ψh)}zl−1
)

, (B.1)

we have
lh+ z · (ψh) = 0 (B.2)

by induction hypothesis. Setting

h = γ0a
n−l + γ1a

n−l−1z + · · ·+ γn−lz
n−l,
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(B.2) leads to

lγ0a
n−l+[(n−l)γ0+2γ1]a

n−l−1z+· · ·+[γn−l−1+(n−l+1)γn−l]z
n−l = 0, (B.3)

which mean that lγ0 = (n− l)γ0+2γ1 = · · · = γn−l−1+ (n− l+1)γn−l = 0 and
therefore γ0 = γ1 = · · · = γn−l = 0.
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