
Crypto-Integrity

Moti Yung

Department of Computer Science, Columbia University
moti@cs.columbia.edu

Abstract. Designing cryptographic mechanisms as well as products and
systems that embed cryptographic components is a challenging task. This
task will become increasingly hard as software technology and systems
evolve and as the new computational environment becomes more dis-
tributed, more diverse, and more global. In order to enable the inclusion
of cryptographic components in the future infrastructure and within fu-
ture applications, it is argued that assurance of their (secure) operation
has to be provided and their robustness has to be exhibited in real time.
This assurance, which we call crypto-integrity will guarantee the cor-
rect functioning of the cryptographic components in an efficient fashion.
This built-in integrity should have no impact on the system security and
should have minimal impact on its function, performance and compos-
ability.

We review the need for crypto-integrity in various known settings, ways
to implement it based on known protocol techniques as well as potential
future directions. The paper is written as a position paper and not as a
survey of the vast relevant literature.

1 Introduction

Integrity assurance is a part of many modern cryptography constructions. In fact,
cryptography is even used to provide strong integrity such as “message integrity”
(assured by hashing a message based on a secret key in a MAC operation). Other
cryptographic operations have integrity associated with them, e.g. digital signing
(initiated by Diffie-Hellman, Rivest Shamir and Adleman, and Rabin) involves
verification which assures its authenticity.
The design of cryptographic protocols where many parties involve in a joint

activity allows dishonest adversaries to behave in arbitrary devious ways. Thus,
the need to assure well behaved parties arises naturally. Early protocols like the
Rabin’s signature protocol and Blum’s coin flipping had assurance of behavior
designed into them. Then, the development of the basic notion of zero-knowledge
by Goldwasser, Micali and Rackoff was crucial to recognizing the central idea
of systematic assurance of well behavior of parties. The fact that NP languages
have zero-knowledge proofs (and arguments) is fundamental and can be used to
assure that actions taken in a cryptographic protocol are in accordance with the
protocol specification. This serves as a general plausibility result that integrity
of parties in a protocol can be kept and monitored.



Crypto-Integrity 567

However, for every protocol solving a specific task, we need to design specific
proofs and integrity mechanisms that are efficient and suitable to its setting.
In fact, as cryptographic services are deployed, every system configuration and
every specialized setting will need to have efficient and specialized method for ex-
hibiting the well behavior of components; we call these methods crypto-integrity.
Next we mention some systems factors affecting the need of specialized crypto-
integrity.

1.1 System Setting and Requirements

We will next mention some practical requirements and will argue in what ways
they can be done or improved by having crypto-integrity functions.
As cryptographic primitives and protocols are being developed as products,

their adoption into the computing and communication infrastructure will be
based on their usefulness and effectiveness (typically measured in business by
“Return on Investment”). This means that certain basic properties are required.
Some of which are related to generic desired properties (like user-friendliness),
but some are relate directly to properties of cryptographic design:

– generality and composability of components: the basic product should be
useful in many setting as a general primitive. We should be able to employ
it with many (current and future) applications and it should remain secure
in these settings.

– Adaptability (or scalable security): we should be able to embed the product
in various settings (of different scales) and change its environment and even
the threats to it, yet it should keep on being secure. (Many designs are too
“setting specific” and may fail this criteria as their environment changes.)

– Performance: this is an important factor that may fail the product when
e.g. speed is a requirement or when it becomes too costly to implement fast
or compact solutions. In some environments performance criteria are crucial
(and this changes as technology change).

– Assurance: there should be assurance about the product workings. Besides
the proof of security which should be done in the proper setting of the entire
application (end-to-end arguments), and besides testing, it will be useful
if the product will have on-line assurance of the way its components work
(namely, what we called crypto-integrity).

The above and similar requirements usually serve as a feedback to the crucial
work on foundations of cryptography, where new notions are defined, designed
and improved, and where the characteristic and inherent properties of the basic
notions are investigated.
These requirements are also very useful to practitioners. To have a sustainable

business one needs to have certain quality in its products. Having crypto-integrity
may ease re-usability of components and shorten the test cycle. Having a general
component that is adaptable to various settings and can support current and
emerging applications is, at times, an important prerequisite for profit.



568 M. Yung

The notion of crypto-integrity has implications to all the above requirements.
It helps assuring the well behavior of components, which means that parties
are committed to certain computations, thus to predictable performance (and a
known time-out mechanisms can further detect delays). It helps in exhibiting (at
the interface between components) what is done by individual components and
sub-systems, thus helps in composing systems and adaptivity of components. It
helps in formal assurance process such as certification of products by government
bodies due to increased verification.
Crypto-integrity is an assurance mechanism which is achieved by enhancing

the function of the component itself (in on-line operation). On-line integrity has
many implication in special contexts. Let us mention one current implication.
The context is trusted computing environment run under a tamper resistant
component of the architecture. This setting may have a lot of positive impli-
cations. It has however, many bad implications, if it is not run according to a
“publicly agreed upon” specification. With crypto-integrity we may be able, at
least partially, to assure compliance of a well specified trusted environment with
its global specification (especially if we limit it to very specialized functions,
since in general we cannot really tell what a tamper resistance cryptographic
environment is doing as was shown by the notion of Kleptography [Young and
Yung, Crypto 96, Eurocrypt 97, Crypto 97]).
In the rest of this paper I will mention examples of mechanisms (protocol

design and settings) where crypto-integrity plays an important role.

2 Examples: the Usefulness of Crypto-Integrity

2.1 Cryptographic program Checking

Blum introduced the useful and elegant notion of Program Result Checking. In
this setting, given arbitrary input α and program P , a checker C for a func-
tion f will catch, with high probability, if P (α) 6= f(α). The checker has only
a “black-box” access to the program and accomplishes its goal on-line. Crypto-
graphic program checking (developed in [Frankel, Gemmel and Yung, STOC96])
allows the on-line checking of programs computing cryptographic functions in a
working environment. In this model the checker worries about correctness (which
“program checking” takes care of, since due to the adversarial setting we require
correctness with very high probability). In addition, the owner of a program
will output P (α) provided it is authorized to output the result, but the checker
(user) learns nothing more about P from this checking procedure, in the spirit of
zero-knowledge complexity approach to knowledge. Such checking methods are
witness-based (they allow the output of a few values to be known as a witness)
and achieve fast verification. In some sense the procedures can be viewed as
extending the “deniable signature” proof method of Chaum. The basic applica-
tion of this method is testing cryptographic servers. In the future, many servers
will act on behalf of user populations and assurance of non-spoofed service will
be important. We now discuss several applications for cryptographic program
checking.



Crypto-Integrity 569

Consider the encrypting-machine requester game where the encrypting-
machine (server) is willing to encrypt authorized requests. If the checking process
requires the encryption of other (unauthorized) plaintext so that the output of
the request can be checked, then the checker can exploit this service to encrypt
unauthorized texts as well.
Another similar application is the international key escrow game. (This is

related to recent specifications of actual system that is not yet well understood;
but is similar to the concept of escrow encryption systems such as Clipper. In
this situation country A has a key escrow system and will allow country B to
obtain decryption of messages of A’s citizens under some predefined treaty and
under some conditions. A does not want to provide B with the actual keys of its
citizens (only decrypted messages) while country B does not trust that A will
reply with the correct cleartext values. Cryptographic program checking, in turn,
allows B to verify the correctness of the outputs, while A knows that it is not
being abused (by revealing messages not covered by the treaty or conditions). Of
course, the setting is applicable to many (less controversial) scenarios. The basic
ideas of our methodology can be applied to a verifier hardware-device game,
where a holder of a result computed by some hardware device needs to probe
a verifying device. For example, it makes it possible to make sure that a value
computed in the past (a time stamp) is correct without the verification process
leaking the computation itself (thus, recomputing the time stamp– which in
effect causes an undesirable back-stamping). The methodology presented in this
work applies to this situation as well.

2.2 Threshold Cryptosystems

One of the applications that motivated this research on cryptographic program
checking is in the development of verification algorithms for threshold cryptog-
raphy (where a function sharing or capability sharing is taking place). This is
a method to distribute control of a function by a dealer or distributedly. In
the function sharing game a function f is distributed amongst n agents as pro-
grams P1(·), . . . , Pn(·) such that a threshold (quorum) of, say, any t are able to
compute f(α) from Pi1

(α), . . . , Pit
(α). There are several interesting applications

for which function sharing is a very useful solution in practice (e.g., distributed
decryption, signature generation, public key certification generation, e-cash gen-
eration, etc.). Once the shares are available there is a polynomial-time combiner
that collects the shares and combine them to the final result of the function.
When agents may misbehave this gives rise to the game between the agents and
the combiner, where the combiner has to be sure to pick correct shares into its
computation. If there is no efficient way to verify correctness of shares, the com-
biner may need to try all subsets of shares (but this will take exponential time).
The agent combiner game will assure the combiner which of the agents acted
correctly. The need for robust function sharing was also expressed in an applica-
tion for replicating services in network were some of the clients and servers have
been corrupted by an adversary. Since there is a real systems’ need for the prim-
itive, inefficient methods like non-interactive zero-knowledge techniques should



570 M. Yung

be avoided. While many results have been achieved in this area, the applicability
and usability of the results is still to be realized.

2.3 Proactive Security

Another game, called the proactive function sharing game, is an extension of the
robust function sharing game. In this system the agents’ state is modified over
time (by the agents themselves) so that an adversary may have access to all
agents over the lifetime of the system but not to all (or not even to a quorum)
at any particular point in time. The agents periodically modify their state so
that information learned by a mobile adversary at two points in time is, for
practical purposes, uncorrelated. In this game, the honest agents make sure that
changing their state does not provide a means for the adversary either to learn
too much information or to destroy the ability of honest agents later to compute
the function. Hence each of the agents verifies the information provided to it by
other agents is correct before it changes states. This notion is called proactive
security.
The notion of proactive security was a result of dealing with a mobile ad-

versary which corrupts different parts of the system in different times. It was
motivated by new threats like network viruses. It was first developed for the
area (initiated by Yao and Goldreich, Micali and Wigderson) of general secure
multi-party computation (in [Ostrovsky and Yung, PODC 91]). It was somewhat
motivated by an early notion of allowing users in this setting to leave and re-join
the computation (an idea where share-of-shares which is a robustness mechanism
was first employed in a work [Galil, Haber and Yung, Crypto 87]). It was also
further motivated by Dijkstra’s notion of self-stabilizing protocols which allows
transient faults, whereas proactive protocols allows persisting faults (rather than
transient) by introducing redundancy (requiring honest majority).
Many procedures have been “proactivized” and many distributed cryptosys-

tems in particular. The need for integrity when we have the system dynamically
changing and when honest users re-join, is crucial.
Proactive methods allow us to change the quorum of users that hold a some

computational capability distributedly within a system. This is a new function
made possible by the built-in integrity that assures the correctness of the shared
capability, throughout.

2.4 Voting Schemes

Voting schemes have interesting requirements. They ask that the voter’s action
is universally verifiable yet his ballot has to remain secret. Various methods
assuring the integrity of the system and limiting malicious voters, preventing
them from disturbing the global voting process have been developed. Recently (in
[Kiayias and Yung, PKC 2002]) small scale election with unique properties was
given. It assures increased privacy (where in order to compromise the privacy of
ballot, all other voters have to collude against an individual) has been combined



Crypto-Integrity 571

with certain fault tolerance and universal verifiability in a way that there are no
disputes in the on-line process (dispute freeness) due to built-in crypto-integrity.

2.5 Assurance with respect to Off-line Third Parties

In escrow and key recovery systems (especially in auto recoverable cryptosys-
tems, see [Young and Yung, Eurocrypt’98, PKC’00]), as well as in traceable
e-cash and in various other settings, we have a user assuring that some action by
a non available third party is doable, once this third party becomes active. The
availability of public keys and the proof techniques which use them enable such
proof of actions by a third party where there is no need for on-line parties to
participate. we expect such methods to find further applications in many areas.

2.6 Minimizing Key-Exposure

Recently, cryptosystems have been designed where key exposure is coped with
either by “forwarding” (self updating) the key, making past keys inaccessible,
or by sharing the key with a server (in a key-insulated cryptosystems developed
in [Dodis, Katz Xu and Yung, Eurocrypt’02]). When sharing and updating keys
with other elements, crypto-integrity is a must.

2.7 Multi User Setting

The case where multi users are available, may change the setting and the possi-
bility of procedures that can be employed. For example a “distributed proof” can
be conducted assuring a group of users with honest majority of a fact while not
revealing the underlying secret. Many areas of multi-user oriented cryptography
are open.

2.8 Environmental Constraints and Protocols

Due to technological changes, the environment where protocols are being exe-
cuted is changing. Protocol notions based on the Internet concurrency, notions
based on execution environment being small mobile devices and smart cards are
being considered nowadays.
Environmental constraints also motivate research on modularity and compo-

sition of crypto protocols. The methods that assure integrity are paramount to
allowing properties like composition in specialized settings. For example, the is-
sue of self-testing protocols while retaining the protocol’s security is in its infancy
(see [Franklin, Garay and Yung, DISC’99]).

3 Conclusions

We reviewed areas where crypto-integrity methods have been developed and
used extensively. We showed how the notion allows for integrity assurance while
retaining the secrecy of cryptographic techniques.



572 M. Yung

We claim that the on line assurance is a crucial security component: If we
run tests of the systems in a working environment where we have to give up
security to validate the system’s correctness, we are at risk that someone in
control of moving from test mode to operational mode can use this capability to
compromise the system.
Also, on-line assurance is very important in working systems which evolve

and change. It makes sure the core cryptographic component is acting correctly.
On-line crypto-integrity adds “function” by allowing parties to be off-line

but nevertheless assuring that when they join they will be able to perform their
task.
The research questions regarding on-line integrity in cryptographic settings

are many. From improving the efficiency and other properties of existing meth-
ods, through questions related to new techniques and new primitives where in-
tegrity is crucial, to possibly new areas where crypto-integrity functionality is
a must such as “safe cryptographic testing and development,” “general notions
of composability and modularity,” “theory of reusable cryptographic methods,”
and “theory of update of system based on change of threats.” We believe that
given that “cryptosystems deployment as part of more general computing sys-
tems” is still (in spite of deployment successes) an area in its infancy, the area of
assuring integrity in cryptographic settings is open to further investigation and
to innovations.


