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Abstract. This paper addresses how to use public-keys of several dif-
ferent signature schemes to generate 1-out-of-n signatures. Previously
known constructions are for either RSA-keys only or DL-type keys only.
We present a widely applicable method to construct a 1-out-of-n signa-
ture scheme that allows mixture use of different flavors of keys at the
same time. The resulting scheme is more efficient than previous schemes
even if it is used only with a single type of keys. With all DL-type keys,
it yields shorter signatures than the ones of the previously known scheme
based on the witness indistinguishable proofs by Cramer, et. al. With all
RSA-type keys, it reduces both computational and storage costs com-
pared to that of the Ring signatures by Rivest, et. al.

1 Introduction

A 1-out-of-n signature convinces a verifier that a document is signed by one of
n possible independent signers without allowing the verifier to identify which
signer it was. It can be seen as a simple group signature that has no group
manager who can revoke the identity of the signer in case of emergency. Such a
signature can also be seen as a kind of non-interactive proof that the signer owns
a witness (secret-key) that corresponds to one of n commitments (public-keys) or
theorems without leaking which one it really is. Such a primitive, as a signature
scheme and/or a proof system, plays a central role in variety of applications
such as group signatures [8, 5], designated verifier signatures [17], mix-nets [1],
electronic voting [10, 11] and so on.

In [9], Cramer, Damg̊ard and Shoenmakers presented a widely applicable yet
efficient construction of t-out-of-n witness indistinguishable proofs [13] based on
secret sharing and public-coin honest verifier zero-knowledge proofs. It can be
transformed into t-out-of-n signatures via the Fiat-Shamir technique [12]. It is
especially suitable for converting Schnorr signatures [23] and Guillou-Quisquater
signatures [16] into t-out-of-n signatures. It also allows to involve RSA signature
scheme based on a zero-knowledge proof of knowledge about the factors of RSA
modulus, e.g. [7, 6], but they are less efficient than the Schnorr or the GQ sig-
natures both in computation and storage. [22] offers more intricate construction
of t-out-of-n proofs for membership.

In [21], an efficient construction of 1-out-of-n signatures with RSA public-
keys was introduced by Rivest, Shamir and Tauman. Called the Ring Signature
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Scheme, it is based on trapdoor one-way permutations (TPs for short) and an
ideal block cipher that is regarded as a perfectly random permutation. The name
reflects its unique structure such that a signer who knows at least one witness
(trapdoor information) can connect the head and tail of a series of n random
permutations to shape the sequence into a ring. Since the trapdoor is essential
in their construction, it is only for the keys like RSA’s and the discrete-log keys
are not supported.

There are other solutions that are more efficient but work only in non-
separable models where all public-keys are related. For instance, when public-
keys of the Schnorr signature scheme are chosen from a common group, one can
construct an efficient 1-out-of-n signature scheme as shown in Appendix A. Such
non-separable but highly efficient schemes may be useful when used within a
specific members. In general, however, public-keys are selected independently by
each signer. Even key-length would differ from user to user. Constructions based
on [9] and [21] suit a separable model where no underlying group are assumed.
Hence, they are ’setup-free’; if one utilizes an existing public-key infrastructure,
the key-setup phase only for this purpose is unnecessary. Furthermore, each key
can be freely updated whenever each user wishes.

As introduced in [21], one application of 1-out-of-n signatures is to involve
somebody else’s public-keys into one’s signature without their agreement. Al-
though there are pros and cons for such usage, it is surely useful for protect-
ing privacy. Unfortunately, all above mentioned known schemes have particular
shortcomings for this purpose; What if one is using a DL type public-key while
others are using RSA? Generating a new RSA key only for this purpose is not a
great idea. It is important to have wide freedom for choosing various public-keys
to involve.

Our contribution. We present a widely applicable method of constructing
1-out-of-n signature schemes that allows to use several flavours of public-keys
such as these for integer factoring based schemes and discrete-log based schemes
at the same time. We describe two classes of signature schemes, which we call
trapdoor-one-way type and three-move type, whose public-keys can be used for
our construction.

Our approach also has several advantages even for the use with the same
kind of keys like the former schemes:

– When our scheme is used only with public-keys of three-move type signature
schemes converted from zero-knowledge proof system, it results in a more
efficient scheme than previously known three-move based construction [9]
with regard to the size of signatures. For large n, it saves signature length
about by half. Since this type of schemes includes the discrete-log based
public-keys, this can be seen as the first construction of a ring signature
scheme based on the discrete logarithm problem.

– When our scheme is used only with the trapdoor-one way based public-keys
such as RSA, it results in a simplified ring signature scheme. By eliminat-
ing the use of block cipher and costly domain adjustment from the former
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scheme [21], our scheme offers shorter signature and less computation. In
particular,
• The signature size of ours is about 20% less than that of the previous
construction when RSA with modulus size 1024bits are used.

• Both size of signature and computation in our signature generation is
proportional to the average size of the modulus while that of former
scheme it is proportional to the maximum size of the modulus. Accord-
ingly, one long modulus does not impact efficiency in our scheme unlike
the previous scheme.

We will show several concrete examples following an abstract construction.
The security is proven in the random oracle model [3] as well as previously known
schemes.

The rest of this paper is organized as follows. Section 2 defines security of
1-out-of-n signatures. We review two constructions that work in the separable
model in Section 3. Section 4 describes our construction in an abstract way.
Some concrete examples are given in Section 5. It includes a discrete-log version
of the ring signature scheme, improved and simplified version of the RSA-based
ring signatures, and small case of mixture use of RSA and DL type signatures.
In Section 6 the efficiency of some concrete instantiations are analyzed in detail.

2 Security Definitions

We first of all define 1-out-of-n signature scheme as follows.

Definition 1. (Syntax) A 1-out-of-n signature scheme, S1,n, is a triple of
polynomial-time algorithms, S1,n = (G1,n,S1,n,V1,n):

(sk, vk)← G1,n(1κ) A probabilistic algorithm that takes security parameter
κ and outputs private key sk and public-key vk.

σ ← S1,n
sk
(m,L) A (probabilistic) algorithm that takes message m, and

a list, say L, of public-keys including the one that cor-
responds to sk, outputs signature σ.

1/0← V1,n
L
(m,σ) An algorithm that takes message m and signature σ,

and outputs either 1 or 0 meaning accept and reject,
respectively. We require that V1,n

L
(m,Ssig

sk
(m,L)) = 1 for

any message m, any (sk, vk) generated by G1,n, and any
L that includes vk.

Note that G1,n does not generate L but each key pairs. Therefore, if L includes
public-keys based on different security parameters, the security of S1,n is set to
the smallest one among them. As we will see, L can include several types of
public-keys all at the same time such as for RSA and Schnorr in a particular
construction. G1,n may be extended to take a description of the key-type to
support such variety flavour of key pairs. By |L|, we denote the number of public-
keys in L hereafter.
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The security of 1-out-of-n signature schemes has two aspects: Signer ambi-
guity and Unforgeability. Informally, the signer ambiguity is that it is infeasible
to identify which signing key is used to generate a signature.

Definition 2. (Signer Ambiguity) Let L = {vk1, . . . , vkn} where each key
is generated as (vki, ski) ← G

1,n(1κi). S1,n is perfectly signer-ambiguous if, for
any L, any message m, and any σ generated by σ ← S1,n

sk
(m,L) where sk ←

{sk1, . . . , skn}, given (L,m, σ), any unbound adversary A outputs i such that
sk = ski with probability exactly 1/|L|.

Here, a← b denotes a uniform choice of an element from set b and its assignment
to a. It is important to see that unbound adversary can compute all private keys
from L. In practice, it means that when each public-key is owned by an inde-
pendent party, they remain uncertain who else has issued a signature involving
their public-keys.

Unforgeability of 1-out-of-n signature scheme is defined by naturally extend-
ing the notion of existential unforgeability against adaptive chosen message at-
tacks (EUF-CMA) [15], which is the strongest security for ordinary signature
schemes. In chosen message attacks, an adversary is given unbound access to the
signing oracle and allowed to ask signatures for arbitrary messages. To adapt to
our situation, we further allow the adversary to choose arbitrary set of public-
keys as a subset of initially considered set of public-keys every time it access
to the signing oracle. It is stressed that one can generate 1-out-of-n signatures
for any message and any list of public-keys as long as it includes one’s own key.
So the definition of unforgeability should not treat “append-your-own-key-then-
forge“ activities as a forgery. Formal definition is as follows.

Definition 3. (Existential Unforgeability against Adaptive Chosen Mes-
sage and Chosen Public-key Attacks) Let (vki, ski) ← G

1,n(1κi) for i =
1, . . . , n. Let κ = min(κ1, . . . , κn) and L = {vk1, . . . , vkn}. Let SO

1,n
L (mi,Li) be

a signing oracle that takes any message m ∈ {0, 1}∗ and any Li ⊆ L and outputs
a valid signature σi that satisfies V

1,n
Li
(mi, σi) = 1. We say S1,n is existentially

unforgeable against adaptive chosen message and chosen public-key attacks if,

for any polynomial-time oracle machine A such that (L,m, σ) ← ASO1,n
L

(·,·)(L),
its output satisfies V1,n

L
(m,σ) = 1 only with negligible probability in κ. Restric-

tion is that L ⊆ L and (L,m, σ) 6∈ {(Li,mi, σi)} where {(Li,mi, σi)} is the set
of oracle queries and replies between A and SO1,n

L .

The above definition is a seamless extension of EUF-CMA since the case of
n = 1 is equivalent to that. Note that the size of L can be a security parameter
as well, though it is not our case. It is important to see that the above definition
states that the list of public-keys must not be altered as well as the message.
That is, one should not be able to add or remove public-keys associated to given
signatures.
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3 Previous Schemes

3.1 Witness Indistinguishable Signatures [9]

Here we review the witness indistinguishable signatures from [9] with a concrete
discrete logarithm setting. Let pi, qi be large primes. Let 〈gi〉 denote a prime
subgroup of Z∗

pi
generated by gi whose order is qi. Let xi, yi be yi = gi

xi mod pi.
Here, xi is the secret-key and (yi, pi, qi, gi) is the public-key. Let L be a set of
(yi, pi, qi, gi) for i = 0, . . . , n−1. Let H : {0, 1}∗ → {0, 1}` be a publicly available
hash function, where ` is larger than the largest |qi|.

A signer who owns secret key xk generates a signature for message m with
public-key list L that includes his own public-key, in the following way.

W-1 (Simulation step): For i = 0, . . . , n − 1, i 6= k, select si, ci ← Zqi
and

compute zi = gsi

i yci

i mod pi.
W-2 (Real proof step): Select rk ← Zqk

and compute
zk = gk

rk mod pk
c = H(L,m, z0, · · · , zn−1)
ck = c⊕ (c0 ⊕ · · · ⊕ ck−1 ⊕ ck+1 ⊕ · · · ⊕ cn−1) (⊕: bitwise-XOR.)
sk = rk − ck · xk mod qk.

The resulting signature is σ = (c0, s0, . . . , cn−1, sn−1). A (L,m, σ) is valid if

c0 ⊕ · · · ⊕ cn−1 = H(L,m, gs00 yc00 mod p0, · · · , g
sn−1

n−1 y
cn−1

n−1 mod pn−1).

The size of σ is n` +
∑n−1

i=0 |qi| bits. L does not necessarily contain whole
public-keys but some identifiers of the keys. The security can be proven in the
random oracle model by using the rewinding simulation technique [14, 20, 19].

3.2 Ring Signatures with trapdoor one-way permutations [21]

Let fi : {0, 1}
` → {0, 1}` be a trapdoor one-way permutation where its inverse,

f−1
i , can be computed only if the trapdoor information is known. Let E,D
be a symmetric-key encryption and decryption function whose message space is
{0, 1}`. Let H be a hash function whose output domain matches to the key-space
of E,D.

Given f0, . . . , fn−1, the signer who can compute fk
−1 generates a signature,

for message m in the following way.

R-1 (Initialization): Compute rn−1 = DK(c0) where K = H(m) and c0 ←
{0, 1}`.

R-2 (Forward sequence): For i = 0, . . . , k−1, compute ci+1 = EK(ci⊕fi(si))
for si ← {0, 1}

`.
R-3 (Backward sequence): For i = n− 1, . . . , k+1, compute ri−1 = DK(ri⊕

fi(si)) for si ← {0, 1}
`.

R-4 (Shaping into a ring): Compute sk = f−1
k (ck ⊕ rk)
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The resulting signature is (c0, s0, s1, . . . , sn−1). A signature-message pair is ver-
ified by computing K = H(m) and ci+1 = EK(ci ⊕ fi(si)) for i = 0, . . . , n − 1,
and accept if cn = c0 holds.

In practice, each trapdoor permutations will be defined over individual do-
main such as ZNi

. In such a case, the above scheme need to transform such
individual functions into common-domain trapdoor permutations. This transfor-
mation incurs some overhead. The following method is suggested in [21] to trans-
form Ei into fi defined over common-domain {0, 1}

` where ` = max{|Ni|}+160.
Let Ei be the RSA encryption function with modulus Ni. Let Q and S be positive
integers such that QNi + S = s and 0 ≤ S < Ni. Define

fi(s) =

{

QNi + Ei(S) if (Q+ 1)Ni ≤ 2
`

s otherwise.

In order for the latter case to happen only with negligible probability, ` should
be polynomially larger than the size of largest modulus. For instance, if the
largest modulus is 2048 bits, ` will be 2048+160 bits. Accordingly, the resulting
signature size is 2208(n + 1) bits. This would be a large overhead when other
moduli are all 1024bits.

The above ring signature is existentially unforgeable against adaptive chosen
message attacks in the ideal cipher model where E and D are modeled by truly
random permutations.

3.3 Other related works

[4] extends the scheme of [21] to a threshold scheme with the cost of O(2t log n)
efficiency for threshold t. [18] considers deniable ring authentication that accepts
variety of public-keys and a threshold of signers. It however, needs interaction
between the signer and the verifier.

4 Our Scheme

4.1 Type of Keys and Signature Schemes

This section describes signature schemes whose public-key can be used to our
construction of 1-out-of-n signature scheme. Let S = (Gsig,Ssig,Vsig) be a signa-
ture scheme. We require that underlying signature scheme be secure (existentially
unforgeable) against adaptive chosen message attacks. For this to be achieved,
it must be at least hard to compute sk from vk.

We consider two types of signature schemes which we call Hash-then-One-
Way type (type-H) and Three-move type (type-T) in the rest of this paper.

A representative of type-H is the Full-domain RSA signature scheme. Let F
be a trapdoor one-way function and I be its inverse function. For any c taken
from appropreate domain, computing s = Fvk(c) is easy but any preimage of s
cannot be computed in polynomial-time. Trapdoor information sk allows one to
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efficiently compute one of the pre-images of s. The signing function S sig involves
I and a hash function H : {0, 1}∗ → ∆ that hashes message m and auxiliary
information if any. Domain ∆ is assumed to be an abelian group such as modulo
an RSA composite that depends on the particular detail of the signature scheme
and the security parameter. H can be a composition of hash functions. The
verification function V sig of type-H consists of F and H. H is the same as that
in Ssig. By F , signature σ is transformed into an element of ∆ so that the result
can be compared with the hashed message. In summary, type-H is as follows.

Hash-and-One-Way Type

Signing

Ssig
sk
(m) =

c = H(m, aux)
s = Isk(c)
Return σ = (s, aux)

Verification

Vsig
vk
(m,σ) =

σ
p
→ (s, aux) (

p
→: parsing)

c = H(m, aux)
e = Fvk(s)
Return 1 if c = e. Other-
wise, 0.

The security of type-H requires that computing Isk(c) without sk be in-
tractable. Precise description is as follows.

Assumption 1 (Intractability of Computing I) For any probabilistic poly-
time algorithm A, for (vk, sk) ← Gsig(1κ), and for c ← ∆, Fvk(A(c, vk)) = c
happens only with negligible probability in κ. Probability is taken over coin flips
of A, Gsig, and the choice of c.

To prevent A from being successful by random guess, I must not shrink ∆ into
exponentially small domain. Typically, I is one-to-one with regard to variable c.
Finally, note that the above intractability assumption for computing I is stronger
than that of for computing sk only from vk.

Next we describe type-T schemes. As the name implies, this type of schemes
are from three-move honest verifier zero-knowledge proofs. Classical Fiat-Shamir
signature scheme belongs to this type. Here, signing function S sig involves three
functions, say A, H, and Z used in each stage of three-move honest verifier zero-
knowledge proof system. A generates the first-move commitment a and with
regard to randomness r. H is a hash function {0, 1}∗ → ∆ used to generate a
challenge string c from message m and commitment a. Z is an answer genera-
tion function that generates an answer, say s, to the challenge. The verification
function V sig involves two functions V and H. V is a checking predicate of the
embedded zero-knowledge proof system. It converts s and c into z which is sup-
posed to equal to a. If it is the case, hashing z with message m by using H
in the same way as in signing procedure outputs e that matches to c. Abstract
description follows.
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Three-move Type

Signing

Ssig
sk
(m) =

a← A(sk ; r)
c = H(m, a)
s = Z(sk, r, c)
Return σ = (s, c)

Verification

Vsig
vk
(m,σ) =

σ
p
→ (s, c)

z = V (s, c, vk)
e = H(m, z)
Return 1 if c = e. Otherwise 0.

The following property is assumed to type-T schemes.

Definition 4. (Collision Property) There exists a polynomial-time algorithm
that computes sk from (c, s, c′, s′) and vk where (c, s) and (c′, s′) are two unequal
valid signatures that correspond to the same (a,m) given to hash function H.

This property is frequently used for proving the security of type-T schemes such
as Schnorr signatures and Modified ElGamal signatures and vast number of their
variants.

Regardless of the types, we require that the signature scheme is simulatable
in a particular model. Intuitively, it must be possible to construct a simulator
that simulates the signing oracle without the signing key. In many schemes,
this property is achieved in the random oracle model. Precise definition of this
property is as follows.

Definition 5. (Simulatability of S in the random oracle model) A sig-
nature scheme, S, is (t, ε, qs, qh)-simulatable in the random oracle model if for
any key-pair (sk, vk) generated by Gsig(1κ) and for any algorithm A that refers

random oracle H at most qh times and Ssig
sk

at most qs times, there exists a pair
of interactive machines, Msim = (Ssim, Hsim), that interacts with A in such
a way that the total running time is at most t, and statistical distance of the
probability distribution of viewA(vk,S

sig
sk

, H) and viewA(vk,M
sim
vk
) is at most 2ε.

Here, the probability is taken over all coin flips of Gsig, Ssig, H,Msim, and A.

The above definition can be generalized to deal with multiple oracles for signa-
ture schemes that involves multiple hash functions if necessary. Simulatability
is featured in many practical EUF-CMA signature schemes such as the Schnorr
signature scheme, and FDH-RSA scheme. Given this property, one can say that
an event that happens with probability µ in the real run also happens with
probability at least µ− ε in the simulation.

4.2 Description

[Key Generation]

A signer generates his own key pairs by using the signature generation function
of a signature scheme of his choice: (sk, vk)← Gsig(1κ)
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[Public-key Listing]

Collect public-keys and list them in L. Then, insert vk to the randomly chosen
position of the list. Let L = {vk0, . . . , vkn−1} where vkk = vk for some k ∈
{0, . . . , n− 1}. (Corresponding signing key sk is referred as skk hereafter.)

For a, b ∈ ∆i, let a+ b denote the group operation of abelian group ∆i and
a− b be the group operation with inverse of b. These binary operators are used
without subscripts that denotes each group. Let Hi : {0, 1}

∗ → ∆i be a hash
function. Domain ∆i depends on vki.

[Signature Generation]

G-1 (Initialization): Compute

ek =

{

Ak(skk ;α) (vkk is type-T), or

β (vkk is type-H),

where α ← Λk and β ← ∆k (Λk denotes an appropriate space of
randomness defined by the algorithm of Ak and skk). Then compute
ck+1 = Hk+1(L,m, ek).

G-2 (Forward sequence): For i = k + 1, .., n− 1, 0, ..., k − 1, compute

ei =

{

Vi(si, ci, vki) (vki is type-T), or

ci + Fi(si, vki) (vki is type-H),

where si is randomly chosen. Then compute ci+1 = Hi+1(L,m, ei).
G-3 (Forming the ring):

sk =

{

Zk(skk, α, ck) (vkk is type-T), or

Ik(β − ck, skk) (vkk is type-H).

The resulting signature for m and L is (c0, s0, s1, · · · , sn−1).

[Signature Verification]

For i = 0, · · · , n− 1, compute

ei =

{

Vi(si, ci, vki) (vki is type-T), or

ci + Fi(si, vki) (vki is type-H),

and then ci+1 = Hi+1(L,m, ei) if i 6= n − 1. Accept if c0 = H0(L,m, en−1).
Reject otherwise.

4.3 Remark on Compatibility of Keys

Some signature schemes are neither type-T nor type-H. For such schemes, we
consider compatibility among signature schemes. Signature scheme A is compat-
ible with scheme B if 1) A’s private and public keys can be used to issue and
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verify signatures of scheme B, and 2) breaking B (in EUF-CMA sense) implies
breaking A using the same key. For instance, DSS is not either type but it is
compatible with the Schnorr signature scheme of type-T. Since breaking the
Schnorr signature scheme implies that the discrete-log is tractable with regard
to the key, it implies DSS is broken, too. Thus, DSS keys can be involved in our
scheme with type-T.

With regard to type-H schemes, however, special care may be needed. Re-
member that type-H only shows the ability of computing Isk(·) and does not
necessarily imply possession of sk. Therefore, it is not sufficient that scheme A’s
keys can be used to scheme B, but it has to be true that ability of computing
Isk(·) of scheme B is sufficient to generate signatures of A.

The signature scheme in [2] is a curious scheme that belongs to type-H but
its keys are also compatible with type-T ones. In such a case, one can select more
efficient type to involve the keys.

5 Concrete Examples

Leaving out the security proof for the abstract scheme (which turns out to be
similar to the one shown in Section 5.3), we present concrete examples and their
security proofs in order to help readers who is familiar with RSA and Schnorr
signatures grasp the ideas for our construction and the security proofs.

5.1 All Discrete-log Case

For i = 0, . . . , n−1, let (yi, pi, qi, gi) be DL public-keys as described in Section 3.1
and Hi : {0, 1}

∗ → Zqi
be hash functions. Let L be a list of these public-keys. A

signer who has private key xk generates a signature for message m as follows.

[Signature Generation]

D-1 (Initialization): Select α ← Zqk
and compute ck+1 = Hk+1(L,m,

gk
α mod pk).

D-2 (Forward sequence): For i = k + 1, .., n − 1, 0, ..., k − 1, select si ← Zqi

and compute ci+1 = Hi+1(L,m, gsi

i yci

i mod pi).
D-3 (Forming the ring): Compute sk = α− xkck mod qk.

The resulting signature for m and L is (c0, s0, s1, · · · , sn−1).

[Signature Verification]
For i = 0, . . . , n−1, compute ei = gsi

i yci

i mod pi and then ci+1 = Hi+1(L,m, ei)
if i 6= n− 1. Accept if c0 = H0(L,m, en−1). Reject otherwise.

Intuitively, this scheme is a ring of the Schnorr signatures where each chal-
lenge is taken from the previous step. Indeed, it is the Schnorr signature scheme
when n = 1.

Theorem 2. The above all-DL scheme is unconditionally signer-ambiguous.
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Proof. Observe that all si are taken randomly from Zqi
except for sk at the

closing point. At the closing point, sk also distributes uniformly over Zqk
since

α is uniformly chosen from Zqk
. Therefore, for fixed (L,m), (s0, . . . , sn−1) has

∏n−1
i=0 qi variation that are equally likely regardless of the closing point. Remain-

ing c0 in a signature is determined uniquely from (L,m) and si’s. ut

Note that the signer ambiguity does not rely on ideal randomness assumption
on the hash function.

Next, we claim unforgeability. Let A be a (τ, ε, qs, qh)-adversary that requests
signing oracle at most qs times and accesses random oracles at most qh times in
total and output forged (L,m, σ) with probability at least ε and running time
at most τ . The following theorem can be proven (see Appendix B).

Theorem 3. If there exists (τ, ε, qs, qh)-adversary A for public-key set L of size
n, then there exists (η, µ)-simulator sim that uses A as a black-box and computes
discrete-logarithm xi of (yi, pi, qi, gi) ∈ L for at least one i with probability at

least µ within running time η. Here, η <
32q2h+4

ε · τ and µ > 9
100 under the

condition that ε >
8q2h
q and q > 2 qhqs where q is the smallest qi included in L.

We remark that the running time only concerns the number of black-box execu-
tion of A. Note also that the condition q > 2 qhqs is not essential and used only
for simplifying the presentation of the reduction cost so that the impact of each
variable is comprehensible. If necessary, one can obtain detailed formula without
the condition. These remarks apply to all the theorems in the rest of this paper.

5.2 All RSA Case

For i = 0, . . . , n− 1, let (ei, Ni) be RSA public-keys and Hi : {0, 1}
∗ → ZNi

be
hash functions. Let L be a list of these public-keys. A signer who has private
key dk generates a signature for message m as follows.

[Signature generation]

T-1 (Initialization): Select rk ← ZNk
and compute ck+1 = Hk+1(L,m, rk).

T-2 (Forward sequence): For i = k + 1, .., n − 1, 0, ..., k − 1, select si ← ZNi
,

and compute ci+1 = Hi+1(L,m, ci + sei

i mod Ni).
T-3 (Shaping into a ring): Compute sk = (rk − ck)

dk mod Nk

The resulting signature for m and L is (c0, s0, s1, . . . , sn−1).

[Signature Verification]
For i = 0, . . . , n−1, compute ri = ci+sei

i mod Ni and then ci+1 = Hi+1(L,m, ri)
if i 6= n− 1. Accept if c0 = H0(L,m, rn−1). Reject, otherwise.

Unconditional signer-ambiguity can be proven in the same way as that for
the all DL-based scheme. Unforgeability is also proven in the similar way. We
wrap random oracles for each hash function in the same way as done in the proof
for the DL version. The following theorem is proven (see Appendix C).
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Theorem 4. If there exists (τ, ε, qs, qh)-adversary A for public-key set L of size
n, then there exists (η, µ)-simulator sim that, given (w0, . . . , wn−1), uses A as a
black-box, and computes wdi

i mod Ni for some i ∈ {0, . . . , n− 1} with probability
at least µ and running-time within η. Here, η ≈ τ and µ > 1

4qh
2 ε under the

condition of N > 2 qhqs where N is the smallest modulus among all Ni in L.

5.3 Mixture Case: RSA and Schnorr

We finally show a small example for involving both RSA and DL keys. For
simplicity, we consider the case n = 2, i.e., only two public-keys are involved.
Let L be consists of RSA public-key (e,N) and one Schnorr public-key (y, g, p, q).
Let H0 : {0, 1}

∗ → ZN and H1 : {0, 1}
∗ → Zq be hash functions. A signer who

has the RSA private key, d, generates a signature for message m as follows.

[Signature generation]

M-1 (Initialization): Select β ← ZN and compute c1 = H1(L,m, β).
M-2 (Forward sequence): Select s1 ← Zq and compute c0 = H0(L,m,

gs1yc1 mod p).
M-3 (Shaping into a ring): Compute s0 = (β − c0)

d mod N

The resulting signature is (c0, s0, s1).

[Signature Verification]
Given (L,m, c0, s0, s1), compute c1 = H1(L,m, c0 + se0 mod N). Accept if c0 =
H0(L,m, gs1yc1 mod p). Reject, otherwise.

The signature can be shorten by selecting (c1, s1, s0) as a signature because
|c0| is the size of RSA modulus typically > 1024 bits while |c1| is the size of q
typically > 160 bits.

Unconditional signer-ambiguity can be proven as well as the former examples.
Regarding unforgeability, we prove the following theorem by following the similar
way as done in the proof of Theorem 3 and 4. Sketch of the proof is shown in
Appendix D.

Theorem 5. The above scheme is existentially unforgeable against adaptive
chosen message and chosen public-key attacks.

6 Efficiency

We compare our ring signature scheme with the existing schemes using DL,
ECDL(elliptic curve DL) and RSA trapdoor functions, in terms of the length of
a signature and the computational cost of signature generation and verification.
We refer the scheme in Section 3.1 by “WI signatures” and the scheme in Sec-
tion 3.2 with RSA trapdoor function by “RSA ring signatures”, hereafter. Let
n be the number of signers of ring signature.

Table 1 shows the comparison in terms of the length of signature. Here, L(DL)
is the length of exponent of DL signature, and is typically 160-bit. L(RSA) is
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Table 1. The table shows the length of signature and its typical value (bit).

Length of signature Typical value

WI signature (L(DL) + L(DL))× n 320× n

Ours with DL L(DL) + L(DL)× n 160 + 160× n

Ours with ECDL L(EC) + L(EC)× n 160 + 160× n

RSA ring signature (L(RSA) + 160) + (L(RSA) + 160)× n 1184 + 1184× n

Ours with RSA L(RSA) + L(RSA)× n 1024 + 1024× n

the length of modulus of RSA signature, and is typically 1024-bit. L(EC) is the
length of the size of cyclic subgroup in elliptic curve, and is typically 160-bit.
From the table, we can see that the length of our signature with DL is one half
of WI signature for large n, and that the length of our signature with RSA is
0.8 of RSA ring signature.

Table 2. The table shows the computational costs of signature generation and verifi-
cation and its typical value (arithmetic operation).

Costs of generation Typical value

WI signature T (DL)× 5/4× n 2.0× 108 × n

Ours with DL T (DL)× 5/4× n 2.0× 108 × n

Ours with ECDL T (EC)× 5/4× n 7.1× 107 × n

RSA ring signature T (RSA−1) + T (RSA)× n 1.0× 109 + 1.6× 107 × n

Ours with RSA T (RSA−1) + T (RSA)× n 1.0× 109 + 1.6× 107 × n

Costs of verification Typical value

WI signature T (DL)× 5/4× n 2.0× 108 × n

Ours with DL T (DL)× 5/4× n 2.0× 108 × n

Ours with ECDL T (EC)× 5/4× n 7.1× 107 × n

RSA ring signature T (RSA)× n 1.6× 107 × n

Ours with RSA T (RSA)× n 1.6× 107 × n

Table 2 shows the comparison in terms of the computational costs of signa-
ture generation and verification. Here, T (DL), T (EC), T (RSA−1) and T (RSA)
are the computational costs of modular exponentiation, scalar multiplication
on elliptic curve, inverse RSA function and RSA function, respectively. Typ-
ically, T (DL) = T ((1024)(160)), T (EC) = T ((160) · (EC160)), T (RSA−1) =
T ((1024)(1024)) and T (RSA) = T ((1024)(16)). Here, T ((x)(y)) is the number
of (single precision) arithmetic operation of exponentiation with x-bit modulus
and y-bit exponent, and is estimated x2×y. Exponentiation with y-bit exponent
needs y x-bit multiplications, using binary method and the fact costs of square
is half of multiplication. x-bit multiplication needs x2 (single precision) arith-
metic operations. T ((y) · (ECx)) is the number of (single precision) arithmetic
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operation of scalar multiplication on elliptic curve with x-bit base field and y-bit
scalar, and is estimated x2 × 14× y. Scalar multiplication on elliptic curve with
y-bit scalar needs y additions of points, using binary method and the fact costs
of doubling is half of costs of addition. Addition of points with x-bit base field
needs 14 x-bit multiplications, using Jacobian coordinate. x-bit multiplication
needs x2 (single precision) arithmetic operations. Hence, we have

T ((1024)(1024)) = 10242 × 1024 ≈ 1.07× 109,

T ((1024)(160)) = 10242 × 160 ≈ 1.67× 108,

T ((1024)(16)) = 10242 × 16 ≈ 1.67× 107,

T ((160) · (EC160)) = 1602 × 14× 160 ≈ 5.73× 107.

The computational costs of exponentiation with two basis is 5/4 of expo-
nentiation with single basis, using two basis binary method. From the table, we
can see that the computational costs of our signature with DL is as same as
WI signature, and that the computational costs of our signature with RSA is as
same as RSA ring signature.

Notice that in known schemes the length and the computational costs of
signature is proportional to the maximum of the length of DL exponent / RSA
modulus. In our scheme, the length and the computational costs of signature is
proportional to the average of the length of DL exponent / RSA modulus, since
our scheme need not to round up the length to the maximum length.
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Appendix A

The following an efficient 1-out-of-n signature scheme in non-separable model
based on the representation problem.

Let p, q be large primes. Let 〈g〉 denote a prime subgroup in Z∗
p generated by

g whose order is q. Let xi, yi be yi = gxi mod p. Here xi is the secret-key and
(yi, p, q, g) is the public-key. All member use common p, q, g in the non-separable
model. So only yi is different in public-keys for each member. Let L be a set of
(yi, p, q, g) for i = 1, . . . , n. Let H : {0, 1}∗ → Zq be a hash function.
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A signer who owns secret key xk generates a signature for message m with
public-key list L that includes yk, in the following way.

S-1 Select α, ci ← Zq for i = 0, . . . , n − 1, i 6= k, and compute z =

gα
∏n−1

i=0,i6=k y
ci

i mod p.
S-2 Compute

c = H(L,m, z)
ck = c− (c0 + · · ·+ ck−1 + ck+1 + · · ·+ cn−1) mod q
s = α− ck · xk mod q.

The resulting signature is σ = (s, c0, . . . , cn−1). (L,m, σ) is valid if

n−1
∑

i=0

ci ≡ H(L,m, gsyc00 · · · y
cn−1

n−1 ) mod q.

The security of this scheme can also be reduced to the discrete-log problem
by rewinding simulation. But the reduction is quite costly because we may have
to have at most n successful rewinding simulations to extract only one secret-key
(in this worst case, all the secret-keys are extracted at once).

Appendix B (Proof of Theorem 3)

To get the black-box A run properly, sim simulates the random oracles that
corresponds to each hash function and the signing oracle. For simplicity, the
random oracles are treated as a single oracle that takes Qj = (i, Lj ,mj , rj)
as j-th query and returns a random value that corresponds to Hi(Lj ,mj , rj)
maintaining consistency against duplicated queries. The signing oracle receives
the j-th query, say Rj = (Lj ,mj), to sign. To avoid complicated suffixes, we
describe a public-key with a suffix relative to Lj in the current context. So,
y0 ∈ Lj and y0 ∈ Lj′ could differ. We hope that this should cause no confusion.
The corresponding answer is simulated in the following way.

D’-1: Choose c0 ← Zq0 .
D’-2: For i = 0, . . . , |Lj | − 1, select si ← Zqi

, compute ei = gsi

i yci

i mod pi,
and then compute ci+1 = Hi+1(Lj ,mj , ei) if i 6= |Lj | − 1.

D’-3: Assign c0 to the value of H0(Lj ,mj , e|Lj |−1).

The simulation fails if Step D’-3 causes inconsistency in H0. It happens with
probability at most qh/q where q is the smallest qi in L. Hence, the simulation
is successful qs times with probability at least (1− qh/q)

qs ≥ 1− qhqs/q.
Let Θ,Ω be the random tapes given to the signing oracle and A. The success

probability of A is taken over the space defined by Θ,Ω and random oracle H.
Let S be a set of (Θ,Ω,H) with which A is successful in forgery. From the
definition of ε, we have Pr[(Θ,Ω,H) ∈ S] ≥ ε. Let (L,m, c0, s0, · · · , sn′−1) be
a forged signature A outputs. Here n′ = |L|. Define ri = gi

siyi
ci mod pi and

ci+1 = Hi+1(L,m, ri) for i = 0, . . . , n
′ − 1 (indices are taken modulo n′). Then,

with probability at least 1− 1/q, there exist queries Qj = (i+1, L,m, ri) for all
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i = 0, . . . , n′−1 due to the ideal randomness of H. Let S ′ be a subset of S where
(Θ,Ω,H) ∈ S ′ leads A to output a signature that has corresponding queries
as above with successfully simulated signing oracle. Then, Pr[(Θ,Ω,H) ∈ S ′] ≥
(1− qhqs/q)(1− 1/q)ε. Let ε

′ = (1− qhqs/q)(1− 1/q)ε.
Since the queries form a ring, there exists at least one index, say k, in

{0, . . . , n′ − 1} such that Qu = (k + 1, L,m, rk) and Qv = (k, L,m, rk−1) satisfy
u ≤ v. Namely, k is in between the gap of query order. We call such (u, v) a gap
index. Note that u = v happens only if n′ = 1, which means that resulting L
contains only one public-key. If there are two or more gap indices with regard to
a signature, only the smallest one is considered. We classify S ′ by the gap indices.
Let S ′u,v denote a class where (Θ,Ω,H) ∈ S ′u,v yields gap indices (u, v). There

are at most
(

2
qh

)

+
(

1
qh

)

= qh(qh + 1)/2 classes. By invoking A with randomly

chosen (Θ,Ω,H) at most t1 = 1/ε
′ times, sim finds at least one (Θ,Ω,H) ∈ S ′u,v

for some gap index (u, v) with probability 1− exp(−1) > 3/5.
We consider a set of gap indices that is likely to appear when (Θ,Ω,H) is cho-

sen randomly. Let GI = {(u, v) | |S ′u,v|/|S
′| ≥ 1

qh(qh+1)} and B = {(Θ,Ω,H) ∈

S ′u,v|(u, v) ∈ GI}. Then, it holds that Pr[B|S ′] ≥ 1
2 . Due to this fact known as

heavy-row lemma, (Θ,Ω,H) that yields the successful run of A is in B with
probability at least 1/2.

Split H as (H−, ck) where H− corresponds to the answers to all queries
except for Qv answered with ck. Due to the heavy-row lemma, again, with prob-
ability at least 1/2, (Θ,Ω,H−) satisfies Prc′

k
[(Θ,Ω,H−, c′k) ∈ S

′
u,v] ≥

ε′

2qh(qh+1) .

Since we assume ε > 8qh
2

q and q > 2qhqs, it holds that
ε′

2qh(qh+1) > 1/q.

By running A up to t2 = (
ε′

2qh(qh+1) −
1
q )

−1 times with (Θ,Ω,H−) obtained

in the first successful run and randomly chosen c′k(6= ck), then, with probability
at least 3/5, sim finds at least one c′k such that (Θ,Ω,H−, c′k) ∈ Su,v. Since Qu

happens before Qv, ri is unchanged for both runs. Therefore, sim can compute
the discrete-log, xk = (sk − s′k)/(c

′
k − ck) mod qk. Overall success probability is

µ >
3

5
·
1

2
·
1

2
·
3

5
=

9

100
,

and the number of invocation of A is

t1 + t2 <
1

ε′
+
4qh(qh + 1)

ε′
<
4

ε
+
4 · 4 · 2q2

h

ε
=
32q2

h + 4

ε
.

Appendix C (Proof of Theorem 4)

The first half of the proof is the same as the one for Theorem 3 (the simulation
of the singing oracle is different but can be done only with trivial changes). That
is, there exists class S ′ such that (Θ,Ω,H) ∈ S ′ results in a successful simulation
of the signing oracle and the forged signature has corresponding queries to the
random oracle. Accordingly, Pr[(Θ,Ω,H) ∈ S ′] ≥ (1− qhqs/N)(1− 1/N)ε.

At the beginning of the simulation, sim selects a pair of index (u, v) randomly
so that 1 ≤ u ≤ v ≤ qh. With probability 2/qh(qh + 1), the guess is correct and
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sim receivesQu = (k + 1,L,m, rk) andQv = (k,L,m, rk−1) so that (u, v) is a gap
index. Let k′ be an index such that vkk′ ∈ L corresponds to vkk ∈ L. When query
Qv is made (u-th query has been already made by this moment), sim returns
ck = rk −wk′ mod Nk as a value of Hk(L,m, rk−1). If A is successful in forgery,
it outputs sk that satisfies rk ≡ ck + sek

k mod Nk. Since rk ≡ ck + wk′ mod Nk,
we obtain sk as the inverse of wk′ with regard to the public-key vkk′ in L.

Overall success probability of sim is

µ ≥
(1− qhqs/N)(1− 1/N)

qh(qh + 1)/2
ε >

1

4qh2
ε.

The rightmost term assumes N > 2qhqs. The running time η is almost the same
as τ as sim runs A only once and the simulation cost for the signing oracle and
the random oracle are assumed to be sufficiently smaller than τ .

Appendix D (Proof of Theorem 5)

We show that if there exists (τ, ε, qs, qh)-adversary A for a set of public-key, L,
of size n, then there exists (τ ′, ε′)-simulator sim such that using A as a black-
box, it computes wd mod N for w ← N with probability greater than 3/5 and

running time no more than 4qh
2

ε τ , or computes the discrete-logarithm of y with

probability greater than 9
100 and running time no more than

32q2h+4
ε τ .

Let γ be min(q,N). We assume that γ > 2 qhqs and ε >
8q2h
q .

The proof is by combining the proofs for Theorem 3 and 4. Let ε′ = (1 −
qhqs/|γ|)(1− 1/|γ|)ε.

Simulator sim guesses (u, v) and runs A. If Qv = (0, L,m, r1) for some L,m
and r1, sim checks if Qu = (1, L,m, r0) for the same L,m and some r0. If it is
the case, sim chooses t ← N and returns c0 = r0 − wte mod N as the value of
H0(L,m, r1). If A succeeds and (u, v) forms a gap, it holds that sk = (r0−c0)

d ≡
(wte)d ≡ wdt mod N . Accordingly, sk/t = wd mod N . In this case, simulation
ends here successfully. Such a successful case happens with probability greater

than 3/5 while repeating the simulation at most { (1−qhqs/N)(1−1/N)
qh(qh+1)/2 ε}−1 < 4qh

2

ε

(this is straightforward from the proof of Theorem 4 in Appendix C).
For all other cases, sim proceeds as follows. Regardless of the initial guess of

(u, v), sim completes an execution ofA. IfA succeeds and the resulting gap index,
say (u′, v′), corresponds to the queriesQu′ = (0, L,m, r1) andQv′ = (1, L,m, r0),
namely, if the resulting gap index comes across the discrete-log key, sim proceeds
to rewinding simulation with the forking point v′ in the same way as done in the
proof of Theorem 3. As a result, sim gets a collision and computes the discrete-
log, x. The success probability and the running time for this case is the same as
that in the proof of Theorem 3.


