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Abstract. We present novel realizations of the transitive signature prim-
itive introduced by Micali and Rivest [12], and also provide an answer
to an open question they raise regarding the security of their RSA based
scheme. Our schemes provide performance improvements over the scheme
of [12].

1 Introduction

The concept. The context envisioned by Micali and Rivest [12] is that of
dynamically building an authenticated graph, edge by edge. The signer, having
secret key tsk and public key tpk, can at any time pick a pair i, j of nodes
and create a signature of {i, j}, thereby adding edge {i, j} to the graph. A
composability property is required: given a signature of an edge {i, j} and a
signature of an edge {j, k}, anyone in possession of the public key can create a
signature of the edge {i, k}. Security asks that this limited class of forgeries be the
only possible ones. (I.e., without tsk, it should be hard to create a valid signature
of edge {i, j} unless i, j are connected by a path whose edges have been explicitly
authenticated by the signer.) Thus the authenticated graph at any point is the
transitive closure of the graph formed by the edges explicitly authenticated by
the signer, whence the name of the concept. We refer the reader to Section 2 for
formal definitions and to [12] for motivation and potential applications.

Realizing the concept. A transitive signature scheme can be trivially re-
alized by accepting, as a valid signature of {i, j}, any chain of signatures that
authenticates a sequence of edges forming a path from i to j. Two issues lead
[12] to exclude this: the growth in signature size, and the loss of privacy incurred
by having signatures carry information about their history. The main result of
[12] is a (non-trivial) transitive signature scheme (we call it the MRTS scheme)
proven to be (transitively) unforgeable under adaptive chosen-message attack
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Scheme Signing cost Verification cost Composition cost Signature size

MRTS 2 stand. sigs 2 stand. verifs 2 adds in Zq 2 stand. sigs
2 exp. in G 1 exp. in G 2 points in G

2 points in Zq

FBTS-1 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs
O(|N |2) ops O(|N |2) ops 3 points in Z∗

N

FBTS-2 4 sq. roots in Z∗
N O(|N |2) ops O(|N |2) ops 1 point in Z∗

N

RSATS-1 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs
2 RSA encs 1 RSA enc. 3 points in Z∗

N

RSATS-2 1 RSA dec. 1 RSA enc. O(|N |2) ops 1 point in Z∗
N

Fig. 1. Cost comparisons amongst transitive signature schemes. The word “stand.”
refers to operations of the underlying standard signature scheme, which are eliminated
for FBTS-2 and RSATS-2. G denotes the group of prime order q used in MRTS, and N

denotes a modulus product of two primes as used in the other schemes. Abbreviations
used are: “exp.” for an exponentiation in the group; “RSA enc.” for an RSA encryption;
“RSA dec.” for an RSA decryption performed given the decryption exponent; “sq. root”
for a square root modulo N performed using the prime factors of N ’; and “ops” for
the number of elementary bit operations in big-O notation.

(see Section 2 for formal definitions) assuming that the discrete logarithm prob-
lem is hard in an underlying prime-order group and assuming security of an
underlying standard signature scheme. They also present a natural RSA based
transitive signature scheme but point out that even though it seems secure, and a
proof of unforgeability under non-adaptive chosen-message attacks exists, there
is no known proof of unforgeability under adaptive chosen-message attacks. They
thereby highlight the fact that in this domain, adaptive attacks might be harder
to provably protect against than non-adaptive ones.

In summary, transitive signatures (unforgeable under adaptive chosen-mess-
age attacks) at this point have just a single realization, namely theMRTS scheme.
It is standard practice in cryptography to seek new and alternative realizations
of primitives of potential interest, both to provide firmer theoretical foundations
for the existence of the primitive by basing it on alternative conjectured hard
problems and to obtain performance improvements. This paper presents new
schemes that accomplish both of these objectives, and also provides an answer
to the question about the RSA scheme.

The node certification paradigm. It is worth outlining the node certifica-
tion based paradigm introduced by the MRTS scheme, which will be our starting
point. The signer’s keys include those of a standard digital signature scheme, and
the public key includes additional items. (In the MRTS scheme, this is a group
G of prime order q and a pair of generators of G.) The signer associates to each
node i in the current graph a node certificate consisting of a public label L(i)
and a signature of (i, L(i)) under the standard scheme. The signature of an edge
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contains the certificates of its endpoints plus an edge label δ. Verification of the
signature of an edge involves relating the edge label to the public labels of its
endpoints as provided in the node certificates and verifying the standard signa-
tures in the node certificates. Composition involves algebraic manipulation of
edge labels.3

The paradigm is useful, but brings an associated cost. Producing a signature
for an edge can involve computing two normal signatures. The length of an edge
signature, containing two node certificates each including a standard signature,
can be large even if the edge labels are small.

1.1 Transitive Signatures based on Factoring

Our first factoring-based transitive signature (FBTS-1) scheme stays within the
node certification paradigm but, by implementing label algebra via square-roots
modulo a composite, provides security based on factoring while reducing some
costs compared to MRTS.

FBTS-1. The signer has keys for a standard signature scheme, and its public
key additionally includes a modulus N product of two large primes. The public
label of a node i is a quadratic residue L(i) ∈ Z∗

N , and an edge label of edge
{i, j} is a square root of L(i)L(j)−1 mod N assuming i < j. Composition in-
volves multiplying edge labels modulo N . We prove that FBTS-1 is unforgeable
under adaptive chosen-message attack, assuming the hardness of factoring the
underlying modulus, and assuming security of the underlying standard signa-
ture scheme. The delicate part of this proof is an information-theoretic lemma
showing that, even under an adaptive chosen-message attack, for any {i, j} not
in the transitive closure of the current graph, an adversary has zero advantage
in determining which of the square roots of L(i)L(j)−1 is held by the signer.
With regard to costs, we are interested in the computational cost of signing

an edge (in the worst case that both endpoints of the edge are not in the current
graph); the computational cost of verifying a candidate signature of an edge;
the computational cost of composing two edge signatures to obtain another; and
the size of a signature. Since FBTS-1 continues to employ the node certification
paradigm, it incurs the same costs as MRTS from the use of the standard signa-
ture scheme. However, as Figure 1 indicates, it is otherwise cheaper than MRTS

for signing and verifying, reducing the extra cost from cubic (exponentiation) to
quadratic (a couple of multiplications and an inverse).

FBTS-2: Eliminating node certificates. FBTS-1 is amenable to a modifi-
cation which eliminates the need for node certificates and thereby removes the
standard signature scheme, and all its associated costs, from the picture. The
signer’s public key is a modulus N product of two primes p, q that make up the
signer’s secret key. The public label of a node i is not chosen by the signer but

3 Note that the signer is stateful, and once quantities associated to a node are created,
they are stored and re-used for all edges adjacent to this node. This is important for
security. See Section 3 for a discussion of how state can be eliminated.
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Scheme Proven to be unforgeable under adaptive

chosen-message attack assuming

RO Model?

MRTS Security of standard signature scheme No
Hardness of discrete logarithm problem in a group of
prime order

FBTS-1 Security of standard signature scheme No
Hardness of factoring

FBTS-2 Hardness of factoring Yes

RSATS-1 Security of standard signature scheme No
RSA is secure against one-more-inversion attack

RSATS-2 RSA is secure against one-more-inversion attack Yes

Fig. 2. Provable security attributes of transitive signature schemes. We indicate the
assumptions under which there is a proof of unforgeability under adaptive chosen-
message attack, and whether or not the random oracle model is used.

rather specified via the output of a public hash function applied to i. (A diffi-
culty, addressed in Section 4, is that the hash output might not be a quadratic
residue.) We prove that FBTS-2 is unforgeable under adaptive chosen-message
attack, assuming the hardness of factoring the underlying modulus, in a model
where the hash function is a random oracle [5].
As Figure 1 indicates, the major cost savings is elimination of all costs as-

sociated to the standard scheme. However, signing now requires computation of
square roots modulo N by the signer based on the prime factorization of N ,
which has cost comparable to an exponentiation modulo N . Thus overall the
main gain is the reduction in signature size.
This hash based modification is made possible by the fact that squaring

modulo a composite is a trapdoor function. The MRTS scheme is not amenable
to a similar hash-based modification since the discrete exponentiation function
is not trapdoor over the prime order groups used in [12].

1.2 Transitive Signatures based on RSA

RSATS-1. The RSA-based transitive signature scheme noted in [12] (that we
call RSATS-1) employs the node certification paradigm. The signer has keys for
a standard signature scheme. Its public key additionally includes an RSA modu-
lus N and encryption exponent e, while its secret key includes the corresponding
decryption exponent d. The public label of a node i is a point L(i) ∈ Z∗

N , and
the edge label of edge {i, j} is L(i)dL(j)−d mod N assuming i < j. Composition
involves multiplying edge labels modulo N . One can prove that RSATS-1 is un-
forgeable under non-adaptive chosen-message attacks assuming the one-wayness
of RSA and the security of the underlying standard signature scheme. No adap-
tive chosen-message attack that succeeds in forgery has been found, but neither
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has it been proven that RSATS-1 is unforgeable under adaptive chosen-message
attack.

One might wonder why proofs exist forMRTS and FBTS-1 but remain elusive
for RSATS-1 in spite of the obvious similarities between these schemes. The
proofs for MRTS and FBTS-1 exploit the fact that there are multiple valid edge
labels for any given edge in the graph, and that finding two different edge labels
implies solving the underlying hard problem. With RSATS-1, the edge label is
uniquely determined by the two node certificates, and this paradigm fails.

This situation (namely a scheme that appears to resist both attack and proof)
is not uncommon in cryptography, and we suggest that it is a manifestation of
the fact that the security of the scheme is relying on properties possessed by
RSA but going beyond those captured by the assumption that RSA is one-way.
Accordingly we seek an alternative, stronger assumption upon which a proof of
security can be based.

We prove that RSATS-1 is unforgeable under adaptive chosen-message attacks
under the assumption that RSA is secure under one-more-inversion (and the
standard signature scheme is secure). This assumption was introduced by [2],
who used it to prove the security of Chaum’s blind signature scheme [7]. It was
also used in [4] to prove security of the GQ identification scheme [10] against
impersonation under active attack.

Security under one more inversion considers an adversary given input an
RSA public key N, e, and two oracles. The challenge oracle takes no inputs and
returns a random target point in Z∗

N , chosen anew each time the oracle is invoked.
The inversion oracle given y ∈ Z∗

N returns y
d mod N where d is the decryption

exponent corresponding to e. The assumption states that it is computationally
infeasible for the adversary to output correct inverses of all the target points if
the number of queries it makes to its inversion oracle is strictly less than the
number of queries it makes to its challenge oracle. When the adversary makes
one challenge query and no inversion queries, this reduces to the standard one-
wayness assumption.

RSATS-2. The trapdoorness of the RSA function makes RSATS-1 amenable to
the elimination of node certificates via hashing, based on ideas similar to the
ones we introduced above. We present RSATS-2, a transitive signature scheme
that is unforgeable under adaptive chosen-message attacks in the random oracle
model assuming RSA is secure against one-more-inversion. The public label of a
node i is not chosen by the signer but rather implicitly specified as the output
of a hash function applied to i, and RSA decryption is used to compute edge
labels. Finally we note that RSATS-2 is the only one of the schemes discussed
here whose signer is naturally stateless.

Figures 1 and 2 summarize, respectively, the costs and provable-security at-
tributes of the various schemes we have introduced, and compare them with the
MRTS scheme.
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1.3 Definitional Contributions

Regarding the composability property, Micali and Rivest [12, p. 238] (we have
modified the notation to be consistent with ours) say: “... if someone sees Al-
ice’s signatures on edges {i, j} and {j, k} then that someone can easily compute
a valid signature on edge {i, k} that is indistinguishable from a signature on
that edge that Alice would have produced herself.” This seems to suggest that
composition is only required to work when the given signatures were explicitly
produced by the signer, but in fact we want composition to work even if the given
signatures were themselves obtained via composition. Formulating an appropri-
ate requirement turns out to be more delicate than one might imagine. One could
require the simple condition that valid signatures (meaning, ones accepted by
the verification algorithm relative to the signer’s public key) can be composed
to yield valid signatures. (This would follow [11], who require a condition that
implies this.) But this requirement is too strong in the current context. Indeed,
the MRTS scheme does not meet it, meaning there are valid signatures which,
when composed, yield an invalid signature. The same is true for our schemes.

It can be proved that for MRTS and our schemes, finding valid signature
inputs that make the composition algorithm return an invalid signature is com-
putationally hard assuming the scheme is secure. But we prefer to not tie correct-
ness of composition to security. Instead, we formulate correctness of composition
via a recursive requirement that says that as long as one obtains signatures either
directly via the signer or by applying the composition operation to signatures
previously legitimately obtained or generated, then the resulting signature is
valid. (This would be relatively easy to formulate if the signer was stateless,
but needs more care due to the fact that the natural formulation of transitive
signature schemes often results in a stateful signer.) As part of the formaliza-
tion we provide in Definition 1, we follow [11] and require a very strong form of
the indistinguishability requirement mentioned in the quote above, namely that
the signature output by the composition algorithm is not just indistinguishable
from, but identical to, the one the signer would have produced. (As argued in
[11], this guarantees privacy.) The MRTS scheme, as well as all our schemes,
meet this strong definition.

1.4 Related Work

Transitive signatures are one case of a more general concept promulgated by
Rivest [14] in talks, namely that of signature schemes that admit forgery of sig-
natures derived by some specific operation on previous signatures but resist other
forgeries. Johnson, Molnar, Song and Wagner [11] formalize a notion of homo-
morphic signature schemes that captures this. Context Extraction Signatures, as
introduced earlier by [15], as well as redactable signatures and set-homomorphic
signatures [11], fall in this framework. A signature scheme that is homomorphic
with respect to the prefix operation is presented by Chari, Rabin and Rivest [6].
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(tpk, tsk)
R

← TKG(1k)
S ← ∅ ; Legit← true ; NotOK← false

Run A with its oracles until it halts, replying to its oracle queries as follows:
If A makes TSign query i, j then
If i = j then Legit← false

Else
Let σ be the output of the TSign oracle and let S ← S ∪ {({i, j}, σ)}
If TVf(tpk, i, j, σ) = 0 then NotOK← true

If A makes Comp query i, j, k, σ1, σ2 then
If [({i, j}, σ1) 6∈ S OR ({j, k}, σ2) 6∈ S OR i, j, k are not all distinct] then

Legit← false

Else
Let σ be the output of the Comp oracle and let S ← S ∪ {({i, k}, σ)}
Let τ ← TSign(tsk, i, k)
If [(σ 6= τ) or TVf(tpk, i, k, σ) = 0] then NotOK← true

When A halts, output (Legit ∧ NotOK) and halt

Fig. 3. Experiment used to define correctness of the transitive signature scheme TS =
(TKG,TSign,TVf,Comp).

2 Definitions

Notation.We let ε denote the empty string and ‖ the concatenation operator on

strings. We let N = {1, 2, . . .} be the set of positive integers. The notation x
R

← S

denotes that x is selected randomly from set S. If A is a possibly randomized

algorithm then the notation x
R

← A(a1, a2, . . .) denotes that x is assigned the
outcome of the experiment of running A on inputs a1, a2, . . ..

Graphs. All graphs in this paper are undirected. A graph G∗ = (V ∗, E∗) is said
to be transitively closed if for all nodes i, j, k ∈ V ∗ such that {i, j} ∈ E∗ and
{j, k} ∈ E∗, it also holds that {i, k} ∈ E∗; or in other words, edge {i, j} ∈ E∗

whenever there is a path from i to j in G∗. If G = (V,E) is a graph, its transitive

closure is the graph G̃ = (V, Ẽ) where {i, j} ∈ Ẽ iff there is a path from i to j in
G. Note that the transitive closure of any graph G is a transitively closed graph.
Also note that any transitively closed graph can be partitioned into connected
components such that each component is a complete graph.

Transitive signature schemes and their correctness. A transitive sig-
nature scheme TS = (TKG,TSign,TVf,Comp) is specified by four polynomial-
time algorithms, and the functionality is as follows:

• The randomized key generation algorithm TKG takes input 1k, where k ∈ N
is the security parameter, and returns a pair (tpk, tsk) consisting of a public
key and matching secret key.

• The signing algorithm TSign, which could be stateful or randomized (or
both), takes input the secret key tsk and nodes i, j ∈ N, and returns a
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value called an original signature of edge {i, j} relative to tsk. If stateful, it
maintains state which it updates upon each invocation.

• The deterministic verification algorithm TVf, given tpk, nodes i, j ∈ N, and
a candidate signature σ, returns either 1 or 0. In the former case we say
that σ is a valid signature of edge {i, j} relative to tpk.

• The deterministic composition algorithm Comp takes tpk, nodes i, j, k ∈ N
and values σ1, σ2 to return either a value σ or a symbol ⊥ to indicate failure.

The above formulation makes the simplifying assumption that the nodes of the
graph are positive integers. In practice it is desirable to allow users to name nodes
via whatever identifiers they choose, but these names can always be encoded as
integers, so we keep the formulation simple.
Naturally, it is required that if σ is an original signature of edge {i, j} relative

to tsk then it is a valid signature of {i, j} relative to tpk.
As discussed in Section 1.3, formulating a correctness requirement for the

composition algorithm is more delicate. Micali and Rivest [12] seem to suggest
that composition is only required to work when the given signatures were ex-
plicitly produced by the signer, but in fact we want composition to work even
if the given signatures were themselves obtained via composition. Furthermore
the indistinguishability requirement is not formalized in [12].
Definitions taking these issues into account are however provided in [11].

They ask that whenever the composition algorithm is invoked on valid signa-
tures (valid means accepted by the verification algorithm relative to the signer’s
public key) it returns the same signature as the signer would produce. This
captures indistinguishability in a strong way that guarantees privacy. However,
one implication of their definition is that whenever the composition algorithm is
invoked on valid signatures, it returns a valid signature, and this last property
is not true of known node certification based transitive signature schemes such
as MRTS,FBTS-1 and RSATS-1. For these schemes, it is possible to construct
examples of valid signature inputs that, when provided to the composition al-
gorithm, result in the latter failing (returning ⊥ because it cannot compose) or
returning an invalid signature. (Roughly, this is because composition of a sig-
nature σ1 of {i, j} with a signature σ2 of {j, k} in these schemes requires that
the public labels of node j as specified in σ1 and σ2 be the same. Validity of the
individual signatures cannot guarantee this.)
This is not a weakness in the schemes, because in practice composition is

applied not to arbitrary valid signatures but to ones that are legitimate, the
latter being recursively defined: a signature is legitimate if it is either obtained
directly by the signer, or obtained by applying the composition algorithm to
legitimate signatures. What it points to is that we need to formulate a new
correctness definition for composition that captures this intuition and results in
a notion met by the known transitive signature schemes. Roughly, we would like
a formulation that says that if the composition algorithm is invoked on legitimate
signatures, then it returns the same signature as the signer would have produced.
(Here, we are continuing to follow [11] in capturing indistinguishability by the
strong requirement that composed signatures are identical to original ones, but
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weakening their requirement by asking that this be true not for all valid signature
inputs to the composition algorithm, but only for legitimate inputs.)

The formalization would be relatively simple (the informal description above
would pretty much be it) if the signing algorithm were stateless, but the natural
formulation of numerous transitive signature schemes seems to be in terms of a
stateful signing algorithm. In this case, it is not clear what it means that the
output of the composition algorithm is the same as that of the signer, since the
latter’s output depends on its internal state which could be different at different
times. To obtain a formal definition of correctness that takes into account the
statefulness of the signing algorithm, we proceed as follows. We associate to
any algorithm A (deterministic, halting, but not computationally limited) and
security parameter k ∈ N the experiment of Figure 3, which provides A with
oracles

TSign(tsk, ·, ·) and Comp(tpk, ·, ·, ·, ·, ·) ,

where tpk, tsk have been produced by running TKG on input 1k. In this exper-
iment, the TSign oracle maintains state, and updates this state each time it is
invoked. It also tosses coins anew at each invocation if it is randomized.

Definition 1. We say that the transitive signature scheme TS is correct if for
every (computationally unbounded) algorithm A and every k, the output of the
experiment of Figure 3 is true with probability zero.

The experiment computes a boolean Legit which is set to false if A ever makes
an “illegitimate” query. It also computes a boolean NotOK which is set to true if
a signature returned by the composition algorithm differs from the original one.
To win, A must stay legitimate (meaning Legit = true) but violate correctness
(meaning NotOK = true). The experiment returns true iff A wins. The definition
requires that this happen with probability zero.

Security of transitive signature schemes.We recall the notion of security
of [12]. Associated to transitive signature scheme TS = (TKG,TSign,TVf,Comp),
adversary F and security parameter k ∈ N is an experiment, denoted

Exptu-cma
TS,F (k) ,

that returns 1 if and only if F is successful in its attack on the scheme. The
experiment begins by running TKG on input 1k to get keys (tpk, tsk). If we
are in the random oracle model, it also chooses the appropriate hash functions
at random. It then runs F , providing this adversary with input tpk and oracle
access to the function TSign(tsk, ·, ·). The oracle is assumed to maintain state
or toss coins as needed. Eventually, F will output i′, j′ ∈ N and some value σ′.
Let E be the set of all edges {a, b} such that F made oracle query a, b, and let
V be the set of all integers a such that a is adjacent to some edge in E. We say
that F wins if σ′ is a valid signature of {i′, j′} relative to tpk but edge {i′, j′} is

not in the transitive closure G̃ of graph G = (V,E). The experiment returns 1 if
F wins and 0 otherwise. The advantage of F in its attack on TS is the function
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Advtu-cma
TS,F (·) defined for k ∈ N by

Advtu-cma
TS,F (k) = Pr

[
Exptu-cma

TS,F (k) = 1
]
,

the probability being over all the random choices made in the experiment. We
say that TS is transitively unforgeable under adaptive chosen-message attack if
the function Advtu-cma

TS,F (·) is negligible for any adversary F whose running time
is polynomial in the security parameter k.

RO model. Some of our schemes will be defined in the random oracle model
[5], which means that the algorithms TSign,TVf,Comp all have oracle access to
one or more functions which in the correctness and security experiments are as-
sumed to be drawn at random from appropriate spaces. Formally, both the exper-
iment of Figure 3 and Exptu-cma

TS,F (k) are augmented to choose a function mapping

{0, 1}∗ to {0, 1}k at random, and the adversary, as well as the TSign,TVf,Comp

algorithms, then get oracle access to this function. In Definition 1, the proba-
bility includes the choice of these functions, and so does the probability in the
definition of Advtu-cma

TS,F (k). Usually the scheme will need to construct out of the
given function a function H with suitable range depending on the public key.

Standard signature schemes. Some of our schemes use an underlying stan-
dard digital signature scheme SDS = (SKG,SSign,SVf), described as usual via its
polynomial-time key generation, signing and verification algorithms. We use the
security definition of [9], where the forger B is given adaptive oracle access to the
signing algorithm, and its advantage Advuf-cma

SDS,B (k) in breaking SDS is defined
as the probability that it outputs a valid signature for a message that was not
one of its previous oracle queries. The scheme SDS is said to be secure against
forgery under adaptive chosen-message attack if Advuf-cma

SDS,B (·) is negligible for
every forger B with running time polynomial in the security parameter k.

3 A Transitive Signature Scheme based on Factoring

Factoring problem. A modulus generator is a randomized, polynomial-time
algorithm that on input 1k returns a triple (N, p, q) where N = pq, 2k−1 ≤
N < 2k, and p, q are distinct, odd primes. There are numerous possible modulus
generators which differ in the structure of the primes chosen or the distribution
under which they are chosen. We do not restrict the type of generator, but only
assume that the associated factoring problem is hard. Formally, for any modulus
generator MG, adversary A and k ∈ N we let

Advfac
MG,A(k) = Pr

[
r ∈ {p, q} : (N, p, q)

R

← MG(1k) ; r
R

← A(k,N)
]
.

We say that factoring is hard relative to MG if the function Advfac
MG,A(·) is neg-

ligible for every A whose running time is polynomial in k.

The scheme. We are given a modulus generator MG and a standard digital
signature scheme SDS = (SKG,SSign,SVf). We associate to them a transitive
signature scheme FBTS-1 = (TKG,TSign,TVf,Comp) defined as follows:
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• Given input 1k, the key generation algorithm TKG first runs SKG on input 1k

to generate a key pair (spk, ssk) for the standard signature scheme SDS. It
then runs the modulus generator MG on input 1k to get a triple (N, p, q). It
outputs tpk = (N, spk) as the public key of the transitive signature scheme
and tsk = (N, ssk) as the matching secret key. Note that the primes p, q are
discarded and in particular not part of the secret key.

• The signing algorithm TSign maintains state (V, `, L,Σ) where V ⊆ N is the
set of all queried nodes, the function `: V → Z∗

N assigns to each node i ∈ V
a secret label `(i) ∈ Z∗

N , while the function L: V → Z∗

N assigns to each node
i ∈ V a public label L(i), and the function Σ: V → {0, 1}∗ assigns to each
node i a standard signature on i‖L(i) under ssk. When invoked on inputs
tsk, i, j, meaning when asked to produce a signature on edge {i, j}, it does
the following:

If j < i then l← j ; j ← i ; i← l // swap i and j if necessary

If i 6∈ V then V ← V ∪ {i} ; `(i)
R

← Z∗

N ; L(i)← `(i)2 mod N ;

Σ(i)← SSign(ssk, i‖L(i))

If j 6∈ V then V ← V ∪ {j} ; `(j)
R

← Z∗

N ; L(j)← `(j)2 mod N ;

Σ(j)← SSign(ssk, j‖L(j))

δ ← `(i)`(j)−1 mod N ; Ci ← (i, L(i), Σ(i)) ; Cj ← (j, L(j), Σ(j))

Return (Ci, Cj , δ) as the signature of {i, j}.

We refer to (l, L(l), Σ(l)) as a certificate of node l.

• The verification algorithm TVf, on input tpk = (N, spk), nodes i, j and a
candidate signature σ, proceeds as follows:

If j < i then l← j ; j ← i ; i← l // swap i and j if necessary

Parse σ as (Ci, Cj , δ), parse Ci as (i, Li, Σi), parse Cj as (j, Lj , Σj)

If SVf(spk, i‖Li, Σi) = 0 or SVf(spk, j‖Lj , Σj) = 0 then return 0

If Li ≡ δ2Lj mod N then return 1 else return 0.

• The composition algorithm Comp takes nodes i, j, k, a signature σ1 = (C1,

C2, δ1) of {i, j} and a signature σ2 = (C3, C4, δ2) of {j, k}, and proceeds as
follows:

Let Ci ∈ {C1, C2} be such that Ci parses as (i, Li, Σi)
4

Let Cj ∈ {C1, C2} be such that Cj parses as (j, Lj , Σj)

If Cj 6∈ {C3, C4} then return ⊥

Let Ck ∈ {C3, C4} be such that Ck parses as (k, Lk, Σk)

If j < i < k then δ ← δ−1
1 δ2 mod N ; Return (Ci, Ck, δ)

If i < j < k then δ ← δ1δ2 mod N ; Return (Ci, Ck, δ)
If i < k < j then δ ← δ1δ

−1
2 mod N ; Return (Ci, Ck, δ)

If j < k < i then δ ← δ1δ
−1
2 mod N ; Return (Ck, Ci, δ)

If k < j < i then δ ← δ1δ2 mod N ; Return (Ck, Ci, δ)
If k < i < j then δ ← δ−1

1 δ2 mod N ; Return (Ck, Ci, δ)
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A proof by induction can be used to show the following.

Proposition 1. The FBTS-1 transitive signature scheme described above satis-
fies the correctness requirement of Definition 1.

The proof is provided in [3]. We note that it was to ensure that this correctness
requirement is met that we have been detailed regarding the specification of
the composition algorithm above. We point in particular to the fact that the
composition algorithm checks that the certificate Cj in the given signature of
{i, j} exactly matches the one in the given signature of {j, k}. This ensures that
the public labels in these two certificates match, which is important in the proof
of Proposition 1.

Eliminating state. The signing algorithm of the FBTS-1 scheme is stateful.
It is important for composition that the signer associates a single public label to
node i, and it is important for security that it associates to this a single secret
label `(i). (Else it would soon give away two different square roots of L(i).)
The MRTS, FBTS-2 and RSATS-1 schemes also have stateful signing algorithms,
pointing to the fact that the natural formulation of many transitive signature
schemes is in terms of a stateful signing algorithm. However, we note here that
a simple transformation can be used to make the signer stateless, if so desired,
without loss of security. Namely, let the signer’s secret key include a key K

specifying an instance FK from a pseudorandom function family F [8], and use
FK(i) as the underlying coins (randomness) for all choices made by the signer
related to node i. This enables the signer to recompute quantities as it needs
rather than store them and yet be consistent, always creating the same quantities
for a given node. Having pointed this out, however, in the rest of the paper we
continue to work with stateful signing algorithms, since they are more natural
and convenient in this context.

Computational costs. The cost for the signature algorithm is dominated by
multiplications and inversions modulo N , for both of which there exist algo-
rithms quadratic in |N |, and the cost of generating two standard signatures,
which depends on the choice of underlying standard signature scheme. It is not
strictly necessary to test membership in Z∗

N , because it is very unlikely that a
randomly generated value is not coprime with N . Verification takes a couple of
multiplications mod N and two standard signature verifications. The composi-
tion of two signatures involves one multiplication and possibly an inversion in
Z∗

N .

Security. Forging a signature for FBTS-1 is trivial if an insecure instance is
used for the modulus generator MG or the standard signature scheme SDS. The
following theorem, however, states that the construction of FBTS-1 contains no
weaknesses other than those induced by the underlying primitives.

4 This means that we assign the name Ci to whichever of C1, C2 has its first component
equal to the integer i. It is understood that if this is not possible then the algorithm
halts and returns ⊥. The same is true for the other similar steps that follow.
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Theorem 1. Let MG be a modulus generator and let SDS = (SKG,SSign,SVf)
be a standard digital signature scheme. Let FBTS-1 be the transitive signature
scheme associated to them as defined above. If the factoring problem associated
to MG is hard and SDS is secure against forgery under adaptive chosen-message
attack, then FBTS-1 is transitively unforgeable under adaptive chosen-message
attack.

We briefly sketch how a forgery for FBTS-1 can be used to either factor numbers
generated by MG or break the underlying standard signature scheme SDS, and
highlight a small but crucial detail for the analysis in a lemma. We refer to
[3] for the full proof, that involves relatively standard reduction techniques and
probability theory.
Signatures for FBTS-1 can be forged in only two ways: either there is the

forgery that recycles node certificates from previously issued signatures, or there
is the forgery that includes at least one new node certificate. The latter can be
easily transformed into an attack on SDS: the new node certificate is a successful
forgery for SDS, because it contains a standard signature on a message that was
not signed before. A forgery of the first type provides the signer with an edge
label δ′ that is valid relative to the same public labels L(i′) and L(j′) he once
issued for nodes i′ and j′ himself. (During this analysis, we assume wlog that
i′ < j′. If this is not the case, one can swap i′ and j′.) Because these were
computed as the squares of private labels `(i′) and `(j′), he now knows two
square roots of L(i′) · L(j′)−1 mod N , namely δ′ and δ ≡ `(i′) · `(j′)−1 mod N .
It is tempting to say that since `(i′) and `(j′) were chosen at random, with

probability one in two the signer now has two square roots δ and δ′ such that
δ 6≡ ±δ′ mod N , enabling him to factor N . This argument would be correct if
the forger only knew L(i′) and L(j′), without having any further information on
exactly which root the signer knows. However, by signing edges involving nodes
i′ or j′, the signer might have given away some additional information about his
choices for `(i′) and `(j′). It is crucial to the security of the scheme that this
information doesn’t help the forger in creating a forgery with edge label δ′ ≡ ±δ,
as this would annihilate the signer’s advantage in factoring N . Fortunately, it
turns out that the exact value of δ remains information-theoretically hidden from
the forger as long as {i′, j′} is not in the transitive closure of the signed edges.
We will prove this fact using the information-theoretical argument that for

every possible square-root δ of L(i′)L(j′)−1 mod N there are exactly as many
choices for the signer’s private information ` that generate the given forger view
and have `(i′)`(j′)−1 ≡ δ mod N . As the secret labels are chosen uniformly at
random from Z∗

N , this implies that the issued signatures don’t leak any useful
information about which root the signer has in mind.
We represent the signer’s secret information by a random variable ` dis-

tributed uniformly over Secrets = {` | ` : V → Z∗

N}. The forger’s view consists
of a function L assigning a square mod N to each node in V , and a function ∆
assigning an edge label in Z∗

N to each edge in Ẽ. (We discard the standard dig-
ital signatures on the node certificates, as they are irrelevant for this analysis.)
However, not just any pair of functions 〈L,∆〉 can occur as the forger’s view. We
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say that forger view 〈L,∆〉 is consistent with ` ∈ Secrets (and vice versa that `
is consistent with 〈L,∆〉) if and only if

L(i) ≡ `(i)2 mod N for all i ∈ V (1)

∆(i, j) ≡ `(i)`(j)−1 mod N for all {i, j} ∈ Ẽ , i < j (2)

The set of all possible forger views Views can then be defined as the set of all pairs
〈L,∆〉 that are consistent with some ` ∈ Secrets. The actual view of the forger
is a random variable View distributed over Views as induced by `. The following
lemma states that for every 〈L,∆〉 ∈ Views and for every {i′, j′} 6∈ Ẽ, any square
root δ of L(i′)L(j′)−1 mod N is equally likely to be δ ≡ `(i′)`(j′)−1 mod N when
given only View = 〈L,∆〉, and hence that no forger, on input only View, can
predict δ with higher probability of success than random guessing. The following
lemma formalizes this idea and is proven in the full version of this paper [3].

Lemma 1. For any 〈L,∆〉 ∈ Views, for any {i′, j′} 6∈ Ẽ and for any δ ∈ Z∗

N

with δ2 ≡ L(i′)L(j′)−1 mod N :

Pr [δ ≡ δ mod N | View = 〈L,∆〉] =
1

4
.

4 Eliminating Node Certificates via Hashing

The idea. The MRTS and FBTS-1 schemes rely on an underlying standard
digital signature scheme to convince the verifier that the public label L(i) was
associated to node i by the signer, and was not generated by some fraudulent
third party. The disadvantage of this approach is that the signer has to provide
the verifier with all necessary node certificates, thereby increasing the signature
size as well as the computational cost for signing and verifying. In this section we
show how the need for node certificates can be eliminated by specifying the public
labels L(i) via the output of a hash function on input i. No explicit certification
is attached to this value. Rather, we will be able to show that the edge label
provides an “implicit authentication” of the associated node label that suffices
to be able to prove that the scheme is transitively unforgeable under adaptive
chosen-message attack assuming the hardness of factoring, in a model where the
hash function is based on a random oracle.

The hash function. The first thought regarding transforming FBTS-1 based
on this idea is to simply let L(i) = H(i) where H is some public hash function.
However, L(i) needs to be a quadratic residue in Z∗

N , where N is the signer’s
modulus, and this needs to be verifiable given N alone. In practice H must
be built via a cryptographic hash function like SHA-1, which returns 160 bits.
Standard techniques [5] can be used to build H from h so that it has range Z∗

N ,
exploiting the fact that Z∗

N is dense in {0, 1}k where 2k−1 ≤ N < 2k and that
membership in Z∗

N can be tested in poly(k) time given N . However, given that
no polynomial-time algorithm to test quadratic residuosity is known, there is
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no practical way to ensure that H(i) is a quadratic residue while being able to
verify this given N .
We could set L(i) = H(i)2 mod N but this reveals a square-root of L(i) which

makes the scheme insecure. Instead, reusing ideas from [1] and [13], we let the
signer choose N to be a Blum integer (i.e. N = pq with p and q primes such that
p ≡ q ≡ 3 mod 4). Then it is well-known that exactly one square-root (called the
principal one) of each square is itself a square mod N . As a consequence, every
square mod N is also a fourth power mod N , and has exactly four fourth roots.
Now we will choose L(i), `(i) such that L(i) ≡ H(i)2 ≡ `(i)4 mod N where H
is a hash function with range Z∗

N [+1], the elements of Z∗

N with Jacobi symbol
+1. Since the Jacobi symbol can be computed in polynomial time given N , such
a hash function can be easily built starting from a cryptographic hash function.

The FBTS-2 scheme. A modulus generator BG (as defined in Section 3), is said
to be a Blum modulus generator if the primes p, q satisfy p ≡ q ≡ 3 (mod 4).
We associate to any given Blum modulus generator BG a transitive signature
scheme FBTS-2 = (TKG,TSign,TVf,Comp) defined as follows:

• TKG, on input 1k, runs BG(1k) to obtain (N, p, q) and outputs tpk = N

as the public key and tsk = (N, p, q) as the matching secret key. All the
following algorithms are now assumed to have oracle access to a function
HN : {0, 1}

∗ → Z∗

N [+1].

• TSign maintains state (V, `) where V ⊆ N is the set of all queried nodes and
the function `: V → Z∗

N assigns to each node i ∈ V a secret label `(i) ∈ Z∗

N .
When invoked on inputs tsk, i, j, meaning when asked to produce a signature
on edge {i, j}, it does the following:

If j < i then l← j ; j ← i ; i← l // swap i and j if necessary

If i 6∈ V then

V ← V ∪ {i} ; L(i)← HN (i)
2 mod N ; `(i)

R

← L(i)
1

4 mod N

If j 6∈ V then

V ← V ∪ {j} ; L(j)← HN (j)
2 mod N ; `(j)

R

← L(j)
1

4 mod N

δ ← `(i)`(j)−1 mod N

where the notation x
R

← (y)
1

4 mod N means that x is chosen at random
from all fourth roots of y mod N . (These roots can be efficiently computed
using the prime factors p and q.) Return δ as the signature on {i, j}.

• TVf, on input tpk = N , nodes i, j and a signature δ, first swaps i and j if
j < i. It returns 1 if HN (i)

2 ≡ δ4HN (j)
2 mod N and returns 0 otherwise.

• Comp on input nodes i, j, k and signatures δ1, δ2, proceeds as follows:

If j < i then δ1 ← δ−1
1 mod N ; If k < j then δ2 ← δ−1

2 mod N
δ ← δ1 · δ2 mod N

and outputs δ as the transitive composition.

A proof by induction can be used to show the following.

Proposition 2. The FBTS-2 transitive signature scheme described above satis-
fies the correctness requirement of Definition 1.
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Computational costs. Since half of the elements in Z∗

N have Jacobi symbol
+1, a hash function evaluation requires the computation of two Jacobi symbols
on average, which takes time quadratic in |N |. Computing square roots, however,
is cubic in |N |, so the computation of the fourth roots (by extracting square
roots twice) will dominate the cost of generating signatures. Verification and
composition of signatures involve multiplications, inverses and Jacobi symbols
mod N , all of which are operations quadratic in |N |.

Security. In [3], we prove breaking the FBTS-2 scheme equivalent to factoring
in the random oracle model. This means that in the experiment Exptu-cma

FBTS-2,F (k)
used to define the advantage of an adversary F , the function HN is assumed to
be chosen at random from the space of all functions mapping {0, 1}∗ to Z∗

N [+1].
The result is stated as a theorem below.

Theorem 2. Let BG be a Blum modulus generator. Let FBTS-2 be the transitive
signature scheme as defined above. If the factoring problem associated to BG is
hard, then FBTS-2 is transitively secure against forgery under adaptive chosen-
message attack in the random oracle model.

5 Transitive Signatures based on RSA

In [12], Micali and Rivest mentioned the following scheme as a simpler scheme
that can only be proven secure against a static forger, meaning that the forger
must commit to all of his oracle queries before seeing the responses to any of
them. While we still don’t know how to prove security against an adaptive forger
assuming only the one-wayness of RSA (and whether this can be done at all),
we revisit the scheme here to prove it secure under the assumption that the
one-more RSA-inversion problem, as described in the introduction, is hard.
In analogy with the modulus generator of the previous section, we define

an RSA key generator RG as a randomized, polynomial-time algorithm that on
input 1k outputs a tuple (N, e, d) where 2k−1 ≤ N < 2k and ed ≡ 1 mod ϕ(N).
We do not restrict the type of generator, but only assume that its associated
one-more RSA-inversion problem is hard.

The RSATS-1 scheme. We associate to any RSA key generator RG and to any
standard digital signature scheme SDS = (SKG,SSign,SVf) a transitive signature
scheme RSATS-1 = (TKG,TSign,TVf,Comp) defined as follows:

• TKG runs SKG(1k) to generate a key pair (spk, ssk) for SDS and runs RG(1k)
to generate an RSA key (N, e, d). It outputs tpk = (N, e, spk) as the public
key and tsk = (N, d, ssk) as the matching secret key.

• The signing algorithm TSign is identical to that of the FBTS-1 scheme,
except that now the public label L(i) for node i is computed as L(i) ≡
`(i)e mod N . The state information kept, the way of creating node certifi-
cates and the way of constructing the signature remain unchanged.

• The verification algorithm TVf is also very similar to that of FBTS-1: the
only difference is the test on the edge label, which now consists of checking
that Li ≡ δeLj mod N .
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• The Comp algorithm is perfectly identical to the composition algorithm of
FBTS-1.

The scheme described above can be shown to satisfy the correctness requirement
of Definition 1 using a proof by induction.

Computational costs. Depending on the actual implementation of RSA, its
computational overhead probably dominates over quadratic-time operations such
as multiplications and inverses mod N . The generation of a transitive signature
needs in the worst case two RSA encryptions, and two standard signatures for
the node certificates. Signature verification takes one RSA encryption and two
standard signature verifications, while quadratic operations are predominant in
the composition algorithm.

Security of RSATS-1. The security analysis for this scheme against an adap-
tive forger is very similar to the analysis of FBTS-1, except that this time the
certificate-recycling type of forgery can be proven equivalent to solving the one-
more RSA-inversion problem associated to RG. The proof for the following the-
orem is given in [3].

Theorem 3. Let RG be an RSA key generator and let SDS = (SKG,SSign,SVf)
be a standard digital signature scheme. Let RSATS-1 be the transitive signature
scheme as defined above. If the one-more RSA-inversion problem associated to
RG is hard and SDS is secure against forgery under adaptive chosen-message at-
tack, then RSATS-1 is transitively secure against forgery under adaptive chosen-
message attack.

The RSATS-2 scheme. The idea of replacing node certificates by a suitable
hash function can also be applied to the RSATS-1 scheme. Since this time the
public labels are uniformly distributed over the whole of Z∗

N , we can use a hash
function HN : N→ Z∗

N to directly map node i to its public label L(i) = HN (i).
The unambiguous invertibility of RSA encryption allows for the first completely
stateless signature algorithm: the signature for edge {i, j} (swapping i and j

if j < i) is computed as δ ≡ (HN (i) ·HN (j)
−1)

d
mod N . The verification of

signature δ for edge {i, j}, i < j, is done by checking that HN (i) ≡ δeHN (j) mod
N . Composition of signatures works as in the FBTS-2 scheme by multiplying
the (if necessary inverted) edge labels. The proofs of correctness and security (in
the random oracle model, assuming that the one-more RSA-inversion problem
associated to RG is hard) are very similar to those given for RSATS-1 and were
hence omitted.
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